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Abstract: In process monitoring, some specific performance indexes need to be paid attention to. 

Therefore, the performance-triggered process monitoring scheme is proposed. Different from the 

traditional process monitoring method, the process is considered normal if there is no apparent anomaly 

happens on the performance index. In order to predict the values of performance indexes that cannot be 

measured in real time, ridge regression is used. And, the regression coefficients are used to pick the most 

relevant process variables for subsequent modelling. In this scheme, after the performance index exceeds 

the control limit, the monitoring of the relevant process variables is triggered to determine whether the 

prediction is abnormal due to the occurrence of a fault. Then, dictionary learning method and Low rank 

representation (LRR) are used for feature extraction and construction of the statistic. Finally, the 

effectiveness of the proposed method is verified by a numerical example and the Tennessee Eastman (TE) 

process. 

Keywords: process monitoring, fault detection, variable selection, dictionary learning, low rank 

representation. 

 

1. INTRODUCTION 

With the rapid development of science and technology, the 

increasing requirements for modern industry are gaining 

more and more attentions, especially in terms of process 

performance. For an industrial process system, several 

performance indexes are concerned，such as, product quality, 

cost, and so on. Therefore, performance-driven process 

monitoring is becoming increasingly popular. Traditional 

multivariate statistical process monitoring (MSPM) methods 

use the full variable information of the data. For example, 

principal component analysis (PCA) and partial least square 

(PLS) algorithms are modelled using all process data. Some 

performance-independent process variables can lead to 

modelling inaccurate and computationally intensive. 

However, performance driven methods only select part of 

performance-related variables for modelling. So, several 

process monitoring methodologies, which based on process 

performance methods, have been widely proposed. 

In the past few decades, least square (LS), principal 

component regression (PCR) and PLS have been universally 

studied. Moreover, the process monitoring strategies based 

on these algorithms are widely proposed. Zhou et al. divided 

the X -space into four parts and constructed four statistics 

separately to monitor. Just like total PLS (T-PLS), Wang et al. 

proposed total kernel PCR (T-KPCR), for quality-related 

fault detection for nonlinear systems. Wang et al. proposed 

an enhanced quality-related fault detection approach based on 

orthogonal signal correction (OSC) and modified-PLS (M-

PLS). Compared with T-PLS, the proposed approach is more 

robust and has lower computational load. The above 

algorithms are all latent variable regression (LVR) models. 

LVR models use latent variables to establish regression 

relationships with performance indexes. In LVR, the input 

variables that are irrelevant to the performance indexes are 

used for modelling. When some specific fault with a large 

magnitude happened in these input variables, the 

performance indexes would be effected through the 

regression model. Therefore, it is necessary to select the 

relevant variables for regression. This paper presents a 

variable selection method based on the regression coefficient. 

Ridge regression is used to establish the relationship between 

input variables and the performance index. In this way, all 

input variables are divided into two parts, and the related one 

is used for regression and fault monitoring. 

When the relevant variables are selected, the steps of feature 

extraction are required. Low rank representation (LRR) was 

initially used for image denoising. Recently, LRR has been 

widely applied to fault detection. In order to solve the 

problem of outliers in process monitoring, Pan et al. proposed 

an improved principal component pursuit method. According 

to the matrix obtained from the dictionary learning, the 

dataset can be decomposed into the low rank coefficient and 

the sparse residual term. The low rank coefficient obtained by 

LRR can capture the global structure of the dataset. When 

high-dimensional data can be mapped to low-dimensional 

linear space, low rank matrices can analyse this kind of data 

very well. Dictionary learning can find the most pristine 

features behind the sample. As an improved dictionary 

learning method, shift-invariant dictionary learning (SIDL) is 

very suitable to extract the data of periodic impulse 

information. Thus, dictionary learning can provide a more 

efficient method to capture the structure from process data. 

