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Abstract: In this work, a generic process visualization method is introduced using parametric
t-SNE and used to visualize real-time process information and correlations among variables
on a 2D map. A deep network is used to learn the Kullback-Leibler divergence between the
original high-dimensional space and the latent space. In practice, it is observed that a model
trained with historical data is not robust enough to visualize shifts into unknown states. Due to
the effect of greedy learning, the response of the model is biased toward the most-contributing
inputs. To relieve this effect, combinatorial variation creation is applied in the training stage to
allow the model to respond to each input more evenly. The proposed method is tested on the
Tennessee Eastman Process (TEP) data for four types of faults. The result indicates that the
proposed method outperforms conventional methods such as PCA and Isomap, and is able to
provide clear visual indication of process changes.
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1. INTRODUCTION

Distributed control systems (DCS) are essential for mod-
ern chemical industries. Operators use the DCS to monitor
the operation in real time and keep the process within
safe and productive domains of operation. Traditionally,
the monitoring has been based on single-variable analysis
with alarms to notify personnel when the measurements of
selected variables drift out of safety or process specification
limits. The process measurements are usually expressed in
two ways: labels with values on the process diagram or a
line chart tracking an individual variable on a time axis.
These implementations are clear and simple to implement,
but they can only provide low-level information. For chem-
ical processes, it is often necessary to analyze correlations
between multiple variables in order to determine the state
of operation. Another disadvantage of the process diagram
is its limited use for a single operating unit. For a chemical
plant, having a monitoring system that can be easily
applied to multiple units is preferred.

To improve modern data visualization technique, different
methods were proposed in recent years. Polygon-based
monitoring methods (Wang et al. (2017); Yiakopoulos
et al. (2016)) visualize multiple variables in a single polyg-
onal diagram, where each variable is plotted in radial
direction of the polygon. Utilizing the knowledge of the
operating bounds or statistic tests, the faulty condition
can be visualized on any violation outside these bounds.

? The project is sponsored by Shanghai SupeZET Engineering
Technology Co.Ltd, according to the grant, GR-00001459.

Though such approaches are generic, they are built upon
single variable statistics that are unable to extract the hid-
den correlation among multiple variables. Self-organizing
map (SOM) methods (Zhong et al. (2016); Robertson et al.
(2015)) are also popular. After training with labeled his-
torical data, the SOM can correctly classify the operation
modes. This allows the process behaviors to be visualized
via a u-matrix generated from the SOM network. Training
these methods requires high computational cost, making
frequent adaptations to the model difficult. Without up-
dates to the map, process data from unknown regions of
the map can be misclassified, which can lead to problems
in real-time monitoring.

In our work, we proposed a generic process visualiza-
tion method using dimensionality reduction techniques
based on deep learning, namely parametric t-Distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten
(2009), Maaten and Hinton (2008)). As a dimensionality
reduction method derived from t-SNE, it uses a deep neu-
ral network to optimize the projection into the latent space
by minimizing the Kullback-Leibler divergence from the
original space. Although the t-SNE method is an excellent
technique for data visualization in a low dimensional space,
it requires a huge computational cost for the optimization.
Particularly, in order to map new incoming data vectors,
the optimization must be run for the entire set again. To
avoid this, a deep network is used to learn the parametric
projection from the original space to the latent space, so
that new data vectors can be mapped more easily, hence
the name parametric t-SNE.
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This parametric form of the t-SNE can be applied to
process monitoring as a visualization of chemical process
information. In the 2D space, different operating states of
the process are separated on a map, and faulty states are
isolated from normal regions of operation.

Nevertheless, we observed that the conventional paramet-
ric t-SNE model could be a victim of greedy learning if it
was only trained with historical data. In other words, the
model only learns features from the most contributing vari-
ables of the historical data (those with the most variance).
Variables that show less variance in the training are muted
in the model. Although this greedy result is meaningful
for feature learning, it can be misleading for visualization
purposes. Unknown or faulty operating states caused by
abnormalities in variables which exhibit tiny variation in
the historical record can be problematic, as they can be
projected onto the same area of the map as known regions.
To improve the conventional parametric t-SNE method,
rather than only using historical data, we create variation
on the given data base combinatorially.

To validate the effectiveness of the proposed method, it
was tested on the benchmark process: Tennessee East-
man Process (TEP). Four TEP faults (Fault 1, 4, 11
and 14) representing different types of faults are selected
in the experiment. Additionally, the mapping result is
compared with that from conventional dimensionality re-
duction methods. To validate the hypothesis that the
variation introduction enhances the model sensitivity to
input variables, Sobol’s method (Sobol (1993)) is utilized.
The corresponding sensitivities between the conventional
parametric t-SNE method and the proposed method are
compared.

