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Abstract: In many industries, including the mineral processing industry, process modelling can be 
improved by mining the data historian. However, the data in the historian is often contaminated with 
missing values, unknown operating conditions, and other imperfections. Furthermore, manual 
segmentation of the data is difficult due to the large number of data points and variables. Thus, there is a 
need to develop and implement methods that can automatically segment the data set into viable 
components for identification purposes. One approach uses Laguerre models to segment the data set. 
However, when used in a multivariate situation, such as in the zinc flotation cell, various issues, such as 
collinearity, arise. Therefore, the data segmentation algorithm needs to take this into consideration when 
examining a data set. Using the zinc flotation cell, it is shown that for the multivariate case preselecting 
the data variables to consider improves the data segmentation.  
Keywords: system identification, data mining, zinc flotation cell 

1. INTRODUCTION 

 In process industries, when implementing control 
strategies, models of varying accuracy are required. This is 
especially the case with model predictive control (MPC). 
MPC has become the standard in the refining and 
petrochemical industries (Qin & Badgwell, 2003). 
Furthermore, this technology is seeing some application in 
the mining, metals and minerals area (Olivier & Craig, 2017). 

 Commercial MPC technology makes use of linear or 
nonlinear models that are obtained from performing planned 
experiments on the plant. Since this step testing is expensive 
from an engineering hours perspective, it has led to the 
development by various companies of automated stepping 
tools (Kalafatis, et al., 2006; Darby & Nikolaou, 2014), 
which require bootstrapping through the generation of a 
“seed” matrix. This is a response matrix for the system that 
expresses the key relationships, while not necessarily being 
extremely precise. This matrix is normally generated by 
performing some manual steps, which runs counter to the aim 
of reducing or eliminating the need for engineering 
supervision during testing. 

Since the majority of MPCs are installed after the plant 
has been operational for some time, the question arises as to 
whether historical data, collected possibly over years of plant 
operation, could be used to generate these seed models.  
Experience in attempting this has led to the conclusion that 
historical data can be used, but that there are practical 
difficulties in doing so.  These include: periods of data where 
the base level control system is not in the mode required to 
identify the models; saturation of PID loops; correlation of 
inputs leading to poor models; poor excitation of the inputs; 
and dad data, which is extremely common for analysers. 

 

In principle, all of these issues could be addressed by 
having a large period of data available.  The challenge then 
becomes investigating this data for periods that can and 
cannot be used for identification.  For a large dataset this 
cannot be done manually. 

Therefore, there is a need to investigate the use of 
algorithms that can calculate periods of data for which model 
identification is likely to succeed. 

 Recently, based on the previous work of detecting 
transients (Horch, 2000), data impact analysis (Carrette, et 
al., 1996), and segmentation for inferential controllers 
(Amirthalingam, et al., 2000), two approaches for 
determining the suitability of a given data segment for control 
purposes, especially identification, have been developed. The 
first method developed by Peretzki et al. (2011) uses 
Laguerre models as the basis for extracting the desired model 
conditions. The key advantage of this approach is that the 
process time delay is not required. However, this method 
only works with data obtained under open-loop or closed-
loop conditions where the reference signal changes. The 
second approach developed by Shardt and Huang (2013) uses 
a condition number based on fitting an autoregressive model 
with exogenous input (ARX) to the data to determine the 
quality. The key advantage of this approach is that it can be 
applied to any operating conditions, including closed-loop 
without any excitations in the reference signal, but excitations 
in the disturbance signal, that is, it can use routine operating 
data. On the other hand, it does require knowledge of both the 
process orders and time delay in order to estimate the 
condition number of the data matrix. Recent work has shown 
that, since the Laguerre approach does not require knowledge 
of the time delay, it can be useful in extracting data from 
industrial historians (Shardt & Shah, 2014; Bittencourt, et al., 
2015). The application of these methods to open-loop, 
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multivariate processes has recently been considered (Patel, 
2016). However, since many processes are already running in 
closed-loop operation, it is necessary to extend the results to 
such cases. 

 Therefore, this paper proposes to analyse the Laguerre-
based approach for application in a multivariate industrial 
system to determine the challenges of using this approach for 
identifying data for system identification with a view of 
generating the seed matrices for MPC identification. A case 
study using the zinc flotation cell will be presented to show 
some of the key results.  

2. DATA SEGMENTATION FOR SYSTEM 
IDENTIFICATION 

When processing historical data with an eye on extracting 
regions that can be used for identification it is necessary to 
consider not only the theoretical foundations, but also the 
impact of various tuning parameters on the system. 

In data segmentation, the Laguerre polynomial is often 
used, since it eliminates the need for knowing the process 
time delay. For these reasons, it makes sense to use this 
approach when extracting historical data for which the time 
delays is not accurately known. 