In this paper, a performance-related variable selection 

method is proposed firstly. Different from the traditional 

method based on latent variable, such as PCR and PLS, the 
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proposed approach is based on the regression coefficient. The 

input variables, whose regression coefficient exceed the 

threshold, will be considered to be relevant to the 

performance index. Therefore, it can avoid the impact of 

irrelevant variables on the performance index. Ridge 

regression is used to model the regression between the 

selected correlation variables and the performance index. A 

fusion of monitoring strategy, performance-triggered process 

monitoring, is proposed in the process monitoring. When the 

regression value of the performance index is under the 

control limit, then the process is considered normal. On the 

contrary, the process is abnormal. Regression is used for the 

advance judgment merely. Then we perform the feature 

extraction for all selected variables. Combined with LRR and 

dictionary learning, the structure of the dataset can be 

obtained accurately. Based on LRR, the dataset can be 

decomposed into low rank coefficients and sparse residuals. 

Eliminating sparse residuals can reduce the outliers of the 

dataset to a certain extent. The low rank coefficient is used to 

construct an S2- statistic for process monitoring. Finally, the 

effectiveness of the proposed approach is proved by the 

Tennessee Eastman (TE) process. 

The rest of this paper is organized as follows. In section 2, 

ridge regression and LRR are briefly illustrated. In section 3, 

the proposed variable selection method based on the 

regression coefficient is implemented in detail. Then, a fusion 

of monitoring strategy is described. In section 4, a numerical 

simulation and TE process are tested utilizing the proposed 

scheme. Finally, section 5 is conclusion.  

2. PRELIMINARIES 

2.1 Ridge regression 

For a known matrix X  and vector y , the goal of ridge 

regression is to find a vector w  satisfied w yX . A 

regularization term can be introduced to calculate the 

minimization: 

  2 2
min +w y wX Γ   (1) 

where Γ  is the Tikhonov matrix. Sometimes, Γ  is defined 

as I , namely =Γ I . And, I  is the unit matrix.   is the 

coefficient. Therefore, equation (2) can be solved directly by: 

  
1

T T T+w y


 X X Γ Γ X   (2) 

The effect of regularization is changed by adjusting the scale 

of Γ .  

2.2 Low rank representation (LRR) 

Given a set of training data  
T n m

1 2= , , , n

X x x x R , 

In LRR, X  can be decomposed as: 

 = X DZ E   (3) 

where D  is a dictionary, which can represent the feature of 

matrix X . Z  is the low rank coefficient matrix and E  is 

the sparse residue term. If dictionary D  is a global 

information map for dataset X , the low rank coefficient Z  

can capture the global structures of X . The sparse residue 

term E  contains the outliers of the dataset. The coefficient 

Z  can be obtained by solving the problem. 

 1
min   

. .    s t



Z E

X = DZ + E
  (4) 

where 


Z  denote the nuclear norm of the matrix Z . 
1

E  

denote the 1l  norm of the matrix E . Through the LRR 

algorithm, the outliers can be removed. And, the low rank 

coefficient is used to construct the statistics for process 

monitoring. 

3. MONITORING SCHEME BASED ON RIDGE 

REGRESSION AND LRR 

In this section, a new process monitoring scheme based on 

Ridge regression and LRR is proposed, including Ridge 

regression for related variables selection and performance 

index prediction, and LRR for feature extraction and process 

monitoring. 

3.1 Variables selection and performance index regression 

When focusing on the performance index only, the 

performance-independent variables will lead to training 

dataset redundancy. Different form the latent variable model, 

all the process variables are divided into two parts in the 

proposed method. In this section, performance-related 

variables are selected by the Ridge regression algorithm. The 

regression coefficient is a linear representation of the input 

variable and the output variable. Through the regression 

coefficient, the process variables associated with the 

performance index can be selected. 

Given the measured variables 

 
T n m

1 2= , , , n

X x x x R  with m -dimensional and 

n  samples. And then, the performance index 
n 1y R  can be 

obtained in the training dataset. In order to eliminate the 

effect of the performance-independent variables in the 

prediction of the performance index, the original variables 

X  are divided into two parts. And, the part related to the 

performance index is used for regression and fault detection. 

