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Abstract: The periodic operation of a non-isothermal continuous stirred tank reactor (CSTR) using inlet temperature modulation 

is investigated in this paper. The DC component of the CSTR output concentration is optimized by tuning the modulation 

parameters of the inlet temperature in order to achieve a maximum conversion using a Nonlinear Output Frequency Response 

Functions (NOFRFs) based approach. The results show that the new approach is fast and efficient in the analysis and design of 

the periodic operation of CSTR and can potentially be applied to conduct the optimal design of periodic operation of other 

chemical engineering processes. 
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1. INTRODUCTION 

Periodic operations in chemical engineering processes 

have received extensive attentions in the past decades 

(Bailey, 1973; Silveston et al., 1995; Petkovska et al., 

2010). The advantages of the periodic operations lie in the 

fact that the average performance of a nonlinear chemical 

engineering system under a periodic operation is often 

superior to the steady-state performance under 

conventional constant input operations (Douglas, 1972). 

Chemical reactors under the condition of a periodic 

modulation feed were studied both theoretically and 

experimentally (Silveston et al., 2012;Brzić et al. 2015). In 

these chemical reactors, the CSTR is a good candidate 

because of its significant nonlinearity and has therefore 

been widely used to study the periodic operation of the 

flow-rate, concentration or temperature for the 

improvement of the process operational performance. 

In recent years, the periodic operation of the CSTR has 

been investigated using nonlinear frequency analysis. 

Particularly, the generalized frequency response functions 

(GFRFs) method has been applied for the analysis of 

different types of CSTR for enhancement of process 

performance through periodic modulation of single or 

multiple inputs (Marković et al.,2008; Nikolić et al., 2014, 

2015). However, the GFRFs method requires derive the 

higher order frequency response functions (FRFs), which 

is difficult to be implemented and widely applied in 

practice. 

The NOFRFs is a novel concept for the analysis of 

nonlinear systems in the frequency domain (Lang et al., 

2007). The method allows the analysis of nonlinear 

systems to be implemented in a manner similar to the 

analysis of linear systems and provides great insight into 

the mechanisms underlying many nonlinear behaviors 

(Peng, et al., 2007). In the present study, the NOFRFs 

method is applied for the analysis and design of a non-

isothermal CSTR under a periodic operation of the inlet 

temperature. The results demonstrate the advantage of the 

new approach over existing GFRFs based analysis and the 

potential of the new analysis in the design of periodic 

operations for chemical engineering processes. 

2. ISSUES ASSOCIATED WITH ACHIEVING A 

FAVORAVLE PERIODICAL OPERATION  

The output response of nonlinear systems that are 

stable at zero equilibrium can be represented by a Volterra 

series (Rugh, 1981): 
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where sy is the steady-state output corresponding to a 

steady-state input, 1( )y t  is the system linear response, 

and, ( ), 2my t m  is the system mth order nonlinear 

response. 

When the system is subject to a harmonic input 

around a steady state
sx with amplitude A and frequency

F  

( ) cos( )s Fx t x A t             (2) 

Eq.(1) can be expressed as (Douglas, 1972) 
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where
nB and , 1,2n n  are the amplitude and phase of 
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the first and second order harmonic output of the system, 

respectively. DCy is the DC component of the output 

response produced by the system nonlinearity which can 

be expressed as follows (Weiner and Spina,1980) 
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where
2 ( ), 1,2,...nH n  represents the 2nth order GFRFs 

of the system.  

Considering a chemical reaction 

 A→product(s) 

where one or more inputs can be modulated periodically 

around an established steady-state. If this type of chemical 

reaction process is subject to the harmonic input (2) and 

the outlet concentration of the reaction can be represented 

by Eq (3). Marković et al. (Marković et al., 2008) have 

shown that the mean of the outlet concentration denoted by
m

A s DCc y y   is different from the corresponding steady 

state outlet concentration denoted by ,A s sc y and the 

difference ,

m

A A s DCc c y     is the indicator of the 

process improvement that can be achieved by the 

introduction of a period operation. If 0DCy   , the 

introduction of the periodic operation is favorable, as it 

increase the conversion in comparison to the steady state 

operation. Otherwise, i.e. when 0DCy   , the periodic 

operation is unfavorable. Consequently, in order to 

introduce a favorable periodic operation, it is necessary to 

ensure that 0DCy   . Theoretically, this can be 

achieved using Eq.(4) but the multi-dimensional nature of 

the GFRFs 
2 ( ), 1,2,...nH n  in Eq.(4) and associated 

complexities imply that this is difficult in practice. 

