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Abstract: Belousov-Zhabotinsky reaction generates self-organized oscillatory pattern which is common 
in biological systems, synergistic study of oscillatory patterns will assist understanding and modeling 
complex processes in biological sphere. However, the analytical solution of a self-oscillator is difficult 
because the system exhibits nonlinear dynamics. In this study, a frequency domain analysis of Hopf 
bifurcation based on a closed-loop representation is addressed. For better understanding of the closed-
loop mechanism, a Laplace-Borel transform is implemented, which is proved to be effective in 
identifying the coefficients of the harmonics. 
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

1. INTRODUCTION 

Some processes (e.g., Belousov–Zhabotinsky (BZ) reaction) 
don’t follow principles (e.g., Onsager reciprocal relation) of 
classic thermodynamics. I. Prigogine (1978) claimed that 
when open systems are far-from-equilibrium and nonlinear, 
structurally organized patterns would form out of symmetric-
breaking bifurcations; and such open systems are named as 
the dissipative structure systems. Since the BZ reaction is far-
from-equilibrium, the dynamics of the system does not obey 
the Onsager reciprocal relations and symmetry breaking 
bifurcation may cause the system to generate self-organized 
patterns. Fig. 1 depicts the generation of the self-oscillatory 
waveform observed in experiments. 

 

Fig. 1. The snapshot (and amplification) of the diffusive BZ 
reaction, which can generate waveform of color change from 
blue to red periodically (http://hopf.chem.brandeis.edu/anatol.htm). 

By the dissipative structure theory, the BZ reaction is viewed 
as an open system with constant negative entropy 
consumption, and a portion of the overall reaction entropy-
change is consumed for the maintenance of the periodic 
color-change structure. The reaction kinetics for the 
Oregonator (Field et al., 1974) model is given as follows, 
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Species identification with respect to the Field-Koros-Noyes, 
(FKN) mechanism (Field, 1972) are X = HBrO2, Y = Br-, Z = 
Ce(IV), A = BrO3, B = Organic species, P = HOBr, and f is an 
adjustable stoichiometric factor. The reactant species A and B 
are normally presented in much higher concentrations than 
the dynamic intermediate species X, Y and Z, and are 
assumed to be constant on the time scale of a few oscillations. 
The oscillatory exchange of the intermediates causes Z to 
vary between Ce(IV) and Ce(III) back and forth, and with the 
presence of the ferroin indicator, the media would change 
color between blue and red repeatedly, indicating a 
periodically dissipative system, as shown in Fig. 2. 

 

Fig. 2. Schematic of the periodically dissipative structure. 

From the viewpoint of a dynamic system, the nonlinearity of 
the intermediate terms (X, Y, Z) brings about a Hopf 
bifurcation where increasing one of the parameters beyond 
the critical point may cause a periodical colour-change 
waveform to emerge, and the model is given as follows,  
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Equation (1) can be normalized in dimensionless form by 
defining x = X/X0, y = Y/Y0, z = Z/Z0, τ = T/T0, and the steady-
state is given as a function of the reactants A and B, 
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which is now rephrased as follows, 
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It is clear that the periodic solution of the self-oscillatory 
pattern is relevant to the input parameter, i.e., the input 
entropy flux. Knowing how the period is related to the 
parameter change by varying the parameter (say, f) would be 
critically beneficial in identifying the characteristics of the 
self-oscillatory structure. 

Our goal in this study is to develop mathematical methods to 
compute the period of limit cycle as a function of parametric 
changes. Often one can use a numerical continuation method 
(Zhai et al., 2017) or a shooting method (Doedel, 1981) to 
obtain the period of a limit cycle as a function of changes in 
parameters. It would be much more effective, however, to 
find analytical relationships as they would reveal the specific 
characteristics of the self-oscillatory system, i.e., the 
maintenance entropy flux of the self-oscillatory structure. 
Mees and Chua (1979) have proposed a method to solve the 
period of the limit cycle analytically based on the frequency 
domain Hopf bifurcation theory. 

The BZ reaction, however, is a multivariable system, and, 
when the method above is applied, tensor operations render 
the calculations tedious and impractical. Since the BZ 
reaction is a highly nonlinear system, higher order harmonics 
(Allwright, 1977) may also be needed to approximate the 
oscillatory behaviour accurately, which would complicate the 
calculation process further. 