The variables are divided by the regression coefficient 

 
T

1 2= w , w , , wmw . Thus, Ridge regression is used 

to obtain the regression coefficient.  Performance index y  

can be expressed as  

 1 1 2 2 m my w x w x w x      (5) 

Firstly, w  is subjected to normalization processing. 
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(i)

(i)=
w

w
w

  (6) 

Then, w  is sorted in descend order. Finally, a cumulative 

percent coefficient (CPC) is proposed to determine the 

threshold. 

 
1

= (i)
k

i

CPC w


   (7) 

When CPC  is greater than 0.9, the corresponding variables 

are considered to be related to the performance index, i.e. 

performance index related subspace 
n k

rel R X . The 

remaining variables make up the performance index 

independent subspace 
( )n m-k

ind R X ,  = rel indX X X . 

where k  is the number of variables related to the 

performance index. 

After the relevant variable relX  is selected, the regression 

model between relX  and y  can be established by Ridge 

regression.  

  
1

T Tˆ +rel rel relw y


 X X I X   (8)  

Because the dimension of the process variable is reduced, the 

computational complexity and the computational memory for 

calculating the regression coefficient ŵ  can be saved 

significantly. Online monitoring, according to the division of 

the variable space, performance index can be regressed by the 

relevant variables and ŵ .  

 ˆ ˆ
new newy x w   (9)  

where newx  is a new sample with the performance index 

related variables. ˆnewy  is the predicted value  of the 

performance index. 

       Training dataset 

   Normalized

   Regression 

      vector 

  yX

w

  yX

  Normalized and sorted w

( )w i CPC

Determine the relevant

              variables
relX

Determine the independent

              variables
indX

YN

 Regression 

     vector ŵ

Offline

          New sample 

newx

   Normalized newx

Choose the relevant 

variables

x

        Regress ˆ
n e wy

Online

Fig. 1. Variable selection and index regression. 

3.2 LRR for feature extraction and process monitoring 

As mentioned above, the measured variables X  are divided 

into relX  and indX . In order to detect faults associated with 

performance index, the part of relX  is used for analysis. In 

LRR, the low rank coefficient Z  contains the low rank 

information of dataset relX . The relationship between the 

variables of relX  is represented by the coefficient Z . 

However, dictionary D  needs to be determined in LRR. In 

this section, a dictionary learning method is proposed to solve 

the problem. 

To elaborate, for the dataset 

 
T n k

1 2= , , ,rel k

X x x x R , the global structure of 

the data is extracted. Firstly, in order to maintain the fairness 

of the data, relX  is normalized. Then, the covariance matrix 

S  is computed. 

 T1

1
rel rel

n



S X X   (10) 

By singular value decomposition (SVD), S  can be 

decomposed into: 

 T=S VΛV   (11) 

Where Λ  is a diagonal matrix, and each diagonal element 

represents a nonnegative eigenvalue i . Each column of the 

matrix V  is the corresponding eigenvector. Finally, the 

dictionary D  can be defined as the projection of the original 

dataset relX  under the matrix V . 

 = relD X V   (12) 

Once the dictionary D  is determined, the low rank 

coefficient Z  can be calculated by (4). Therefore, LRR can 

be achieved by Pan. In this way, the low rank coefficient 

matrix Z  and the sparse residue term E  can be obtained. 

In this section, a statistic based on low rank coefficient is 

constructed for process monitoring. And Z  can be regarded 

as an approximate representation to the original dataset in the 

lower rank space. Therefore, the projection of a new sample 

on Z  can be calculated. 

 
2 T T

new new= * * *S x xZ Z   (13) 

In offline modelling, according to the training dataset, a set of 

statistics can be obtained. Kernel density estimation (KDE) is 

used for determination of control limit. If the S2- statistic 

exceeds the threshold, the fault is considered. On the contrary, 

the process is considered normal. 