Currently, the solution is to assume that Eq.(4) can be 

approximated well by the first term and analytically 

evaluate the sign of
2( , )H    using the physical model 

of the CSTR to assess whether a favorable periodic 

operation is achievable. There are two fundamental 

problems with this available solution. First, it is impossible 

or difficult to analytically derive and study
2( , )H   if 

the physical model of CSTR is not available or 

complicated. Secondly, this approach cannot be used to 

optimally determine the periodic operation parameters A  

and   to minimize 
DCy  so as to maximize the 

conversion. In the present study, this challenge will be 

addressed by the development of a new approach based on 

the concept of Nonlinear Output Frequency Response 

Functions (NOFRFs). 

3. THE NOFRFS METHOD 

3.1 The NOFRFS concept 

For system (1), Lang and Billings (Lang et al., 2007) 

have derived an expression for the output frequency 

response  
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 (5)   

where N is the maximum order of system nonlinearity,

( )Y j and ( )U j are the system input and output 

spectrum, ( )nY j represents the n th order output 

frequency response and
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is the definition of the nth order GFRFs with 
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denoting the integration of
1 1

( , , ) ( )
n

n n ii
H j j U j  

  

over the n-dimensional hyper-plane 
1 n     . 

Based on Eq.(5), the concept of the NOFRFs of  

nonlinear system (1) was introduced by Lang and Billings 

(Lang and Billings,2005) as 
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Clearly, using the NOFRFs concept, Eq.(5) can be written  

as 

   
1 1

( ) ( ) ( ) ( )
N N

n n n

n n

Y j Y j G j U j   
 

      (10) 

providing a representation for the system output frequency 

response similar to the representation in the linear case. 

 When subject to the harmonic input (2), it can be 

shown that the output response of system (1) contributed 

by system nonlinearity at zero frequency can be 

represented using (10) as 

2 4

2 4

(0)

2 (0) 6 (0)
2 2F F

DC sy Y y

A A
G G 

 

   
     

   

(11) 

In (11),  2 0 , 1,2,
FnG n  denotes the NOFRFs 

 2 , 1,2,nG n  of system (1) evaluated at 0   in 

the case where the system is subject to harmonic input (2) 
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with frequency 
F . 

A comparison of Eq.(11) and Eq.(4) implies that the 

problems with the application of the existing GFRFs based 

analysis for the favorability of introducing a periodic 

operation could be addressed by using a NOFRFs based 

approach. This is because the NOFRFs can be numerically 

evaluated up to an arbitrary order only using the system 

input and output data (Lang et al., 2007). 

3.2 The NOFRFs based analysis of the periodically 

operated chemical reaction process 

The idea of the NOFRFs based analysis is to 

numerically determine the NOFRFs  2 0 , 1,2,
FnG n 

in Eq.(11) using the system input and output data so as to 

facilitate the evaluation and optimal design of the 

favorable effects of a periodic operation. This can be 

achieved by using the method for the evaluation of the 

NOFRFs proposed in (Lang et al., 2007) and the system 

input output data which can be obtained from either model 

simulation or experimental test. Mathematically, this idea 

can be described as follows. 

Assume that the component 
DCy of the response of 

system (1) to harmonic input (2) under M different 

amplitudes is all available. Denote the M different 

amplitudes as 

, 1, ,mA m M   

and the corresponding 
DCy as 

, 1, ,DCmy m M  

Then, it is known from Eq.(11) that 
2 4
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Consequently, the NOFRFs  2 0 , 1,2,
FnG n  can be 

determined by using a Least Squares approach as follows,    
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where  
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As  2 0 , 1,2,
FnG n  can be determined as described 

above for all relevant 
F of interest, Eq. (11) and 

 2 0 , 1,2,
FnG n  thus determined provide a numerical 

relationship that can be used to analyze and design the 

effect of modulation parameters A and 
F  on the 

favorability and performance of a chemical reaction 

process periodic operation.  