Tuning parameters in any method primarily impact on 
how critically the algorithm scrutinises each of the regions to 
determine the suitability for identification purposes. In 
general, the tighter the bounds, the greater the scrutiny and 
the fewer regions suitable for identification will be found. On 
the other hand, looser bounds will allow for a greater number 
of suitable regions. 

A final element of consideration is handling multivariate 
data. This involves the selection and consideration of which 
subset of the available parameters should be considered for 
identification purposes. This problem is not necessarily a 
trivial one and it could easily require substantial 
considerations.  

2.1 Data Segmentation Algorithm 

The general data segmentation algorithm can be described as 
(Peretzki, et al., 2011): 

1) Preprocessing: Load and preprocess the data set. Most 
often, this will involve scaling and centring the data set. 

2) Mode Changes: In order to simplify the detection of 
suitable regions, it is important to separate the data set 
into the different modes that are present. Modes can be 
defined as changes in operating points, faults, controller 
settings, or other similar known changes. Removing the 
known changes will improve the ability of the algorithm 
to detect the changes. 

3) Segmentation: For each mode, perform the following 
steps: 
a. Initialisation: Set the mode counter to the current data 

point, kinit = k. 
b. Computation: Compute the required values for the 

given algorithm. In most cases, this will include the 

variances of the signals and the condition number of 
the information matrix. 

c. Compare the variances, the condition number of the 
regressor matrix, and the significance of the 
parameters against the thresholds. 
i. Failure: If any of the thresholds fail to be met go to 

the next data point, that is, k = k + 1, and go to Step 
3.b.  

ii. Success: Otherwise, set k = k + 1, and go to Step 3.c. 
The “good” data region is then [kinit, k]. 

4) Termination: The procedure stops once k equals N, the 
total number of data points in the given operating region. 

5) Simplification: It may be desirable to compare adjacent 
regions and determine if they could be considered to 
come from a single model. Often the segmentation 
algorithm will be a bit too strict and provide too many 
segments (Shardt & Shah, 2014). 

2.2 Laguerre-Based Segmentation 

The Laguerre-based data segmentation uses orthogonal 
Laguerre polynomials to model the system. This 
orthogonality allows for easy removal of unnecessary model 
components without affecting the rest of the parameters. The 
ith order Laguerre model is given as 
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where Li is the ith order Laguerre basis function, α is a time 
constant, and z−1 is the backshift operator. The resulting 
model can then be written as 
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where y(t) is the output signal, u(t) is the input signal, e(t) is 
the error, θi is the to-be-determined coefficient, and Ng is the 
Laguerre order of the process. The parameters for the model 
given by Equation (2) can be obtained using standard 
regression analysis. 

 In this approach, a recursive method is used to compute 
the required variances, that is, the following update rule is 
used: 
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where λ is the forgetting factor and σ2 is the variance of the 
given signal. It can be noted that two forgetting factors are 
present

ymλ and 
yσλ , which need to be tuned. The variance is 

updated using the above formulae for 3 different signals, the 
inputs, outputs, and the regression matrix. Based on previous 
experience, the forgetting factors will all be set to 0.99.  
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The Laguerre model parameters, α and Ng, are the other 
two model parameters whose value needs to be set. 
According to (Peretzki, 2010) 

  ( )log
1

2g
s

N
θ α

τ
≥ − +  (4) 

where θ is the continuous time delay and τs is the sampling 
time. Previous investigations have shown that α should be set 
between 0.80 and 0.95. For the purposes of this investigation, 
α will be selected as 0.80, while the value of Ng will be set to 
6, since the actual values of the time delay are not known. 
However, it is known that it is not greater than about 100 
minutes. The sampling time is fixed to 1 minute. These 
constraints support the value for Ng that has been selected. 

 Selecting the thresholds can be a bit difficult, especially 
without considering some of the properties of the signals 
themselves. For the input signal, in order to be generous and 
allow for more regions to be identified, the variance threshold 
was set to 10−7. For the output signal, the variance threshold 
was set to 10−7. The regression variance was set to 10−3. The 
condition number threshold was set to the standard value of 
1,000 [cite my thesis]. 

2.3 Multivariate Analysis 

Since most of the previous approach have only considered 
univariate input variables, this paper will also examine the 
implications in terms of the multiple inputs and their impact 
on finding suitable regions. Different combinations of 
variables will be taken to determine if it is possible to 
segment a given data set without necessarily using all the 
required variables. Clearly, the more variables that are 
present, the larger the matrices involved, and the greater the 
computational power required. Since the quality of the model 
is only one item to consider, it is important to consider the 
trade-off between speed of segmentation and the accuracy of 
the results. 