The remainder of the paper is organized as following. In
section 2, the overall methods are introduced. In section 3,
we will introduce the case study, the Tennessee Eastman
process (TEP). In section 4, we will show the result tested
on TEP.

2. METHOD

In this section, the overall background and method are
introduced. We start from the t-SNE method, given that
parametric t-SNE is just an alternative form of the t-SNE
method. Then, the parametric t-SNE and the proposed
improvement are discussed. In the end, Sobol’s method
for sensitivity analysis is used to evaluate the response of
the model to each input.

2.1 t-distributed stochastic neighbor embedding (t-SNE)

t-SNE is developed from stochastic neighbor embedding
(SNE) (Hinton and Roweis (2003)). It uses a Student t-
distribution with a heavy-tailed probability distribution
to solve the crowding problem found in the original SNE
method. Denote the probability distribution in the original
space as pij :

pij =
exp(−||xi − xj ||2/2σ2)∑
k 6=l exp(−||xk − xl||2/2σ2)

(1)

And denote the distribution in the latent space as qij :

qij =
exp(−||yi − yj ||2)∑
k 6=l exp(−||yk − yl||2)

(2)

The cost function that minimizes the Kullback-Leibler
divergences between high-dimensional space and the latent
space is given as:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(3)

Using the gradient descent method to optimize the cost
function, the distribution in the original space can be
expressed on the low-dimensional map.

2.2 Parametric t-SNE

Parametric t-SNE is proposed to avoid the heavy optimiza-
tion of the t-SNE method when applied to the same data
set. Taking advantage of the learning ability of deep net-
works, a feed-forward neural network is used to learn the
parametric mapping from high-dimensional space. There
are two stages in the training procedure, namely pretrain-
ing with restricted Boltzmann machine (RBM) (Hinton
(2010); Hinton et al. (2006)) and fine-tuning using the cost
function from t-SNE.

RBM Training a deep network with multiple hidden
layers is challenging, because a typical deep network can
contain millions of parameters. Activation functions used
as nonlinear transformation (e.g. the sigmoid function) can
cause gradient vanishing and exploding issues. This makes
tuning extremely difficult for the parameters in earlier
layers. Until mid-2000s, the development of RBM and
its application of layer-wise greedy training on deep net-
works (Hinton and Salakhutdinov (2006); Hinton (2010))
brought breakthroughs in the parameter initialization of
deep network.

The RBM is a generative artificial neural network that
learns the probability distribution on a given data set using
energy function models:

p(x) =
e−E(x)

Z
(4)

where Z is called a partition function: Z =
∑
x e
−E(x)

The standard type of the RBM has one hidden layer and
one visible layer. The structure of the RBM is illustrated
in Figure 1.

Fig. 1. Illustration of the RBM

The probability of a data vector in the hidden layer can
be written as:

P (x) =
∑
h

P (x, h) =
∑
h

e−E(x,h)

Z
(5)

In the RBM, the binary energy function is defined as:

E(v, h) = −b′v − c′h− h′Wv (6)
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where b and c are the bias of visible and hidden layer to
be learned through training. In practice, the RBM can be
extended to Gaussian distribution for real data:

E(v, h) =
∑
i

(vi − ai)2

2σ2
i

− c′h− h′Wv (7)

To train the RBM, the objective is to maximize P (v), the
log-likelihood function at single data point v, calculated
as:

∂ logP (v)

∂θ
=

∑
h

P (h|v)
∂[−E(v,h)]

∂θ

−
∑
ṽ

∑
h

P (ṽ,h)
∂[−E(ṽ,h)]

∂θ

(8)

The second term on the right hand of Equation 8 is ap-
proximated by contrastive divergence (CD-k) to accelerate
the optimization process. The Gibbs sampler was utilized
to sample v and h at different time steps from a Markov
chain (Figure 2). In the Gibbs sampling, k represents
the sampling step. Although v and h should be ideally
sampled at k = ∞, the high computational cost make
such approach impractical. In practice, k is always set as
1 to get a second-order approximation, which has been
proved effective and reliable. The RBM is used in layer-
wise training, and the trained RBMs are combined into a
single network. More details about training a RBM can be
found in Hinton (2010).