4. SIMULATION STUDY OF THE EFFECT OF 

MODULATION PARAMETERS ON PERIODIC 

OPERATION 

4.1 The mathematic model of a non-isothermal CSTR 

  

Consider a simple nonlinear homogeneous n-th order 

reaction A→product(s), the rate of reaction is given by 
( / )

0
AE RT n

Ar k e c
          (15) 

where Ac is the reactant concentration,T is the temperature,

AE is the activation energy, 0k is the pre-exponential factor 

in the Arrhenius equation and R is the gas constant, 

respectively. The material balance and the energy balance 

for the reactant A can be written as 

, 0

AE

nA RT
A i A A

dc
V Fc Fc k e c V

dt



  
   (16) 

0( ) ( )
AE

nRT
p p i p R A W J

dT
V c F c T F c T H k e c V UA T T

dt
  



        

(17) 

where t is the time, F is the volumetric flow rate of the 

reaction stream,V is the volume of the CSTR reactor,
RH

is the heat of reaction, WA is the surface area of the heat 

exchanger,U is the overall heat transfer coefficient,  is 

the density and
pc is the specific heat capacity. Subscript i  

for the inlet and Subscript J for the heating/cooling fluid 

in the reactor jacket, respectively (Nikolić et al.,2014, 

2015). All the parameters of the model equations used in 

the simulation are listed in Table 1 (Marlin, 2000). 

Assume that Eq. (11) can, in this case, be represented 

as 
2 4

2, 4,2 (0) 6 (0)
2 2F FDC

A A
y G G 

   
    

   
  (18) 

Then, the values of 2, (0)
F

G  , 4, (0)
F

G  in (18) can be 

determined using the method in Section 3.2 from the 

system output data 
DCy under the harmonic input (2) of 

amplitudes 
1A  and 

2A , respectively. 
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Parameter        Value        

Overall heat transfer cofficient multiplied 

by the heat transfer area,UAw

 

Reaction order,n
 

 

Heat capacity,Cp

Activation energy,EA

Heat of reaction,ΔHR

Volume of the reactor,V

Steady-state inlet concentration,cAi,s

Steady-state flow-rate,Fs

Steady-state inlet temperature,Ti,s

Steady-state temperature of the coolant,TJ,s

 

 

 

 

 

 

 

 

 

 

1

10
10 

69256

-543920

4.184×10
3

1 

1 

2 

323

365 

27337

Units

1/min

kJ/kmol

kJ/kmol

kJ/K/m
3

m
3

m
3
/min

kmol/m
3

 K

K

 kJ/K/min

Preexponential factor of the reaction 

rate constant,k0

 

4.2 The NOFRFs based analysis 

From the input output data of system (16)(17) 

produced by the periodic modulation of inlet temperature, 

i.e., 

( ) cos( )i is FT t T A t           (19) 

in the cases of
1 10%A  ,

2 20%A   and frequency 
F

varying from 0 to 100 rad/min, the values of 2, (0)
F

G  ,

4, (0)
F

G  in (18) were obtained. Fig.1 shows the diagram 

of 2, (0)
F

G  as the function of log scaled frequency
F . 

Fig.2 gives the diagram of the DCy as the function of log 

scaled frequency
F  when the input amplitude is

1 10%A  . The obtained 4, (0) 0
F

G   over all the 

frequency ranges of concern. 

From Fig.1-2, it can be concluded that in the low 

frequency range of 5.76 / minF rad  and in the high 

frequency range of 30 / minF rad  , 2, (0) 0
F

G  

and 0DCy  , indicating that the improvement of reactant 

conversion is impossible. While, when 

5.76 / min 30 / minFrad rad  ,
2, (0) 0, 0

F DCG y   , 

showing that performance improvement can be expected 

by the introduction of periodic operation. Particularly, both 

2, (0)
F

G 
and DCy have minima near 7 / minF rad  , 

showing, a best periodic operation performance can be 

reached.
 

Fig.1 The NOFRF
2, (0)

F
G 

vs. logarithmic input frequency
F  

 
      Fig.2 DC component

DCy when amplitude A1=10% vs. logarithmic input frequency
F  

 

Figs.3-4 shows the numerical simulation results of the 

outlet concentration and temperature.  

It can be observed from Fig.3 that, the fluctuation 

ranges of output concentration and temperature are
3( ) [0.1 0.6] /Ac t kmol m and ( ) [370 430]T t K  when

15%A  and 5.53 / minF rad  . The mean value of 

output concentration 30.3575 /m

Ac kmol m is higher than 

the steady state value 3

, 0.3468 /A sc kmol m , making the 

periodic operation unfavourable (as 0DCy    ).           

