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Abstract: This work proposes a passivity-based approach to deal with the output-tracking-error
problem for a large class of nonlinear chemical processes including non-minimum phase systems.
More precisely, in that framework, the system dynamics is firstly written into the relaxing
(pseudo) port-Hamiltonian representation which does not necessarily require the positive semi-
definite property of the damping matrix. Then, a reference trajectory associated with a certain
structure passing through a desired equilibrium point (i.e., the set-point) is chosen so that the
error dynamics can be globally asymptotically stabilized at the origin thanks to the assignment
of an appropriate damping injection. This method is subsequently illustrated for a benchmark
of multiple reactions systems, namely Van de Vusse reaction system. The numerical simulations
show the applications of the proposed approach.
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1. INTRODUCTION

The (nonlinear) dynamics of chemical process systems
usually exhibits the abnormal behaviors (such as the in-
put/output multiplicity or chaos and limit cycle, etc.)
caused by the highly nonlinear characteristics of reaction
kinetics, constitutive equations of transport phenomena
and thermal effects (Melo et al. (2001); Favache and
Dochain (2010); Aris (2013); Hoang et al. (2013a)). In
fact, these behaviors give rise to the internal instabil-
ity and restrict the systems themselves to reach their
desirable performance if they are operated without the
feedback laws (Åström (2000)). Hence, during the last
few decades, numerous advanced control strategies have
been proposed to tackle this theoretically difficult but
interesting challenges. Generally speaking, the controllers
are capable of canceling the intrinsic nonlinearities of the
system and stabilizing it at a desired set-point. However,
several issues related to the applicability of developed
control methods for a wide range of nonlinear systems,
especially the non-minimum phase ones, remain open (see
e.g., feedback passivation (Byrnes et al. (1991); Sepulchre
et al. (1997))). This is due to the fact that their unstable
zero dynamics cannot be (asymptotically) stabilized by
the traditional strategies such as the feedback linearization
technique (Khalil (2002)).

Among the advanced control strategies applied to the
control of non-minimum phase systems (such as model pre-
dictive control (MPC) (Panjapornpon et al. (2006)), the
physics/energy-based strategy (Ydstie and Alonso (1997);
Favache and Dochain (2010); Alvarez et al. (2011); Hoang
et al. (2011a,b, 2013a,b)), the adaptive backstepping con-
troller (Dochain (1992); Gopaluni et al. (2003)), the sliding

mode control (Chen and Peng (2006)) and others (Niemiec
and Kravaris (2003); Kravaris and Mousavere (2007))), the
passivity-based approach (PBA) is recognized as a system-
atic and useful tool for control design and it can be used in
different ways (see e.g., Ortega et al. (2002)). In addition,
in (Sira-Ramı́rez and Angulo-Núnez (1997); Sira-Ramı́rez
(1998)), the authors proposed another method which is the
so-called feedback passivation design, for the single-input-
single-output (SISO) or multi-input-multi-output (MIMO)
systems. The proposed method was of great interest, yet
for instance paid by considering the systems with (slightly)
minimum phase behavior and/or the relative degree one
only (Byrnes et al. (1991); Sepulchre et al. (1997)).

The main objective of this work is to extend the results
proposed by (Sira-Ramı́rez and Angulo-Núnez (1997);
Sira-Ramı́rez (1998); Nguyen et al. (2018)) to the con-
trol of a typical non-minimum phase system of chemical
engineering, namely the Van de Vusse reaction system
(Chen et al. (1995); Antonelli and Astolfi (2003); Ramı́rez
et al. (2009); Kuntanapreeda and Marusak (2012)). The
contributions of this paper are twofold :

• Firstly, to circumvent the feedback passivation ob-
stacle that seems to be impossible due to non-
minimum phase characteristics, the nonlinear dynam-
ical system is directly formatted into a (pseudo) Port-
Hamiltonian (PH) representation in a direct and un-
derstandable way. This resulting representation 1 is
of ultimate importance, but paid possibly by losing
some structural properties.

1 This belongs to the so-called relaxing pseudo PH models due to
thermodynamically consistent features (Hoang et al. (2015)).
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• Then, once the relaxing PH model of the system
dynamics is derived, the (generalized) passivity plus
tracking-error-based control strategy is applied to
achieve the global asymptotic stabilization thanks to
an appropriate damping injection.