3.3 Monitoring scheme 

According to the section 3.1 and 3.2, how to deal with the 

relationship between newy  and 2S  is the focus of this section. 

Thus, performance-triggered process monitoring scheme is 

proposed to solve the problem. 
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Fig. 2. Process monitoring based on LRR. 
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Fig. 3. The monitoring scheme. 

In short, the monitoring scheme is divided into two parts. The 

first part is the prediction of performance index. When the 

performance index is predicted, we can evaluate the process 

according to whether the index exceeds the control limit. 

From the Fig. 3, if the performance index does not exceed the 

control limit, then the system is considered normal. On the 

contrary, it is considered abnormal. When the process is 

judged to be abnormal, further discrimination can be made on 

the basis of the variables associated with the performance 

index. And this is the second part of the monitoring scheme. 

According to this part, we can be determined whether the 

early warning or fault. 

4. CASE STUDIES AND DISUSSION 

4.1 Numerical example 

In this section, a numerical example is used to illustrate the 

method of selecting the relevant variables for ridge regression. 

 
1

(t) (t) (t)
m

i i

i

y w x 


    (14) 

where iw  is the regression coefficient, and (t)  is the noise 

signal. There are 400 normal samples in the example. 

1 2, , , mx x x  are input variables, and y  is the 

performance index. W  is set to 

 0.032 2.325 -1.542 0.212 0.63 -0.002 1.23 -0.5 3.2 1.3W 

Now, we can select the relevant variables according to the 

above mentioned method. Table 1. shows the difference 

between true coefficients and estimated coefficients. 

Table 1.  True coefficients and estimated coefficients 

Varia

bles 
True w  Estimat

ed w  

Varia

bles 
True w  Estimat

ed w  

1x  0.032 0.0322 
6x  -0.002 -0.002 

2x  2.325 2.338 
7x  1.23 1.2286 

3x  -1.542 -1.5401 
8x  -0.5 -0.4997 

4x  0.212 0.2121 
9x  3.2 3.1973 

5x  0.63 0.6293 
10x  1.3 1.2989 

From table we can know that the estimated coefficients are 

very close to the true coefficients. So, the variables 

9 2 3 10 7 5, , , , ,x x x x x x  are selected to regress the 

performance index. 

To illustrate the regression performance, 2R  is introduced. 

 

 

 

2

2 1

2

1

ˆ

1

n

i i

i

n

i

i

x x

R

x x







 






  (15) 

in which ix  is the -thi  element of the variable, ˆix  is the 

corresponding regression value and x  denotes the mean of 

the real variable. The value of 2R  in this numerical example 

is 0.9894. Therefore, the method of selecting the relevant 

variables for regression is effective. 
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Fig. 4. Comparison of training and regression dataset. 

4.2 Tennessee Eastman (TE) Process 

Tennessee Eastman Process was proposed by Down, and now 

it is an important benchmark in chemical process. It contains 

12 manipulated variables (XMV1-12) and 41 measured 

variables (XMEAS1-41). The measured variables are divided 

into 22 process measured variables and 19 component 

measured variables. And 15 known faults are simulated for 

algorithm testing. In our work, we select 11 manipulated 

variables and 22 process measured variables as the input 

dataset, and the component G in steam 9 (XMEAS35) as the 

performance index. From Fig.5 we can pick out the most 

relevant input variables, where the parameters   and CPC  
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are set to 0.2 and 0.9. Thereafter the block relX and indX are 

determined. The next step is to regress the performance index. 

And then, a dictionary is learned through the information of 

relX . In this way, the global structure of relX  is maintained. 

Finally, we use the low rank coefficient matrix to construct 

the statistic for process monitoring. Table shows the different 

detection results of PCR and the proposed method. 
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Fig. 5. The regression coefficient ratio of each variable. 