As well, when dealing with multivariate data, it may 
happen that some of the parameters are irrelevant for 
identification. In such cases, it will be interesting to examine 
the impact that irrelevant variables have on the ability of the 
method to determine the identification regions. 

3. PROCESS DESCRIPTION  

Before considering the actual implementation of the data 
segmentation system, it will be useful to briefly examine the 
actual system considered. 

The data used in this study has been obtained from a 
section of the lead zinc concentrator at the Mount Isa Mines 
in Queensland, Australia.  The concentrator is a complex 
operation, recovering both lead and zinc from a feed sourced 
from three different mines.  The ore is milled and is then fed 
to a lead removal circuit.   The lead is recovered in the form 
of a concentrate.  The reject stream from this unit, termed the 
tailings, is fed to a zinc flotation unit.  In this circuit, a 
number of banks of flotation cells, are used to recover the 

zinc.  As shown in Figure 1, these banks are named the 
roughers, scavengers and recleaners. 

The section of the circuit covered here is the zinc 
roughers.  The rougher tails from the upstream lead circuit 
are the feed to the zinc roughers.  As shown in Figure 2, this 
bank consists of four cells (FC23, FC24, FC25, FC26).  Their 
aim is to do a rough separation of zinc from the waste 
material. Copper sulphate (activator) and naphthalene 
sulphate (depressant) are added upstream. Ethyl xanthate, a 
collector, is added to cells FC23 and FC25. The tails of the 
rougher (unfloated material) report downstream to the 
scavengers where the majority of the remaining zinc is 
floated. The concentrate (floated material) from the roughers 
reports to the recleaners.  

 
Figure 1: Zinc rougher, scavenger and recleaner circuit. 

In the rougher bank, levels are controlled per pair of cells.  
The flowrate of air can be varied on a per cell basis.  
Composition measurement by X-ray fluorescence (XRF) is 
used on all concentrate and tails streams.  In Figure 2, LC1 
and LC2 are level PID controllers on pairs of cells, FC1 to 
FC4 are flow PID controllers on air flowrates and FC5 to 
FC8 are reagent flow PID controllers. FI1 is the volumetric 
feed flowrate.  Analysers AI1 to AI3 measure zinc 
percentages in the feed, concentrate, and tails respectively. 

 
Figure 2: Rougher Bank Showing Control Loops and 
Analysers 

4. TEST DATA 

The data collected for this investigation consists of thirty-
one days of plant operation.  These were collected from the 
plant historian at a frequency of one minute.  The historian’s 
interpolation routine is used to ensure the data is aligned.  No 
special care was used to ensure that the data had any 
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particular characteristics, other than that the plant was 
running.  There is a period of one day in the data where the 
feed falls away.   

Forty-three variables were collected: for each of the PID 
controllers, setpoint, process value and output (SV/PV/MV) 
were recorded.  The three analysers provide measure of iron, 
lead and zinc percentages. Variables collected are listed in 
Table 1. The process was assumed to be running under 
control throughout the period of investigation. 

Table 1: Test Variables 

Tag Attributes Description 
FI1 PV Feed rate 
AI1 Fe/Pb/Zn Feed Compositions 
FC5 SV/PV/MV CuSO4 (reagent) to FC22  
FC6 SV/PV/MV EX (reagent) to FC23 
FC7 SV/PV/MV EX (reagent) to FC25 
FC8 SV/PV/MV NS (reagent) to FC3 
FC1 SV/PV/MV Air flow to FC23 
FC2 SV/PV/MV Air flow to FC24 
FC3 SV/PV/MV Air flow to FC25 
FC4 SV/PV/MV Air flow to FC26 
LC1 SV/PV/MV FC24 Level 
LC2 SV/PV/MV FC26 Level 
AI2 Fe/Pb/Zn Primary Rougher 

Concentrate Compositions 
AI3 Fe/Pb/Zn Primary Rougher Tailings 

Compositions 
A design for a MPC on this unit has been derived.  The 

manipulated variables (MVs) are the air flows, levels and the 
flows of the reagents.  Feed-forward (FF) variables are 
expected to be the feed flow and feed composition or 
compositions.  The outputs or controlled variables (CVs) are 
the zinc percentages in the concentrate and tailing streams. 

5. RESULTS AND DISCUSION 

Based on the analysis of the data set, five different cases 
will be considered: 

1) Case 1: All data will be used for segmentation of the 
data set. 

2) Case 2: Using three variables to segment the data set. 
The selected variables are LC1, LC2, and AI1Pb. 

3) Case 3: Using three variables to segment the data set. 
The selected variables are FC1, FC2, and FC3. 

4) Case 4: Using two variables to segment the data set. 
The selected variables are FC1 and FC3. 

5) Case 5: Using expert knowledge to select the 
variables based on what variables should impact the 
model. The selected variables are FI1, FC5, FC6, 
FC7, FC8, LC1, and LC2. 