In Fig.4, the fluctuation ranges of output 

concentration and temperature are
3( ) [0.25 0.4] /Ac t kmol m and ( ) [380 400]T t K  when

15%A  and 10 / minF rad  . 30.3368 /m

Ac kmol m  

is lower than 3

, 0.3468 /A sc kmol m , indicating the 

periodic operation is favorable. These results are obviously 

consistent with the NOFRFs based analysis above. 

10
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-1

0

1

2

3
x 10
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Logarithmic input frequency ω
F

G
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ω
F(0

)

 

 

G
2
 discrete dot

spline algorithm

10
-2

10
-1

10
0

10
1
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2

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Logarithmic input frequency ω
F

y D
C

 

 

y
DC

 discrete dot

spline algorithm

Table 1. Parameters and operating conditions of CSTR 
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In addition, the output temperatures values in Figs.3-

4 both are close to the steady state 388sT K , showing 

that the output temperature response is not be affected by 

periodic modulation of input temperatures. 

 
Fig.3 The output concentration and temperature when modulation 

of input temperature with amplitude A=15% and frequency 

ωF=5.53rad/min 

The values of 
DCy  calculated by numerical 

simulation, the existing GFRFs method, and the new 

NOFRFs method are compared in Table 2. 

 
Fig.4 The output concentration and temperature when modulation of 

input temperature with amplitude A=15% and frequency ωF=10 

rad/min 

It can be observed in Table 2 that
DCy , obtained by 

the NOFRFs based method has a better agreement with the 

values obtained by numerical solution in almost all the 

cases, demonstrating the effectiveness and advantage of 

the NOFRFs based new method. 

 Table 2. The values of
DCy calculated by numerical simulation, the existing GFRFs and the new NOFRFs method 

     

Modulation of inlet temperature 

 15% input amplitude      10% input amplitude        5% input amplitude       3% input amplitude 

Frequency ωF    Δnum  y,GFRFs  y,NOFRFs  Δnum  y,GFRFs  y,NOFRFs     Δnum  y,GFRFs y,NOFRFs    Δnum y,GFRFs y,NOFRFs 

    
1 

                 2 

3 

5 

5.53 

6 

7 

10 

 

4.3 Optimal design using the NOFRFs 

In order to achieve a minimum value for DCy  so as 

to reach a maximal conversion, it is desirable to find an 

optimal value for both the periodic operation amplitude A 

and frequency
F . From Tab.2, [5.53,10] / minF rad   

is selected as the frequency boundary for the effective 

frequency range associated with a negative value of DCy . 

The maximum input amplitude is determined as 15% 

( 48.5iT K  ) to ensure the temperature not to exceed

100 . Based on the discrete data generated by the 

NOFRFs based analysis, a data fitted relationship between

DCy , A and
F , denoted as ( , )DC Fy f A , was 

obtained as follows and illustrated in Fig. 5. 

 
 

Fig.5 The data fitted surface of
DCy  
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Fig.6 Contour map of the data fitted surface yDC 
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(20)

 Fig.5 shows that DCy has a global minimum within 

the effective boundaries of amplitude A and frequency
F , 

which is the solution to the following optimization 

problem, 

min ( , )

. . 5.53 / min 10 / min;

9 48.45

F

F

f A

s t rad rad

K A K



 

 

 （21） 

and can be obtained as 

7.8 / minF rad   

15% input am48 pl.45 ( it de)uA K  

producing 
3

,min 0.02 /DCy kmol m   

    The contour map of the surface ( , )DC Fy f A  is 

shown in Fig. 6 which is the relationship between 

amplitude A and frequency 
F for a given

DCy . For 

example, given 32A K (10% amplitude), the input 

frequency 
F can be found to be 7 / minrad if an 

optimal conversion with 30.012 /DCy kmol m  is to be 

reached. These demonstrate the significance of the 

NOFRFs based design for a desired periodic operation. 

5. CONCLUSIONS 

In the present study, a new NOFRFs based approach is 

proposed to analyse and design the periodic operation of a 

non-isothermal CSTR with a periodically modulated inlet 

temperature. A comparison between the existing GFRFs 

based method and the new NOFRFs approach has 

demonstrated the effectiveness and advantage of the new 

method. In addition, an optimal design of the periodic 

operation parameters using the NOFRFs approach has 

been conducted. The results have shown that the NOFRFs 

approach has potential to perform an optimal design to 

reach a maximum conversion of the reactant, which cannot 

be achieved by existing techniques. 
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