This paper is organized as follow. Section 2 gives a brief
overview of the PH representation of an affine nonlinear
system. Section 3 is devoted to the generalizations of the
passivity plus tracking-error-based controller. The illustra-
tions of the proposed approach for the stabilization of the
(non-minimum phase) Van de Vusse reaction system are
given in section 4. The numerical simulations are carried
out in section 5 to illustrate the theoretical developments.

2. THE PORT-HAMILTONIAN REPRESENTATION
OF NONLINEAR SYSTEMS

Throughout the paper, the nonlinear dynamical system
which is affine in the input u is considered as follows :

�
x = f(x) + g(x)u, x(t = 0) = x0 (1)

where x = x(t) is the state vector in the operating region
D ∈ Rn, f(x) ∈ Rn expresses the smooth (nonlinear)
function with respect to the vector field x. The input-state
map and the control input are represented by g(x) ∈ Rn×m
and u ∈ Rm, respectively.

Assume that if the function f(x) verifies the so-called
separability condition (Dörfler et al. (2009); Ramı́rez et al.
(2009); Favache et al. (2011); Hudon et al. (2015); Guay
and Hudon (2016); Hoang et al. (2017)), that is, f(x)
can be decomposed and expressed as the product of some
(interconnection and damping) structure matrices and the
gradient of the generalized Hamiltonian storage function
with respect to the state variables, i.e. :

f(x) = [J(x)−R(x)]
∂H(x)

∂x
(2)

where J(x) and R(x) are the n × n skew-symmetric
interconnection matrix (i.e., J(x) = −J>(x)) and the n×n
symmetric and positive semi-definite damping matrix (i.e.
R(x) = R>(x) ≥ 0), respectively while H(x) : Rn −→
R represents the storage function of the system, then
the original dynamics described by (1) is said to be a
PH representation (Van der Schaft (2000); Ortega et al.
(2002)). Equation (1) is then rewritten as follows :

�
x = [J(x)−R(x)]

∂H(x)

∂x
+ g(x)u

y = g(x)>
∂H
∂x

(3)

where y is the output.

It can be clearly seen that the time derivative of the storage
function H(x) satisfies the inequality below

dH(x)

dx
= −

[
∂H(x)

∂x

]>
R(x)

∂H(x)

∂x
+ u>y ≤ u>y (4)

From a physical point of view, this implies that the total
amount of energy supplied from external source is always
greater than the increase in the energy stored in the
system. Also, equality in (4) holds only if the damping
matrix R(x), that is strongly related to the dissipation
term, is equal to 0. Hence, the PH system (3) is passive
with input u and output y corresponding to the storage

function H(x). We shall not elaborate any further on the
PH representation here and refer the readers to (Ortega
et al. (2002); Dörfler et al. (2009); Van der Schaft (2000);
Hoang et al. (2017)) for more information.

Remark 1. The storage function H(x) is possibly equal to
the total energy function for electromechanical systems
or the generalized energy function for physicochemical
systems (such as entropy production, etc. (Hoang et al.
(2014); Hoang and Dochain (2016); Hoang et al. (2017))).
Other choices with no physical significance for the stor-
age function H(x) are also made (Sira-Ramı́rez (1998);
Ramı́rez et al. (2009); Dörfler et al. (2009)).

For the cases of biochemical processes we are concerned
with here, the formulation described by (3) refers to the
so-called pseudo PH representation (i.e., the structure
matrices depend not only on the state variables x but also

the co-state variables ∂H(x)
∂x ) (Hangos et al. (2001); Eberard

et al. (2007); Dörfler et al. (2009); Ramı́rez et al. (2009);
Favache et al. (2011); Hoang et al. (2011b); Ramı́rez et al.
(2013); Hoang et al. (2017)). Furthermore, in some cases,
the damping matrix R can also be relaxed (i.e., this does
not necessarily require the positive semi-definiteness of
damping matrix R) due to thermodynamically consistent
properties of the system, the resulting representation is
then called the relaxing pseudo PH models (Hoang et al.
(2015)). Even if the structural properties are violated,
such relaxing pseudo PH models can be considered further
for the control design in the framework of the passivity
plus tracking-error-based control. This is one of the main
contributions of this paper.

