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Abstract: To meet the request of manufacture, several compressor stations usually run at the same time. 

Decreasing the output pressure of compressor station is one of the major methods to reduce the power 

utilized by the motors of the compressors. Due to the interaction of several compressor stations with each 

other, how to set the output pressure of each compressor station becomes a big problem. This paper 

proposes the Constrained Multi-objective Optimization of Multi-Source Compressed-air Pipeline 

Optimization Problems (CMO-MSCPOPs) in compressed-air transmission networks of process industries. 

The problem formulation involves the minimization of the output pressure of each compressor station. 

Constraints associated with compressed-air flow rate and compressor stations guarantee the work of each 

downstream process. In case studies, the model is divided into two topology forms. The optimization of 

the model is performed using NSGA-II. The solution obtained is a set of Pareto solutions from which a 

decision making process is highlighted to select a specific preferred solution. Aiming to illustrate the 

performance of the proposed approach, the tool is applied to two typical network examples considering 

two compressor stations. 

Keywords: constrained multi-objective optimization, multi-source compressed-air supply, NSGA-II, 
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1. INTRODUCTION 

Compressed-air generation is energy intensive, and for most 

industrial operations, the fraction of energy cost in 

compressed air is significant compared with overall energy 

costs. Compressed air accounts for as much as 10% of 

industrial electricity consumption (Saidur et al., 2010). As 

compressed air flows through pipelines, pressure drops due to 

friction between the gas and the walls of the pipeline. In 

order to satisfy the need of utilities pressure, the output 

pressure of the compressor station usually keeps at a high 

level. Most of the time the pressure is overloaded, which 

causes a great deal of energy waste. Decreasing the output 

pressure of compressor station is one of the major methods to 

reduce the power utilized by the motors of the compressors 

(Durmus et al., 2002). To meet the need of manufacture, 

several compressor stations at different locations usually run 

at the same time, which composes the Multi-Source 

Compressed-air Pipeline System. How to set the output 

pressure of each compressor station with less energy 

consumption is an issue for industrial manufacture procedure. 

Multi-Source Compressed-air Pipeline Optimization 

(MSCPO) belongs to the optimization of Pipeline Network. 

According to different time horizons, optimization of pipeline 

network is classified into single-period and multi-period. The 

single-period optimization considers information of one time 

interval (steady-state) and the multi-period optimization 

employs information from the future based on forecasting 

methods (Xenos et al., 2015). The steady-state pipeline 

optimization examines the optimal operation of the fuel cost 

minimization problem (Wu et al., 2000). The multi-period  

pipeline optimization (considering solution for more than one 

time period) often considers a fixed number of operating 

compressors (Abbaspour et al., 2007). In this paper, we only 

focus on the steady-state pipeline optimization. 

Constrained Multi-objective Optimization Problems (CMOPs) 

are difficult to address, especially for the non-linear 

optimization problems. Constrained Multi-objective 

Evolutionary Algorithms (CMOEAs) have been successfully 

applied to a wide variety of optimization problems in the 

fields of science and engineering (Jan et al., 2010; Leong, 

2008; Martinez et al., 2014). Few literatures are found 

dealing with multi-objective optimization of compressed-air 

pipelines. (Babonneau et al., 2012) formulated the operation 

and design of natural gas system as a bi-objective problem. 

They regarded minimizing the investment cost and energy 

cost as objective functions. Multi-Objective optimization of 

pipeline network usually considered two objectives:  

minimizing the transportation fare and the maximizing of the 

transported gas volume (Alves et al., 2016; Demissie et al., 

2017). In our situation, the throughput is constant and equal 

to the actual demand of compressed air of utilities. Getting 

the transportation fare is hard in terms of establishing a 

precise mathematical model and the model parameter is often 

changed with maintenance and running time. Because the 

transport fare is proportional to the output pressure, we set 

each compressor-station’s output pressure as the object to 

avoid the difficulty of establishing precise fare model.  
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 In this paper, our main contribution is to address the multi-

source compressed-air pipeline as a CMOP. According to the 

condition of actual application, we set each output pressure of 

compressor station as conflict objects and establish the steady 

state multi-objective optimization model. With application of 

Constrained Multi-objective Evolutionary Algorithm and 

multi-attribute decision-making, we find the optimal output 

pressure setting values of two compressor stations in two 

different typical network topologies. This tool will assist 

operators to make the most appropriate decision. 