In the current study, we propose to use the Laplace-Borel (LB) 
transfer function representation to express the feedback 
system. The LB transform is an extension of the Laplace 
transform to the nonlinear polynomial terms by an infinite 
series of iterated integrals, and the transformed system obeys 
the shuffle algebraic operation (Batigun, et al., 1997). Similar 
to Mees and Chua (1979), we propose a closed-loop 
mechanism to compute the properties of the oscillation. The 
approximation procedure is progressive and the residuals of 

each expansion are used to identify the parameters of the 
harmonics. 

2. THE GENERATION OF SELF-OSCILLATION 

2.1 Hopf bifurcation Preliminaries 

From bifurcation theory, Hopf bifurcation is the birth of a 
limit cycle from equilibrium in dynamic systems composed 
of a set of ordinary differential equations (ODEs), i.e., a Hopf 
point is the critical point where a small smooth change made 
to the bifurcation parameter(s) causes the system to change 
suddenly from an equilibrium point to a self-sustained 
oscillation. Hence, the Hopf point is viewed as a limit cycle 
where the forcing amplitude is zero. How the properties 
(amplitude and frequency) of the limit cycle will be varying 
with changes of the parameter is the focus of our study, but 
first, we need to locate the Hopf bifurcation point that causes 
the generation of the limit cycle. 

The geometrical idea behind the Hopf bifurcation is seen by 
observing how the phase portrait of a 2-dimensional system 
might alter as the parameter u is varied. 
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where the equilibrium of the state vector [x1, x2]
T is at the 

origin. We truncate the 3rd-order terms via Taylor’s theorem 
and the eigenvalues are λ1,2 = α ± ω i. By a linear 
transformation, Eq. (3) has the topological structure equal to 
the normal form, 

2 2
1 1 2 1 1 2

2 2
2 1 2 2 1 2

( ) ( )

( ) ( )

y u y y y y y

y y u y y y y





    

    

                                (4) 

where the 2nd-order terms disappear. Now, the eigenvalues 
are λ1,2 = α ± i. Introducing the complex variable, z = x1+i x2, 
and the bar on the variable representing the complex 
conjugate, then, Eq. (4) is given as, 

2
( )z i z z z                                                            (5) 

Finally, by using the exponential representation, z = ρeiθ, the 
system is given in the polar form as follows, 
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The phase portrait of Eq. (6) as α passes through zero can be 
analyzed: the first formula has equilibrium point ρ = 0 for all 
values of α. The sign of α decides the stability at the origin. 
For α > 0, the origin is not stable, but there is additional 
equilibrium point ρ0(α) = sqrt(α), combining the second 
formula, which describes a rotation with constant speed, an 
isolated closed orbit is generated. Then α = 0 becomes the 
critical point. 

Therefore, a Hopf bifurcation gives birth to a limit cycle from 
an equilibrium in dynamic systems generated by ODEs, when 
the equilibrium changes stability via a pair of purely 
imaginary eigenvalues. Note that the stability of the limit 
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cycle needs to be tested by the Lyapunov function; for 
higher-dimensional systems, the central manifold theorem 
can be applied to reduce to 2nd-order ones, given that the 
Jacobian of the system only have a pair of purely imaginary 
eigenvalues, while the rest are negative.  

2.2 Detection of the Hopf point 

Exact detection of the Hopf bifurcation point with a varying 
parameter u can be problematic, especially when the system 
is high dimensional and highly nonlinear. The bi-alternate 
product manipulation gives a numerical detection criterion 
for existence of a pair of purely imaginary eigenvalues.  

Proposition 1: The function  

( , ) det(2 ( , ) )H x nx u f x u I    

vanishes at a Hopf bifurcation point, where “det” represents 
the determinant, Θ is the bi-alternate product. 

To prove Proposition 1, the following theorem is needed, 

Lemma 1 (Stephanos theorem): If A is a n×n matrix and have 
eigenvalues μ1, μ2… μn, then 2AΘIn have satisfies (λi+λi)n>i>j>1. 

Proof. The eigenvalues of a matrix are preserved by 
similarity transforms as follows (Govaerts, 2000),  

1( )(2 )( ) 2n nP P A I P P B I      

where, B is the similar transform of A, B = PAP-1. Hence, we 
can assume that A is in upper triangular form (by reducing to 
the Jordan form if necessary). Then the eigenvalues of A are 
its diagonal elements. By applying the following Eq. (7) 
below for the case of upper triangular matrix, 
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It is easy to find out that 2AΘIn is an upper matrix, and its 
diagonal elements are given as Lemma 1 claims. Therefore, 
Proposition 1 is proved.  