3. A GENERALIZATION OF THE PASSIVITY PLUS
TRACKING-ERROR-BASED CONTROLLER

Let xd be the reference trajectory passing through the
(desired) set-point. The following proposition proposes a
dynamic structure for xd that allows to implement the
control design. The proposed developments generalize the
results given in (Sira-Ramı́rez and Angulo-Núnez (1997);
Sira-Ramı́rez (1998)).

Proposition 1. Assume that :

(i) there exists a relaxing PH model (3) of the nonlinear
dynamical system (1) and the storage energy function
H(x) is of a quadratic form, i.e.,

H(x) :=
1

2
x>Rdix (5)

where Rdi is an arbitrary positive definite symmetric
(constant) matrix;

(ii) the reference trajectory xd is governed by

�
xd =

[
J(x) −R(x)

]
∂H(xd)

∂xd
+RI(x)

∂H(e)

∂e
+ g(x)u (6)

where e = x− xd is the error state vector and RI(x) is
a positive definite symmetric matrix.

Then, the system trajectory x globally asymptotically
converges to the reference trajectory xd if and only if the
damping injection RI(x) is appropriately assigned so that
the following condition holds :(

R(x) +RI(x)
)

=
(
R(x) +RI(x)

)>
> 0 (7)
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Proof. From (5), it is straightforward to show that :(∂H(x)

∂x
− ∂H(xd)

∂xd

)
=
∂H(e)

∂e
:= Rdie (8)

On the other hand, the time derivative of the storage
function H(e) is expressed as follows :

�
H (e) =

[
∂H(e)

∂e

]>
�
e (9)

with the error state vector dynamics described by 2 :

�
e =

{
J(x)− [R(x) +RI(x)]

}∂H(e)

∂e
(10)

where the first entry of (3), equations (6) and (8) have
been used. As a consequence of (10), (9) becomes :

�
H (e) =

[
∂H(e)

∂e

]>{
J(x)− [R(x) +RI(x)]

}∂H(e)

∂e

= −
[
∂H(e)

∂e

]>
[R(x) +RI(x)]

∂H(e)

∂e
< 0 (11)

Strict inequality (11) holds thanks to (7). Since H(e) is
bounded from below by 0, the error dynamics can be
stabilized globally at the origin by invoking La Salle’s
invariance principle (Khalil (2002)). The latter concludes
the proof. �

Remark 2. The exponential convergence property of the
system trajectory x towards the reference one xd (i.e.,
lim
t→∞

e = 0) can be obtained only if R(x) = R(x)> ≥ 0 (i.e.,

for non-relaxing PH systems). Indeed, by (8) and (11) one
derives :

�
H(e) ≤ −e>RdiRI(x)Rdie (12)

Hence,
�
H(e) ≤ −2

λinf

βsup
H(e) (13)

where  λinf = inf
(

eig (RdiRI(x)Rdi)
)
> 0

βsup = sup
(

eig (Rdi)
)
> 0

(14)

Remark 3. In order to derive the feedback laws for
u (dim(u) = m), only m components of xd need to be
chosen appropriately prior to assigning their desired tra-
jectories (including the set-point) so that the correspond-
ing m ×m submatrix obtained from g(x) is of full rank.
In other words, this guarantees the solvability of the linear
system (6) with the unknown u (i.e., the degree of freedom
of (6) equals 0).