The rest of this paper is organized as follows: Section 2 

presents the basic concept of the constrained multi-objective 

optimization problem; Section 3 establishes the model of 

Multi-Source compressed-air Supply system Optimization 

Problem; Section 4 presents the solver about the solution 

technique employed; Section 5 illustrates the utilization of 

the optimization scheme through its application to the 

pipeline network of two compressor-stations; Section 6 

discusses the final conclusions.   

2. BASIC CONCEPT 

Without loss of generality, a nonlinear CMOP, which 

involves more than one conflicting objectives to be optimized 

simultaneously, can be formulated as follows (assuming 

minimization of all the objective functions): 

 
1 2min  ( ) [ ( ) ( ) ( )]lF x f x f x f x   (1) 

( ) 0, 1,2, , ,
. . 
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where ( ) 0jg x  and ( ) 0kh x   represent the J inequality 

constraints and the K equality constraints, 

1
[a ,b ]

n n

i ii
   is the decision dimension, 

1( , , )
n

x x x  is an n dimensional vector of decision 

variables. The objective vector function F consists of l  real-

valued objective functions. 

In CMOPs, there is usually more than one constraint. In order 

to evaluate the constraints violation of a solution, an overall 

constraint violation is adopted which can be defined as 

follows: 

   max{0, ( )} ( )j k

j k

x g x h x
 

      (2) 

where   is a positive number, i.e.   ∈ (0, +  ). Equality 

constraints can be transformed into inequality constraints by 

using: 

     0,    1, ,kh x k K     (3) 

where ε is a small real-value threshold. A CMOP with 

equality constraints can be stated as one having only 

inequality constraints. Assuming that all constraints of 

problem (1) are inequality constraints, the constraint violation 

in (2) can be computed as: 

  
1

max{0, ( )} .
J

j

j

x g x





   (4) 

If   0x  , the solution x is feasible. Otherwise, it is 

infeasible. Either of the two solutions 1x and 2x  belongs to the 

feasible set S , 1x is said to dominate 2x  if 1 2( ) ( )i if x f x  

for each  1, ,i l  and 1 2( ) ( )i if x f x  for at least one 

 1, ,i l , denoted by 1 2x x . For a solution x S  , we 

say that x  is a Pareto optimal solution, if there is no other 

solution y S  dominating x . The Pareto optimal set PS is 

defined as: PS={ x | x  is Pareto optimal solution}, and 

the Pareto optimal front PF is defined as ：

{ ( ) | }PF F x x PS  . 

3. OPTIMIZATION PROBLEM MODEL 

3.1 System assumptions 

Compressed air supply networks are complex transportation 

systems. In the modelling of these networks, we break the 

networks into nodes and pipelines to make simplifications. 

The network comprises of source nodes where compressor 

station provides compressed air into the supply system; 

demand nodes where gas flows in the utilities; intermediate 

nodes where the gas is rerouted. Pipeline segments are 

represented by arcs between two nodes. The following 

system assumptions are made: 

Identical compressors: Compressor station consists of 

identical centrifugal compressors which are arranged in 

parallel in the source node. This type of compressor station is 

taken into account since it is common in today’s compressed-

air industry for its relatively low operation cost and 

maintenance. Its operation adopts constant pressure gas 

supply mode which could hold a stable pressure through its 

own control system.  

Constant flow direction: Because the model is a steady state 

model, the flow direction of each pipeline segment in the 

network is known at steady state. We assume the flow 

direction is constant and the same as that of steady state. 

3.2 Governing equations 

The mathematical model to represent a steady state flow of 

gas in a network is developed based on characteristic 

coefficient of each pipe, pipeline flow equations and 

principles of conservation of mass. 

Characteristic coefficient of each pipeline: The flow equation 

relates the gas flow rate with gas properties, pressure, pipe 

diameter and length. For a horizontal pipe, assuming 

temperature and compressibility factor stay constant at steady 

state, the flow equation can be calculated as:  

  2 2 2

j ij i jQ k P P    (5) 
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where 
ijk  is the characteristic coefficient of pipe ij , and is 

related to pipe diameter, pipe length, frictional factor, 

compressibility factor and so on. 
iP  is the pressure at the 

flow input node of pipe ij . 
jP  is the pressure at the flow 

output node of pipe ij . We get a set data of 
iP ,

jP ,
jQ  at 

different steady states, and a regression method (Rosipal and 

Krämer, 2006) is used to calculate 
ijk . In the same way we 

can get the characteristic coefficient of each pipeline. 