3. CLOSED-LOOP REPRESENTATION OF A LIMIT 
CYCLE 

3.1 Feedback equivalent of the nonlinear system 

The frequency domain analysis of the Hopf bifurcation is 
based on the closed-loop representation of the nonlinear 
system. Suppose there is an n-dimensional autonomous 
system represented by a set of general differential equations, 
comprising a dynamical linear part and a memoryless 
nonlinear part g,  

' ( , )A B C  x x g x                                                         (8) 

where A is an n×n matrix, B is an n×l matrix, C is an m×n 

matrix, and g: Rm→Rl. μ is the varying parameter which may 

appear in A, B and C. Equation (8) can be represented as a 
multi-loop feedback system, as shown in Fig. 3. Introducing 

an arbitrary D∈Rl×m, then, Eq. (8) is rewritten as follows, 

' [ ( , ) ]A BDy B C Dy   x x g x                                (9) 

 

where y = Cx. We take the Laplace transform L of Eq. (9),  
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This leads to, 
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Fig. 3. The closed-loop equivalence of the dynamic system. 

In practice, we choose D = 0 if A ≠ 0, and D = In if A = 0. The 
limit condition (s approaches zero) of the Laplace transform 
guarantees that the system has an equilibrium point ( )e

)
 in 

the frequency domain when the Laplace variable is s = 0.  
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 

                                                    (11) 

By linearizing the feedback path in Fig.3 about the 
equilibrium point, where J = ∂g/∂e is the Jacobian matrix, we 
can apply the generalized Nyquist criterion (MacFarlane, 
1977) to study the stability of the equilibrium solutions of 
this linear system. Analogous to the single-loop Nyquist 
theory, which may generate a self-oscillation when the 
characteristic locus passes through point (-1, 0), the multi-
loop system evaluates the characteristic polynomials given as 
follows, 
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From the Hopf theorem, if we are to detect a point μ = μ0 that 
has a pair of eigenvalues of the linearized time domain 
equations crossing the imaginary axis, the characteristic locus 
needs to move through -1+i 0 at a unique frequency ω0 ≠ 0, 
and Eq. (12) has an eigenvalue -1+i 0 at μ = μ0.  
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 
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One can detect the Hopf point of the system by combining 
Eqs. (11) and (13), but method in subsection 2.2 is applied in 
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this study because of the complex algebra encountered in 
solving Eqs. (11) and (13).  

3.2 Analytical solution the of the limit cycle 

In this section, we use the describing function approach to 
analyze the steady-state oscillations in nonlinear systems, 
which is an approximate tool to estimate the limit cycle 
parameters. A self-oscillatory system can be reformulated as 
a feedback system as shown in Fig. 3. The Nyquist criterion 
provides the necessary condition for the closed-loop system 
to generate oscillatory outputs, which is clear in the graphical 
form, as shown in Fig. 4. The intersection point satisfies the 
following condition: 
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G i N
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  
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where N(θ) is the amplitude correlated approximation of the 
nonlinear term g, and N(θ) is identified by the harmonic 
balance method. 

( )G i

1/ ( )N 

 

Fig. 4. The oscillation criterion on the Nyquist diagram. 

Since the BZ reaction is a multivariable system, introducing 
harmonics will make the derivation quite tedious. Suppose a 
2nd-harmonic has the form 
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Equating the input and output of the linear part gives 

( )k kG ik E F                                                          (16) 

where Ek are coefficients of the harmonics defined in Eq. (15) 
and Fk are the Fourier coefficients after the harmonics going 
through the memoryless nonlinear part g.  

By using the tensor product operator, Mees and Chua (1979) 
provided the relation of these two coefficients  
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Substituting Eq. (16) to Eq. (17) and only retaining the [1ω] 
terms, the following relation is obtained 
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By introducing the eigenvalue and the eigenvector, the 
nonlinear term N(θ) can be approximated to 2nd-order 
1+θ2ξ(ω), 

2
1( ) 1 ( )Ti G i      u p

)
                                               (19) 

where ( )i 
)

 is the eigenvalue of Eq. (10) nearest to (-1+0i), 

and u is its left eigenvector. A is the amplitude.  