4. APPLICATION TO THE (NON-MINIMUM PHASE)
VAN DE VUSSE REACTION SYSTEM

We consider the synthesis of cyclopentenol (main product)
from cyclopentadiene (material) by sulfuric acid-catalyzed
addition of water in a dilute solution taking place in
a continuous stirred tank reactor (Luyben (1990)). The
stoichiometric equations are given as follows (Ramı́rez
et al. (2009); Hoang et al. (2013a)) :

C5H6(A)
k1−−−−→

+H2O
C5H7O(B)

k2−−−−→
+H2O

C5H8(OH)2(C)

2C5H6(A)
k3−→ C10H12(D)

2 Obviously, the dynamics of the error state vector e is naturally
formatted in a PH structure.

4.1 The mathematical model

Based on the material and energy balance equations,
the (reduced-order) mathematical model of Van de Vusse
reaction system described by a set of ODEs is written as
follows (Ramı́rez et al. (2009); Hoang et al. (2013b)) :

�
x1 = −k1x1 − 2k3x

2
1 + (x10 − x1)u1

�
x2 = k1x1 − k2x2 − x2u1

�
x3 =

−∆H1k1x1 −∆H2k2x2 −∆H3k3x
2
1

ρCp
+ (x30 − x3)u1 +

u2

ρCp

(15)

where x1 and x2 are the concentrations of cyclopentadi-
ene (denoted by A) and cyclopentenol (denoted by B),
respectively while x3 represents the reactor temperature
(denoted by T ). Physically, all theses states are positive
and characterise the so-called positive system (Hoang et al.
(2013b)).

Also, ki, i = 1, 2, 3 are the reaction kinetics and governed
by the Arrhenius law as below.

ki (T ) = ki0 exp

(
Ei
RT

)
(16)

All process parameters and their numerical values are
listed in Appendices A and B.

4.2 The analysis of non-minimum phase behavior and
optimization of the reaction system

Let P e = (xe1, x
e
2, x

e
3) be an equilibrium point of the

system (15), the computations leads to the mathematical
expressions of P e as below
xe1 =

−
(
k1
(
xe3

)
+ u1

)
+

√(
k1
(
xe3

)
+ u1

)2
+ 8k3

(
xe3

)
x10u1

4k3
(
xe3

)
≡ f1(xe3)

xe2 =
k1
(
xe3

)
k2
(
xe3

)
+ u1

xe1

(17)

where xe3 is one positive solution of the following nonlinear
equation.

u2 =

[
∆H1k1 (xe3) + ∆H2

k1 (xe3) k2 (xe3)

k2 (xe3) + u1

]
f1 (xe3)

+ ∆H3k3 (xe3) f2
1 (xe3)− (x30 − xe3)u1ρCp ≡ f3 (xe3)

(18)

In (Dochain (1992)), the author showed that for the
Van de Vusse reaction system if all the zeros of the
transfer function of the linearized system (derived at
an equilibrium point) have a strictly negative real part,
then the nonlinear process is minimum phase at that
equilibrium point. And, if some of them have a strictly
positive real part, then the process is non-minimum phase.
Let us recheck quickly this result, we assume the reactor is
initially operated corresponding to u1 = 19.52 (1/h) and
u2 = −500 (kJ/(l.h)). The equilibrium point P e is then
calculated by P e = (1.25, 0.86, 404.7). In this case, the
transmission zero of the linearized system from u2 to x2

is found to be + 89.11. Hence, the Van de Vusse reaction
system belongs to a class of non-minimum phase systems.
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Fig. 1. Optimization steady-sate concentration of main
product

In practice, the reaction system (15) is usually operated
so that the concentration of primary product at the
equilibrium point (xe2) reaches the optimal solution, i.e
(xe2opt). Hence, the constrained optimization problem of
this system can be stated from (17) and (18) as follows :

max
u2

xe2 (xe3) (19)

subject to f3(xe3) = u2 and xe3 min ≤ xe3 ≤ xe3 max

Figure 1 shows that the steady-state concentration of
cyclopentenol (xe2) reaches the maximum value xe2opt =
0.96 (mol/l) corresponding to xe3opt = 392.67 (K) when
the rate of heat exchanged between the jacket and reactor
is equal to -1100 (kJ/(l.h)). During the rest of this paper,
the optimal equilibrium point P eopt = (1.87, 0.96, 392.67)
will be used as the set-point of the reaction system (15)
for the purpose of control design.

4.3 The control design

Our control objective is to stabilize the reactor at the
optimal equilibrium point P eopt = (1.87, 0.96, 392.67) ≡
(xe1opt, x

e
2opt, x

e
3opt) using the dilution rate u1 and the rate

of heat exchanged between the jacket and the reactor u2

as the control inputs.