Continuity equation: The principle of continuity equation is 

derived from the fact that mass is always conserved in fluid 

systems regardless of the pipeline complexity or flow 

direction. For a steady state system, the flow rate does not 

change over time. The mass flow rate is calculated as: 

 
ij j jm kP Q   (6) 

where k is a conversion factor of constant value, for air its 

value is 0.0053. 

Maximum allowable operational pressure: The basic 

requirement of a compressed air pipeline is to transport the 

compressed air safely and economically. A key safety 

requirement is the determination of a pipeline’s maximum 

allowable operational pressure (MAOP) which is the highest 

pressure at which a pipeline can be operated, such that: 

 .ij ijP MAOP   (7) 

Minimum allowable operational pressure: The whole pipeline 

system need to satisfy the need of lowest pressure for the 

utilities normal use. So at each demand node there is a 

minimum allowable operational pressure (MIOP): 

 .
i iD DP MIOP   (8) 

Flow balance equation at each node under steady state 

condition is shown as 

 .in outm m    (9) 

The 
inm  represents the mass flow of the pipeline which 

contains this node as a flow input node. Correspondingly, 

the
outm  represents the mass flow of the pipeline which 

contains this node as a flow output node.  

Because the number of running compressors does not change 

for a long time at each compressor station, we assume the 

value is constant in steady stage. The limit of mass flow of 

each compressor station is 

 ( 1)Si c Si Si cN m m N m     (10) 

where 
SiN  represents the number of compressor units 

operating within number i  compressor station. 
cm  is the 

rated mass flow of a compressor. 
Sim  is the mass flow of 

compressor station i . 

Objective functions: The objective functions are minimizing 

the output pressure of each compressor station:  

 
1 2

minimize  P ,P , ,P
iS S S   (11) 

where P
iS  is the output pressure of number i  compressor 

station. 

Decision vector: The basic continuous decision variables are 

the pressure at each demand node 
iDP . 

Limits of decision vector: The upper pressure limit for each 

decision vector is set to the value of MAOP. The lower 

pressure limit in each decision vector is set to the value of 

MIOP. 

4. SOLVER 

4.1 Multi-objective optimization algorithm 

In the previous section, a CMOP was developed to minimize 

the output pressure of each compressor station. The model is 

non-linear and possesses conflicting objectives and highly 

complex search space. There are many meta-heuristics 

methods to solve CMOPs. Among these methods, 

evolutionary algorithms have gained popular attention due to 

their suitable nature for the application of multi-objective 

optimization of non-linear programming problems. 

In this paper, the optimization of the model is performed 

using NSGA-II (non-dominated sorting genetic algorithm II) 

which is a multi-objective evolutionary algorithm that 

attempts to find Pareto optimal solutions. It uses the fast non-

dominated sorting scheme and crowding distance estimation 

procedure for comparing qualities of different candidate 

solutions (Deb et al., 2002). Binary tournament selection is 

adopted as selection operator. When comparing two solutions 

i  and j , if the two solutions exit constrained-dominate 

relationship, we choose the solution which constrained-

dominate the other. Otherwise, we choose one by random. A 

solution i  is said to constrained-dominate a solution j , if any 

of the following conditions is true:  

1) Solution i  is feasible and solution j  is not.  

2) Solutions i and j are both infeasible, but solution i  has a 

smaller overall constraint violation degree.  

3) Solutions i and j are feasible and solution i dominates 

solution j . 

4.2 Multi-attribute decision-making  

The solution by multi-objective optimization algorithm is PS 

which has a set of Pareto optimal solution. Generally, every 

Pareto optimal solution is an acceptable solution. In actual  

production, only one plan is used to guide the production. A 

decision-maker has to choose a single solution from the PS. 

We carry on the multiple attribute decision-making according 
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to the weight satisfaction of the solution. First of all, we 

remove the solution governed by steady state from the PS. 