Fig. 2. Gibbs sampling and contrastive divergence of RBM
training

Finetuning After pre-training that model parameters
are initialized, the network is fine-tuned by the t-SNE
cost function (Equation 3) using gradient-based backprop-
agation. In the feed-forward network, the term of qij is
modified as follows:

qij =
(1 + ||f(xi|W )− f(xj |W )||2/α)−(α+1)/2∑
k 6=l(1 + ||f(xk|W )− f(xl|W )||2/α)−(α+1)/2

(9)

The overall procedure of the training is summarized in
Figure 3. The architecture of the network is 31-32-128-64-
32-2, which is obtained from multiple tests minimizing the
cost function. Adam (Kingma and Ba (2014)) optimizer is
used to fine-tune the model.

The parametric t-SNE model is implemented in python 3.5
environment, and tensorflow is used as the deep learning
framework for pre-training and fine-tuning.

2.3 Combinatorial variation creation

Following above procedures to train the parametric t-
SNE with historical data, it was observed that the model

Fig. 3. Illustration of the training procedure. In our work,
we use a 31-32-128-64-32-2 deep network, where 31
is the number of input variables and 2 corresponds
to the 2D output dimension. For pre-training and
finetuning stages, the epochs were set as 100 and 60
respectively. A configuration with four hidden layers
(32, 128, 64 and 32) is used and gives the best visual
performance.

can easily become a greedy learner, causing the model
to respond to only a few dominating inputs. Although
this type of learning is crucial for feature learning and
extraction, it leaves the model weak to future faults that
occur because of the muted variables. Faults unfamiliar to
the model or operation modes with high contribution from
the muted variables can be incorrectly projected onto areas
of the map that are known to contain data from normal
operation only. This lack of separation between states of
operation can mislead operators. To relieve this effect,
in the fine-tuning stage, we introduce random variation
to make the model respond more evenly to every input
variable.

After testing with multiple scenarios to introduce vari-
ation, the combinatorial variation creation is the most
effective method to make the visualization more robust.
The method aims to evenly add variation on each input
variable in the data set. Figure 4 demonstrates the pro-
cedure of the process. The variation level δ used is 15 for
the TEP data, which means a variation around 15 times
the standard deviation from the original set is introduced
into each selected variable. A total of 100 combinations of
random subsets are created using the proposed method,
where for each combination, 20% of the given data are
sampled for variation introduction.

2.4 Sensitivity analysis

Sensitivity analysis is commonly used in model evaluation
for a broad range of objectives including robustness testing
of the model, model simplification, and in identifying the
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Fig. 4. Illustration of the proposed combinatorial variation
creation method. From original training set, a number
of data are randomly sampled for variation creation.
With a random dimension d, a subset is chosen
following the combinatorial rule. The variables in the
subset and the rest of the unselected variables are
assigned into two groups. A variation of δ times of
standard deviation is added into the variables for each
group.

key correlation between inputs and outputs. In this work,
Sobol’s method is used to quantify the greedy learning
effect that causes the model to be governed by the most
contributing variables, whereas the model is less sensitive
to the least contributing variables. Sobol’s method is
a variance-based sensitivity analysis method. Under the
assumption that model variables are independent, the
total variance of the model output can be decomposed to
the variance of each input:

Vy =

d∑
i=1

Vi +

d∑
i<j

Vij + . . .+ V12...d (10)

where Vy, Vi, Vij , and n denote the variance of the output,
the first order contribution of the ith variable, the second
order contribution from the interactive effect from ith and
jth variables, and the number of variables correspondingly.
Thus, the first, second, and total order sensitivity indices
are expressed respectively as:

Si = Vi/V (y) (11)

Sij = Vij/V (y) (12)

STi = 1− V6=i/V (y) (13)

Generally, the variances are approximated by Monte Carlo
numerical integration to reduce the computational cost.
In this work, Saltilli’s method(Saltelli et al. (2008)) is
adopted for variance approximation.

In practice, Sobol’s method is always appropriate for ob-
taining sensitivity for a single-output model. Therefore, in
order to analyze the input sensitivity, we take advantage of
the characteristics of the model that tries to optimize the
KL divergences between the original space and the latent
space. The model is forced to project the high dimensional
space into one dimension, where Sobol’s method can be
applied.