In order to apply Proposition 1 to design the tracking-
error-based controller, the nonlinear dynamics (15) is
firstly written into the PH representation (3) with a certain
quadratic storage function (5). However, it is not likely
to the isothermal case 3 , the PH representation of the
non-isothermal system dynamics with a quadratic storage
function cannot be found apparently due to the nonlin-
earity of thermal effects. Hence, the relaxing (pseudo) PH
formulation is needed for the control design. For sake of
simplicity, the new state variable is introduced (see also
(Ramı́rez et al. (2009))).

x̄3 = − ρCp
∆H3

x3 (20)

From this, the set of ODEs described the non-isothermal
reactor dynamics (15) can be re-written into the relax-
ing PH formulation with the quadratic storage function
H(x) = 1

2

(
x2

1 + x2
2 + x̄2

3

)
as below 4

�
x = [J(x)−R(x)]

∂H(x)

∂x
+ g(x)u (21)

3 Such a PH representation can be derived easily.
4 Without loss of generality and when no confusion results, the same
notation x for the novel state vector, i.e., x = (x1, x2, x̄3) is also used.

where :

g(x) =


x10 − x1 0
−x2 0

− ρCp
∆H3

(
x30 +

∆H3

ρCp
x̄3

)
− 1

∆H3

 , (22)

u = [u1, u2]
>
, (23)

J(x) =

[
0 a1 b1
−a1 0 0
−b1 0 0

]
(24)

where :

a1 = −k1

2
+
k3x1x̄3

2x2
+

∆H2

∆H3

k2x̄3

2x1
(25a)

b1 = −k3x1 −
∆H2

∆H3

k2x2

x1
(25b)

and,

R(x) =

[
d1 e1 0
e1 d2 0
0 0 d3

]
(26)

where :

d1 = k1 + 2k3x1; d2 = k2; d3 = −∆H1

∆H3

k1x1

x̄3
(27a)

e1 = −k1

2
− k3x1x̄3

2x2
− ∆H2

∆H3

k2x̄3

2x1
(27b)

Hence the assigned mathematical expression of the state

vector xd = (xd1, xd2, x̄d3) where x̄d3 = − ρCp

∆H3
xd3 is given

as below,
�
xd1 =− d1xd1 + (a1 − e1)xd2 + b1x̄d3

+R1I(x1 − xd1) + (x10 − x1)u1 (28)
�
xd2 =(−a1 − e1)xd1 − d2xd2 +R2I(x2 − xd2)

− x2u1 (29)
�
x̄d3 =− b1xd1 − d3x̄d3 +R3I(x̄3 − x̄d3)

− ρCp
∆H3

(
x30 +

∆H3

ρCp
x̄d3

)
u1 −

u2

∆H3
(30)

where a1 and b1 are the elements of matrix J(x) (24) while
d1, d2, d3 and e1 are the components of matrix R(x) (26).
Also, R1I , R2I andR3I represent the positive elements of
RI(x) = diag(R1I , R2I , R3I).

We can check easily that the positive semi-definite condi-
tion of matrix R(x) (26) is not met, this structure belongs
to relaxing (pseudo) PH representation. The global asymp-
totic stabilization of the controlled dynamics is achieved
since the condition defined in (7) holds. Indeed, in the case
of R(x) (26), an example of RI(x) is proposed below 5 ,

RI(x) =

[
R1I 0 0

0 R2I 0
0 0 R3I

]
= RI(x)

>
(31)

where R1I and R2I are calculated as follows :

R1I =
k3x1x̄3

2x2
+

∆H2

∆H3

k2x̄3

2x1
+ α > 0 (32)

R2I = 2k3x1 +
k3x1x̄3

2x2
+

∆H2

∆H3

k2x̄3

2x1
+ α > 0 (33)

with α as an additional positive scalar to be chosen, while
R3I ≥ 0 is an arbitrary tuning parameter. From this, the

5 The positive semi-definiteness property holds since ∆H2 < 0 and
∆H3 < 0 (See Appendix B).
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Table 1. The initial conditions

x01 (mol/l) x02 (mol/l) x03 (K)

SSI 2.1 0.8 403
SSII 1.5 1.0 360

symmetric matrix
(
R(x)+RI(x)