We use the fuzzy membership functions to describe the 

weight satisfaction degree of each objective function in each 

of the rest PS. Equation (12) is a function describing the 

weight satisfaction degree of fuzzy membership: 

 
,max

,max ,min

i i

i i

i i

f f
u

f f






  (12) 

where 
if  is the ith objective function value of Pareto optimal 

solution. 
,maxif  represents the i

th
 objective function maximum 

value of the PS whereas 
,minif  represents the i

th
 objective 

function minimum value of the PS. The
i  is a weight vector, 

i.e., 1, ,i m  and 1 1m

i i  . The weight vector
i is 

related to the operation load of each compressor station and 

can be calculated as: 

 
1

.Si

i m

i Si

N

N







  (13) 

For each Pareto optimal solution, we calculate the sum of 

satisfaction degree of the objective functions and the largest 

is the best solution. Finally, we set the objective value of the 

best solution to guide the production. 

5.  CASE STUDIES 

Double source pipeline network is common in Multi-Source 

compressed-air Supply system. The double source pipeline 

network with different topology is chosen as our case study.  

5.1 Case in two different network topologies 

According to the network topology, double source pipeline 

network can be divided into two forms: tree topology and 

looped topology. The looped topology is complex to tree 

topology and is difficult to solve. Both of them can include 

many demand nodes. For a representative sample, we set four 

demand nodes on each form. The model structure is also 

applied to the demand node of network more or less than four 

by adding or decreasing the demand node to the network 

topology and establish the model in the same way. 

Tree topology in case 1: This type of network topology has a 

main pipeline connecting the two source compressor stations. 

A large number of demand nodes are scattered on the main 

pipeline. The typical tree topology is shown in Figure 1. 

31S1 S2

a b e
24

d

D1

D3

D4

D2

f

g

h

i

c

 

Fig.1. Typical tree topology. 

There are two source nodes S1 and S2 on behalf of two 

compressor stations. The demand nodes are D1,D2,D3, and D4. 

The network has nine pipelines from a to i and four media 

nodes from 1 to 4. The characteristic coefficient of each 

pipeline from pipeline a to pipeline e is 301.3519 whereas 

that of the others is 232.1117.  

At the current stable state, the state of pipeline network is 

described in Table 1 and Table 2. 

Table 1.  The pressure at source and demand node. 

node S1 D1 D2 D3 D4 S2 

P(×10
2
psia) 7.10 6.27 5.90 5.19 5.16 6.55 

Table 2. The mass flow at source and demand pipeline. 

node S1 D1 D2 D3 D4 S2 

m (×10
5
scf/M) 3.32 1.06 1.06 1.66 1.66 2.12 

The MAOP at each demand node is set to 800 psia. The 

MIOP at each demand node is set to 500 psia. Ns1 

representing the number of running compressors in 

compressor station S1 is 5. Ns2 representing the number of 

running compressors in compressor station S2 is also 5. The 

rated gas production of compressor named as 
cm  is equal to 

5000 scf/M. 

Looped topology in case 2: The other topology for  

compressed air transportation system with two source 

compressor stations is looped network. The typical looped 

topology is shown in Figure 2. 

a

b c d

e f g

h i

j k

l
S2S1

D1 D2

D3 D4

1 2

3 4

5 6

 

Fig.2. Typical looped topology 

The number of source and demand nodes is the same to case 

1. The network has twelve pipelines from a to l and six media 

nodes from 1 to 6. The characteristic coefficient of each 

pipeline from pipeline a to pipeline i is 301.3519 whereas 

that of the others is 232.1117.  At the current stable state, the 

state of pipeline network is described in Table 3 and Table 4. 

Table 3.  The pressure at source and demand node. 

node S1 D1 D2 D3 D4 S2 

P(×10
2
psia) 6.83 5.98 5.98 5.35 5.35 6.90 

Table 4. The mass flow at source and demand pipeline. 

node S1 D1 D2 D3 D4 S2 

m (×10
5
scf/M) 3.32 1.06 1.06 1.66 1.66 2.12 
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The set of MAOP and MIOP at each demand node is the 

same as case 1.The number of running compressors in 

compressor station and the rated gas production of 

compressor are also the same as case 1.  