For each case, the data set was segmented using the 
programme and a model using the “good data set” was 
developed using Aspentech® DMC Model to derive linear 

step response models. For the purposes of this study, only 
subspace methods were used. The variables were not 
conditioned before modelling. As well, a constant settling 
time of 90 minutes was selected for all the models. 
Furthermore, it can be noted that during data segmentation, 
whenever the output sensor failed, it was assumed that the 
mode had changed and that component was separated out of 
the model. 

 For Case 1, where all the available measurements were 
used, it was quickly determined that no useful information 
could be extracted, since some of the variables are correlated 
with each other, leading to strongly ill-conditioned matrices. 
This suggests that it is important to properly select the 
appropriate variables to consider. 

 For Case 2, the segmentation results are shown in Figure 
3. It should be noted that a constant segment number 
represents a region where the data is assumed to belong to the 
same model. A segment value of −1 corresponds to those 
regions where the sensor failed. The segment number 
increases every time a data point fails to be good for 
identification. After every new segment, there will be a short 
transient region corresponding to the time it takes to have 
sufficient data for identification (40 data points are 
considered the minimum for identification). 

 
Figure 3: Segmentation Results for Case 2 

 For Case 3, the segmentation results are shown in Figure 
4. The same definitions have been used as for Case 2. It can 
be seen that the number of segments is quite different even 
though 3 variables have been used. 

For Case 4, the segmentation results are shown in Figure 
5. The same definitions have been used as for Case 2. Here it 
can be seen that decreasing the number of variables has lead 
to an increase in the regions that are not sufficiently good for 
identification. However, this could easily be a function of the 
variables selected. Nevertheless, selecting an appropriate 
subset of 2 variables could be difficult as it would involve a 
large search. 

Finally, for Case 5, the segmentation results are shown in 
Figure 6. Here it can be seen that there are large areas of 
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constant value located between the sensor faults. It would be 
possible to determine if the adjacent segments are actually 
similar and warrant being combined. Doing this would 
provide additional data for model building. 

 
Figure 4: Segmentation Results for Case 3 

 
Figure 5: Segmentation Results for Case 4 

 The resulting models for all the cases are shown in Figure 
7. The step responses for each of the variables of interest and 
the resulting models have been provided for both inputs. It 
can be noted that in practice the air flow rates are combined 
into a single variable. The same is done for the EX reagent. 
In general, it can be seen that the quality of the resulting 
model strongly depends on the segmentation results. It can be 
seen that Cases 2, 4, and 5 present similar results, while Case 
3 (denoted by the black line) often gives models that deviate 
strongly from the consensus. Noting that the purpose of this 
modelling exercise is to develop “seed model” for use as the 
initial values for the MPC model creation software, it should 
be noted that the overall accuracy of the model is not all that 
important, except that it provide the correct overall picture. 

 Table 2 shows the root mean square error and R2 for the 
fit of the zinc concentration models for the first output. It can 
be seen that in general the fit for all the cases is relatively 
low. However, of the considered cases, Case 4 has the best 

fit. This suggestions that the segmentation method can 
accurately determine which regions should be used for 
modelling and which ones should not. Furthermore, since the 
data was extracted from a data historian without any prior 
data conditioning, there is no guarantee that the data set itself 
can provide decent models. 

 
Figure 6: Segmentation Results for Case 5 

Table 2: Summary Statistics for AI2.ZN 

 Case 2 Case 3 Case 4 Case 5 
RMSE 1.53 1.95 1.54 2.07 

R2 0.18 0.13 0.38 0.13 

6. CONCLUSIONS 

This paper examined the application of a data 
segmentation algorithm to the zinc flotation cell. In this case, 
the Laguerre approach to data segmentation was used, since it 
did not require knowledge of the time delays. Furthermore, 
since multiple inputs were available, different sets of 
variables were tested in order to determine which if the 
variables could be used for quickly segmenting the data set. 
The larger the number of variables, the longer it takes to 
properly segment the data set. As well, variables which do 
not have an influence on the model should be removed when 
data segmentation is performed. 

The above observations were validated using data 
extracted from a historian for a zinc flotation cell. The best 
segmentation, both in terms of the number of segments and 
their accuracy, was using all the relevant variables. 
Furthermore, the resulting models were sufficiently accurate 
to be used for the initial seed for model predictive controllers. 

Therefore, when dealing with multiple inputs, it is 
important in selecting the appropriate set of variables to 
consider for segmentation purposes. Too large and too small 
of a number can have an impact on the final quality of the 
models. 

Future work will focus on determining if a subset of 
variables can be used to obtain better segmentation results. 
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Figure 7: Unit Step Response Models (Case 2: black, Case 3: blue, Case 4: pink, and Case 5: green) 
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