)
is positive semi-definite

since its principal minors determinants are positive :∆1 = d1 +R1I > 0
∆2 = (d1 +R1I) (d2 +R2I)− e2

1 > 0
∆3 = R3I∆2 > 0

(34)

In what follows, xd2 and x̄d3 are assigned as
�
xd2 =

K1

(
xe2opt − xd2

)
and

�
x̄d3 = K2

(
x̄e3opt − x̄d3

)
, respectively,

where K1 and K2 are the gains of the controller; x̄e3opt =

− ρCp

∆H3
xe3opt. From (29) and (30), the internal dynamic

controller can be obtained as below.

u1 =
−1

x2

[
K1

(
xe2opt − xd2

)
+ (a1 + e1)xd1 + d2xd2

−R2I (x2 − xd2)
]

(35)

u2 =−∆H3

[
K2

(
x̄e3opt − x̄d3

)
+ b1xd1 + d3x̄d3

−R3I (x̄3 − x̄d3) +
ρCp
∆H3

(
x30 +

∆H3

ρCp
x̄3

)
u1

]
(36)

5. NUMERICAL SIMULATIONS

In this section, the numerical simulations are conducted
to illustrate the proposed feedback laws (35) and (36)
of the non-isothermal reactor. We choose K1 = K2 = 5
and R3I = 5 in the equations of controllers (35) and
(36) while α in (32) is selected to be 15. Moreover, the
reactor (15) is operated in two different initial conditions
listed in Table 1. Obviously, Fig. 2(a) and 2(b) show that
the system trajectories x2 and x3 converge to the desired
steady state xe2opt and xe3opt, respectively for both of the
considered initial conditions. Additionally, the dynamics
of control inputs including u1 and u2 given in Fig. 3(a)
and 3(b), respectively are physically admissible in terms
of amplitude and dynamics. Hence, the proposed control
algorithms can stabilize the reaction system at the optimal
equilibrium point P eopt.

ACKNOWLEDGEMENTS

The authors acknowledge the Viet Nam National Founda-
tion for Science and Technology Development (NAFOS-
TED) for all the support under grant number 104.99-
2018.40. The authors are also grateful to the University of
Malaya and the Ministry of Higher Education in Malaysia
for supporting this collaborative work under Fundamen-
tal Research Grant Scheme (FRGS) under grant number
FP064- 2015A.

REFERENCES

Alvarez, J., Alvarez-Ramı́rez, J., Espinosa-Perez, G., and Schaum,
A. (2011). Energy shaping plus damping injection control for a
class of chemical reactors. Chemical Engineering Science, 66(23),
6280–6286.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.85

0.9

0.95

1

Time t (h)

C
on

ce
nt

ra
tio

n 
of

 c
yc

lo
pe

nt
en

ol
 C

B
 (

m
ol

/l)

 

 
SSI
SSII

(a) Concentration of cyclopentenol.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
360

365

370

375

380

385

390

395

400

405

Time t (h)

T
em

pe
ra

tu
re

 o
f r

ea
ct

or
 T

 (
K

)

 

 
SSI
SSII

(b) Reactor temperature.

Fig. 2. Closed-loop system’s response
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Fig. 3. The control inputs
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Appendix A. NOMENCLATURE

Symbol Quantity

u1 Dilution rate
u2 Heat removal
ρ Density of reacting mixture
Cp Heat capacity of reacting mixture
∆Hi, i = 1, 2, 3 Heat of ith reaction
Ei, i = 1, 2, 3 Activation energy of ith reaction
R Ideal gas constant

Appendix B. PHYSICAL AND OPERATING PARAMETERS

Symbol Unit Value Symbol Unit Value

x10 mol/l 5 k10 h 1.287×1012

x30 K 403.15 k20 h 1.287×1012

ρ kg/l 0.9342 k30
l

mol.h
9.403×109

Cp kJ/(kg.K) 3.01

∆H1 kJ/mol 4.20
E1

R
K -9758.3

∆H2 kJ/mol -11.00
E2

R
K -9758.3

∆H3 kJ/mol -41.85
E3

R
K -8560.0
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