3.3 Laplace-Borel representation of the close-loop 

The solution method provided in subsection 3.2 requires 
extensive computing and is not straightforward. In practice, 
the frequency is computed by the following equation, 
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which could not be calculated directly, hence, a search 
algorithm is needed. Then, the amplitude is computed by the 
following equation 
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The introduction of the vector representation in Eq. (17) for 
the multi-loop system is not easy to understand, and Eq. (17) 
may truncate out nonlinear polynomials higher than 3rd-order 
terms. Therefore, in this study, we propose to use the 
Laplace-Borel (LB) transfer function representation to 
express the closed-loop system. The LB transform is an 
extension of the Laplace transform to the nonlinear 
polynomial terms by an infinite series of iterated integrals, 
and the transformed system obeys the shuffle algebraic 
operation. 
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Fig. 5. Block diagram for the numerical computation of 
functional expansions. 

The nonlinear system represented in Eq. (8) can be shifted to 
the x0 domain by using the LB transform as follows, 
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where x0 is the transform operator, Also,Ⅱ is the shuffle 
operator, X0 and XN are the linear and nonlinear parts of the 
system, respectively. The functional expansion (FEx) method 
approximates the analytical solution of the system which can 
be presented graphically as in Fig. 5. However, for a specific 
order of expansion Xp(t), the approximated solution by the 
FEx method does not guarantee the solution to reach a closed 
cycle as time approaches infinity. 

Similar to Fig. 3, we propose to close the system by adding 
the dashed lines to Fig. 4, and set u(t) = 0. By utilizing the 
shuffle algebra, each variable of the nonlinear part fi (ith 
expansion) could be decoupled if the order of the harmonics 
is specified, which is especially attractive for multivariable 
systems. The approximation procedure is progressive and the 
residuals of each expansion are used to identify the 
parameters of the harmonics. Given that (1) the nonlinear 
blocks in Fig. 5 may introduce higher order harmonics than 
the corresponding inputs and (2) the output order of the 
harmonics is predictable if the structure of the system is 
given, the equation for N(θ) is explicitly known and the 
parameters of N(θ) can be identified by setting higher order 
residuals to zero. This method makes the calculation of N(θ) 
flexible for different systems and expendable to higher order 
approximations. 

4. RESULTS AND DISCUSSION 

Hopf point of the BZ model is detected using the criterion 
provided in Proposition 1. Since f in Eq. (2) is adjustable, 
numerical bifurcation analysis is implemented as shown in 
Fig. 6. Two Hopf points are detected, H1 is obtained when f 
= 0.522614, the equilibrium is (0.479129 0.521743 0.479129), 
and ω1 = 3.4486; H2 is obtained when f = 2.253903, the 
equilibrium is (0.002071 1.625916 0.002071), and ω1 = 
2.60962. 
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Fig. 6. Numerical continuation and bifurcation of the BZ 
reaction with varying f. 

LB transforms of Eq. (2) and eliminating z gives the 
following formula, where the initial point is arbitrarily set as 
(0, 0, 0) because when the steady-periodic solution is 

concerned, dynamic transients led by the initial setting is 
neglected (Harris and Palazoglu, 1998): 
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Here X , Y and Z are the transform form of x , y and z, 
respectively, and [U1, U2]

T is the transform of the input u in 
Fig. 3. The vector e = [X, Y]T is defined as the harmonics 
similar to Eq. (15). Only 1st-order harmonics are identified 
for simplicity, 
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We caution that the offsets of X and Y are not equal to the 
equilibrium since a symmetry-breaking bifurcation may take 
place in this nonlinear system. The computation of the 
nonlinear part is implemented by the distributive property of 
the shuffle product operation,  

   1 0 2 0 3 0 4 0

1 0 3 0 1 0 4 0

2 0 3 0 2 0 4 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F x F x F x F x

F x F x F x F x

F x F x F x F x

 

 

 

C

C C

C C

                         (25) 