3. CASE STUDY: TENNESSEE EASTMAN
PROCESS(TEP)

TEP is a realistic chemical process simulation originally
developed by Downs and Vogel (Downs and Vogel (1993)).
It is widely used as a benchmark to evaluate process con-
trol and monitoring tasks. From the total 53 measurements
variables, we selected 31 variables for the study including
22 measured variables and 9 non-constant manipulated
variables. In the proposed method, combinatorial variation
creation is introduced to normal data for training. Three
typical types of faults including step faults, random varia-
tions, and sticking faults (Fault 1, 4, 11 and 14) are selected
to validate the visualization performance over a diverse set
of process states. To simulate the real process operation,
the dataset used in the test included 48 hours of operation.
The first 24 hours were normal condition, and the faults
were introduced in the following 24 hours. Conventional di-
mensionality reduction methods with linear and non-linear
techniques such as PCA and Isomap are compared with
the proposed method for 2D visualization. The objective
is to notably distinguish normal and faulty data in the
2D map either by position or distribution difference. This
feature of the 2D map can be intuitive and informative for
operators in a real plant. Overlapping of the normal and
fault data indicate the failure of the method to provide
useful process information.

4. RESULT AND DISCUSSION

The testing results are summarized in Figure 5. For a
simple step fault, fault 1, all methods achieve a good
visualization effect where normal and faulty regions are
well separated. Nevertheless, for a more complicated fault,
only the parametric t-SNE trained with the proposed
method is effective to visualize faulty data clearly on the
2D map. For step faults (fault 1 and 4), the model can
separate the normal and faulty data points. For fault
11 that is caused by random variation of reactor cooling
water inlet temperature, the faulty and normal data can
be differentiated by their corresponding distribution that
normal data are closely clustered and faulty data are
dispersed around. Same result can be observed for fault
14 that is a sticking fault caused by reactor cooling
water value that the difference can be observed from the
distribution. For PCA and Isomap, neither of them is
able to provide noticeable separation between faulty and
normal data. Faulty data are overlapped on the normal
region and the distribution for both classes is also similar.

Although the conventional parametric t-SNE method
shows responses to faulty data which are clustered in a
small region on the map, it is still unable to separate the
faulty data out of the normal region. Since only normal
data is provided in the training stage, the network is
unable to learn the prototypes outside the normal region,
which causes the failure of fault separation in the 2D
space. In the proposed method, many random variations
are created to simulate possible unknown conditions away
from the normal condition, which balances the distribution
of each variable. This addition enhances the robustness of
the model when confronting possible unknown faults in the
future. By this method, the learning capability of a deep
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(a) Proposed parametric t-SNE (b) Native parametric t-SNE (c) PCA (d) Isomap

Fig. 5. Comparison of the 2D visualization for four TEP faults (Fault 1, Fault 4, Fault 11 and Fault 14). Each row of
the subplots represents the different methods on the same TEP fault, and each column represents the projection
of a certain method on different TEP faults.

network can be utilized to learn how to map data outside
the normal region.

The sensitivity analysis using the Sobol’s method can pro-
vide in-depth details to explain the performance difference
between the proposed and the conventional parametric
t-SNE method. The result is summarized in Figure 6.
The sensitivity indices for each variable are averaged from
multiple runs of the model with different types of random
variation included in the training. Through the compar-
ison in Figure 6, it suggests that the proposed training
method using variation creation gives a more even sensi-
tivity distribution. In other words, the model can more
equally express the variation in each input instead of only
responding to the most contributing variables learned from
the training set. Besides, the average magnitude of the
sensitivity indices in the proposed method is higher than
that without random variation creation. Hence, variation
in the input variables can be better expressed on the 2D
map, since more variables can have impact on the output,
which also explains why the proposed method improves
the conventional parametric t-SNE method.

Fig. 6. Sensitivity analysis using Sobol’s method to analyze
the model sensitivity of each input variable. The deep
network using the proposed combinatorial variation
creation method is more evenly sensitive to all inputs,
compared with the model trained with only historical
data.
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5. CONCLUSION

In this work, we introduced a process visualization method
using parametric t-SNE to provide high-level process in-
formation in the form of a 2D map. Instead of monitoring
a line-chart diagram for a single variable in the DCS
systems, the proposed method can extract features from
multiple process variables and indicate patterns corre-
sponding to different process behaviors. A deep network
is used to learn the mapping process that can retain the
probability distribution of the original space. In practice,
the greedy learning effect was observed, causing the model
to prefer learning from variables causing process variation
in the historical data. We applied combinatorial variation
creation to enhance the robustness of the parametric t-
SNE model. Such method could be also applied in cases
that the training samples are imbalance either for the
distribution of each variable or sample amounts among
different classes, which could potentially lead the model to
learn biased information. The overall method is tested on
the TEP data set. It outperforms conventional dimension-
ality reduction methods in visualizing complicated faults
in the TEP dataset. Such method can be applied in current
DCS monitoring interfaces for any existent processes that
eases the monitoring effort of multiple variables.
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