Table 2.  Fault detection value of PCA PCR and RR_LRR (%) 

Fault T2(PCA) SPE(PCA) T2(PCR) S2 

IDV(1) 99.125 99.5 22.75 99 

IDV(2) 97.75 98.625 24.5 93 

IDV(3) 0.875 1.75 0.625 0.25 

IDV(4) 6.375 93.875 0.375 0 

IDV(5) 21.5 27.75 10.625 19.75 

IDV(6) 98.875 100 97.125 100 

IDV(7) 39 100 22.625 35.5 

IDV(8) 92.75 97.5 71.5 88.875 

IDV(9) 1 2.5 0 0 

IDV(10) 28.25 23.375 13 33.75 

IDV(11) 21.75 64.625 1.125 0.875 

IDV(12) 95.25 97 67.5 87.375 

IDV(13) 91.875 95.25 72.5 94 

IDV(14) 79.25 100 0.125 0.125 

IDV(15) 1.5 1.875 2.125 1.25 

Three typical faults, i.e. fault 4, 7 and 13 are used to explain 

the detection results. Fault 13 is reaction kinetics. When this 

fault occurs, it will affect the performance index. And the 

type of this fault is slow drifting. From the Fig. 6. (b), we can 

know that the fault occurs after 160 sampling points. For this 

kind of fault, it is very necessary to continue alarming. And 

the regression of the performance index shocks in the vicinity 

of the control limit. Frequent alarm switching can cause the 

operators to work heavily and it is not conducive to the 

improvement of production efficiency. From the Fig. 6. (c), 

through the construction of 2S  statistic, it is possible to 

realize the continuous alarm to the fault. The fault detection 

rate can reach 94%. And it is higher than the traditional PCR 

fault detection method. In order to maintain the comparability 

of the algorithm, the number of selected variables is the same 

as the latent variables of PCR. 

The type of fault 7 is step fault. And it is the C header 

pressure loss-reduced availability (stream 4). From the 

performance index, we can know that there is a fault at the 

160th sample point and the fault disappears near the 400th 

sample point. This kind of fault is the fault adjustment. When 

the fault occurred, the distribution of dataset changes. After a 

period of time, the fault disappears according to the self-

regulation. For the traditional fault detection method, this 

kind of fault will be alarmed continuously. In Fig. 7. (b), 

regression of the performance index and the original dataset 

is very consistent. This method selects the related variables to 

make up the relX . Moreover, the 2S  statistic is constructed 

according to relX . Compared with Fig. 7. (a) and (c) can 

show a higher fault detection rate. In the actual process 

industry, this type of fault is widespread. 
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Fig. 6. Monitoring results of Fault 13. 
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Fig. 7. Monitoring results of Fault 7. 
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Fig. 8. Monitoring results of Fault 4. 

Fault 4 is a step change in reactor cooling water inlet 

temperature. When the fault occurs, the reactor temperature 

will suddenly rise. The system compensates for it by closed-

loop control. Finally, the performance index does not change. 
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This type of fault is defined as a failure associated with 

performance index. The traditional PCA method has higher 

detection rate for this kind of fault. So the methods like PCA 

are not suitable for detection this kind of fault. Form Fig. 8. 

(d) and (e), the proposed method can solve this kind of 

problem very well. 

5.  CONCLUSION 

In this paper, a performance-triggered process monitoring 

scheme based ridge regression and LRR is proposed. 

Different from latent variable selection method, this method 

divides the original variables directly. i.e. relX  and  indX . In 

this way, the effect of high amplitude failures on the 

algorithm can be avoided. Then, relX  is used to regress the 

performance index. In order to maintain the global structure 

of the dataset, a new dictionary learning method is proposed. 

Combined with LRR, the low rank coefficient matrix of the 

dataset is obtained. Similar to the traditional statistic, the S2-

statistic is constructed. A new monitoring scheme is proposed 

to solve relationship between newy  and 2S . Finally, a 

numerical example is used for related variables selection and 

the effectiveness of the proposed method is demonstrated by 

the TE process. However, the related variables can be 

selected by other methods that contain more information 

about the relationship between variables and performance 

index, which can be studied in depth. 
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