Substituting Eq. (24) into Eq. (23), [U1, U2]
T is obtained, 

0 0 1 1 0 0 1 1 1 1
1 1 1 1 1 2 1 2 2 1

0 1 0 1 0 1 0 1 0 1 0 1
1 2 2 1 1 1 1 2 2 1 1 1

1

0 0

1 1 1 1 1 1 1 1
1 2 1 1 1 2 1 1

0 0

0 0 1 1 1 1

1 2 1 2 2 1

0 1 0 1

1 2 2 1
2

2

2 21

1 1

1 2 1 2

1

1

e e e e e e e e e e

e e e e e e e e e e e e
U

i x i x

e e e e e e e e

i x i x

e e e e e e

e e e e
U

i

  

 



 
 

    
    

   
  

       

 


 



0 1 0 1

1 2 2 1

0 0

1 1 1 1

1 2 1 2

0 0

1

1 2 1 2

e e e e

x i x

e e e e

i x i x

 

 

 
 
 
 

 
 

 
     

         (26) 

The [2ω] are neglected, and [U1, U2]
T is of the form of 1st-

order harmonics, which is operated on by the transfer 
function G(x0 = 1/s). By neglecting the transient dynamics, 
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we can identify the coefficients e by comparing the outputs to 
[X, Y]T defined in Eq. (24). A harmonic pass through G will 
produce an amplification and an angle shift as time 
approaches infinity, while preserving the shape of the 
oscillation, taking f = 0.53 as example,  

1 1
1 2

2 2
1 2

a b
X U U

a b
Y U U

 
 

 
 

                                                            (27) 

Combining Eq. (27) and Eq. (24) and truncating [2ω] and 
higher terms, we obtain the following relations 

0 0 0 1 1 0 0 1 1 1 1
1 1 1 1 1 1 2 1 2 2 1

1 0 1 0 1 0 1 0 1 0 1
1 1 2 2 1 1 1 1 2 2 1

1 0 1 0 1 0 1 0 1 0 1
1 1 2 2 1 1 1 1 2 2 1

0 0 1 1 0 0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 1 2 1 2 2 1 1 2 1 2 2
2

(1 ) 2 2 2 2

(1 ) 2

(1 ) 2

2

(1 ) /

f e e e e e e e e e e e

f e e e e e e e e e e e

f e e e e e e e e e e e

e e e e e e e e e e e e e e e
e

f q f

     

     

     

     
 



1
1

0 0 0 1 0 1 0 1 0 1
1 1 2 2 1 1 1 1 2 2 1
2

0 0 0 1 0 1 0 1 0 1
1 1 2 2 1 1 1 1 2 2 1
2

(1 )

2

(1 ) / (1 )

2

(1 ) / (1 )

e

f q

e e e e e e e e e e
e

f q f f q

e e e e e e e e e e
e

f q f f q








 


    
  


  
   

  (28) 

By the following transform relation,  

1 1
1 2 0 0

1 2

cos( ) sin( ) (1 ) (1 )

2

t t i x i x

i
where

       

 


 
 



    




 

the 1st-order harmonics are given in the following explicit 
form, 

0 1 1

0 2 2

cos( ) sin( )

cos( ) sin( )

x x A t B t

y y A t B t

 

 

  


  

                                      (29) 

and numerical solution of the 6 nonlinear equations yields the 
coefficients, x0 = 0.23461, A1 = -0.16772, B1 = -0.00325; y0 = 
0.64100, A2 = 0.00791, B2 = -0.00153. The equilibrium of (x, 
y) is (0.472147, 0.528749). 

As suggested by Mees and Chua (1979), the frequency of the 
harmonics is computed by Eq. (19), where [1ω] terms are 
examined and the residual is proved to be O (θ3). 

As computing Eq. (20) to obtain ω is tedious, we will follow 

the iterative steps: (1) compute ( ) 1i   
)

 to get the initial 

guess ω0∈R+; (2) substitute ω0 to uT G (i ω)p and ω1 is 
obtained by computing Eq. (20), (3) repeat step (2) till ωi is 
convergent. Hence, the frequency is computed for f = 0.53 as 
0.9053.  

It is rather obvious that a similar formula can be obtained by 
minimizing the residual of Laplace-Borel expansion to higher 
order harmonics, which will be used to identify ω, and this is 
the next challenge. 

5. CONCLUSIONS 

In this paper, the time domain as well as frequency domain 
Hopf bifurcation theory are reviewed and implemented in the 

analysis of the oscillatory BZ reaction model. This paper also 
studied solution of the oscillator based on a closed-loop 
mechanism, and Laplace-Borel transform is introduced to 
identify the coefficients of the multi-dimensional harmonics. 
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