5.2 Two objective functions of each case 

Minimize the output pressure of compressor station 1: 

 
1 1 1

2 2

1 1minimize  P /S S SQ k P    (14) 

  where  
11Sk  is the characteristic coefficient of pipe 

11S . 

Minimize the output pressure of compressor station 2: 

 
2 2 2

2 2

2 2minimize  P /S S SQ k P    (15) 

Where  
2 2Sk  is the characteristic coefficient of pipe 

2 2S . 

5.3 Result and discussion 

In the implementation of NSGA-II, a population size of 100 

is considered. The probability of the crossover is 0.9 and the 

probability of the mutation is 0.8. We use real-coded GAs 

with the simulated binary crossover (SBX) operator and 

polynomial mutation. The distribution indexes for crossover 

and mutation operators are 20c   and 20m  , respectively. 

The algorithm runs 15 times independently for each case. The 

maximum number of objective function evaluation allowed is 

set to 120,000. 

Case 1 which is a tree topology includes 4 decision variables 

and 12 constraints to optimize the objective functions. The 

optimization problem is solved and the Pareto optimal points 

of best run are presented in Figure 3. Using a computer with 

Intel Core(TM) i3-2120 3.30 GHz model and 3 GB RAM, the 

CPU computation time for this case is averaged as 5530 ms. 

Case 2 which is a looped topology has 4 decision variables 

and 14 constraints to optimize the objective functions. The 

optimization problem is solved and the Pareto optimal points 

in the best run are presented in Figure 4. Using the same 

computer as case 1, the CPU computation time for this case is 

averaged as 6556.5 ms. 

After multi-attribute decision-making using the method of 

section (4.2), the best output pressure set of two compressor 

stations is showed at table 5. 

Table 5.  The comparison  of the output pressure set. 

optimization 
Case 1 Case 2 

1SP  2SP  1SP  2SP  

Before 709.05 655.28 682.78 689.26 

After 707.18 644.49 663.72 681.56 

decline 1.87 10.79 19.06 7.7 

In case 1, the output pressures of two compressor stations are 

set to 707.18 psia and 644.49 psia, which decline 1.87 psia 

and 10.79 psia respectively compared to previous 

optimization. In case 2, the output pressures of two 

compressor stations are set to 663.72 psia and 681.56 psia, 

which decline 19.06 psia and 7.7 psia respectively compared 

to previous optimization. 

 

Fig.3. Optimum points at best run time for linear topology in 

case 1. 

 

Fig.4. Optimum points at best run time for looped topology in 

case 2. 

5.1 Consistency analysis of solution 

To analyse the consistency of solutions, we run each case 5 

times with all the other parameters unchanged. Figure 5 

shows the results of Pareto optimal front PF in case 1 at each 

running time. The Pareto optimal front PF of case 2 after 

running each time is shown in Figure 6.  

Just like most of reality application MOPs, we do not know 

the global PF in our problem. The solutions can only be as 

close as possible to the global PF. As shown in Figure 5, the 

results of running 5 times show every time the solution 

converges to the same PF. But in case 2 with a more 

complicated constraint than case 1, the result is different. As 

shown in Figure 6 nearly every time the solution converges to 

local PF. This is because binary tournament selection based 

on constrained-dominate relationship is difficult to play the 

role of infeasible solution. When most of the individuals in 

the group are feasible solution, the infeasible solution is 

difficult to access. 
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Fig.5. The result of case 1 running 5 times. 

 

Fig.6. The result of case 2 running 5 times. 

6. CONCLUSIONS 

This paper established a multi-objective optimization model 

for multi-source compressed air transmission network. The 

developed model was applied to tree and looped topologies. 

The goal was to find optimal operating condition for any 

network. The objectives considered are minimizing each 

output pressure of compressor stations subjected to pressure 

and mass flow constraints in pipeline and compressor station. 

The case studies represent the two topologies existing in the 

real world system. They lay the foundation for investigating 

large and complex networks which are the combination of 

these two typical topologies of multi-source compressed air 

supply system. The solution of the multi-objective model is a 

set of non-dominated front solution points which is a trade-

off curve between different objectives. A final solution is 

chosen by the multiple attribute decision-making according 

to the weight satisfaction of the solution and the objective 

value of final solution is used to guide the production. This 

article presents a method of solving multi-Source 

Compressed-air Pipeline Optimization Problems at the steady 

state. 
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