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Abstract: This paper proposes a novel time-frequency method for plant-wide oscillation
analysis based on the multivariate extension of standard empirical mode decomposition (EMD).
The raised fast multivariate empirical mode decomposition (FMEMD) is generalized from EMD
by solving an overdetermined system of linear equations. Due to its capability to analyze
multiple channels data, FMEMD is especially suitable for characterizing plant-wide control
loop oscillations. Unlike traditional methods, both the regularity of oscillations (in frequency
domain) and evolution of local characteristics (in time scale) can be well captured via FMEMD.
Validity of the raised approach is demonstrated on simulations as well as an industrial case.
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1. INTRODUCTION

Plant-wide oscillation detection and characterization is
one of the important issues in many process industries
(Thornhill et al. (2003a)). The presence of oscillatory
variables in a process plant may result in inferior products,
larger rejection rates, and even compromise process sta-
bility (Thornhill et al. (2002)). Therefore, it is important
and challenging to automatically detect such oscillations
in order to maintain efficient operation.

Existing oscillation detecting methods can be roughly di-
vided into univariate and multivariate ones, while most of
these techniques are designed for being applying to single
time series (Lang et al. (2018)). With respect to multi-
variate techniques, Thornhill et al. (2002) proposed the
spectral principal component analysis (SPCA) to detect
and categorize the variables having similar oscillations.
In 2005, a new visualization tool termed as power spec-
tral correlation map (PSCMAP) is raised by Tangirala
et al. (2005). More recently, Jiang et al. (2007) presented
the spectral envelope method for detection and diagnosis
of plant-wide oscillation, and El-Ferik et al. (2012) pro-
posed the spectral decomposition based on evolutionary
algorithm. However, there are some crucial restrictions of
Fourier spectral analysis: the system must be linear, and
the data must be strictly periodic or stationary.
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Recently, multivariate EMD (MEMD), was introduced by
Rehman and Mandic (2009). MEMD allows simultaneous
processing of multi-dimensional signals that are composed
of data collected from different control loops. This algo-
rithm has all the advantages of standard EMD (Huang
et al. (1998)) in analyzing nonlinear and nonstationary
time series, and additionally can align the common intrin-
sic mode functions (IMFs). However, it seems a common
belief that a major drawback of the MEMD is that it
requires a long computation time (Wu et al. (2010)). More-
over, according to Rehman and Mandic (2009), the sifting
for a multivariate IMF can only be stopped until all the
projected signals fulfill the stoppage criteria. Notice that
enforcing the same number of siftings for every data chan-
nel will inevitably induce the affect of over-decomposition
and compromise the time-frequency information further.

To resolve the issues above, a novel multivariate extension
of EMD, namely FMEMD, is proposed in this study. The
standard EMD is first applied on the projected signals
to extract a set of univariate IMFs, the combination of
such IMFs is then solved by the least square algorithm to
yield the desired multivariate IMF. Running of FMEMD
is at least p times faster than the existing MEMD, and in
addition, avoid the ambiguities of notion on multivariate
sifting. When analyzing on white Gaussian noise, FMEMD
also outperforms MEMD in responding as a dyadic filter
bank on each dimension of the multivariate signal.

The rest of this paper is organized as follows. The EMD
and MEMD are first reviewed in Section 2, additionally,
Section 3 addresses the proposed fast MEMD method. The
simulation based analyses of FMEMD versus MEMD are
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presented in Section 4. Section 5 discusses an industrial
case, which is followed by conclusions in Section 6.

2. PRELIMINARIES

2.1 Empirical mode decomposition

The standard EMD aims to adaptively decompose a signal
into a finite set of oscillatory components known as intrin-
sic mode functions (IMFs) (Huang et al. (1998)). More
specifically, for a real valued signal x (t), the application

of EMD yields M sets of IMFs, denoted as {di (t)}Mi=1, and
a monotonic residue r (t), so that

x (t) =

M∑
i=1

di (t) + r (t) (1)

where the residual signal r (t) is a monotonous function.
The procedures used for extraction of IMFs from a real-
valued signal x (t) are summarized in Algo. 1.

Algorithm 1 Empirical mode decomposition.

Input: x1 (t) = x2 (t) = x (t), i = 1
1: Find the locations of all the extrema of x1 (t);
2: Interpolate all the maxima (minima) to obtain the

upper (lower) envelop, emax (t) (emin (t));
3: Find the local mean, m (t) = [emin (t) + emax (t)]/2;
4: Subtract the mean from the signal to obtain an oscil-

latory mode, s (t) = x1 (t)−m (t);
5: If s (t) obeys the stoppage criteria, di (t) = s (t)

becomes an IMF, go to step 6. Otherwise set x1 (t) =
s (t) and repeat the process from step 1;

6: Subtract the so derived IMF from x2 (t), so that
x2 (t) := x2 (t) − di (t). If x2 (t) becomes a monotonic
function, stop the sifting process with r (t) = x2 (t).
Otherwise, x1 (t) = x2 (t), i = i+ 1 and go to step 1;

7: return {di (t)}Mi=1 and r (t);

2.2 Multivariate Empirical Mode Decomposition

For multivariate signals, multiple p-dimensional envelopes
are generated by taking signal projections along different
directions in p-dimensional space, and subsequently in-
terpolating their extrema (Rehman and Mandic (2009)).
These envelopes are then averaged to obtain the local
multivariate mean. Similar to standard EMD, the MEMD
uses a vector-valued form of standard EMD to decompose
a p-variate signal x (t) as

x (t) =

M∑
i=1

di (t) + r (t) (2)

where the p-variate IMFs, {di (t)}Mi=1, contain scale-
aligned intrinsic joint rotational modes.

3. FAST MULTIVARIATE EMPIRICAL MODE
DECOMPOSITION

This section proposes a novel multivariate generalization
of EMD. The main content of this section includes: (i) the
extension principle from EMD to FMEMD, (ii) the spe-
cific algorithm of FMEMD and (iii) some supplementary
statements.

3.1 Extension principle for FMEMD

The multi-dimensional local mean of the existed MEMD is
computed as the average of multiple envelopes obtained by
interpolating extrema that are extracted from the multiple
projections. In practice, this method is hindered by

• High computational cost : The computation time of
MEMD multiplied significantly as the dimension of
the signal increases.

• Over-decomposition: Enforcing the same number of
iterations for every data channel during the sifting
process may compromise the extraction of IMFs.

Considering the obstacles above, a new multivariate EMD
that is out of the framework of the original MEMD is
required. However, in a strict sense, all forms of the
multivariate generalizations are able to be considered as
MEMD, if such algorithms can be simplified to the stan-
dard EMD. In order to ensure the physical meaning of the
unknown multivariate IMF, the expected MEMD (namely,
FMEMD) is extended underlying the basic principles of
EMD and MEMD.

As an adaptive method of decomposing local temporal
characteristics, the intrinsic principle that underpins EMD
is to formalize the following idea (Mandic et al. (2013)):

Principle 1: EMD: univariate signal = slower oscillations
+ fast oscillation.

For multivariate data, similarly, the principle of separating
oscillations can be generalized to that of splitting rotations
(Rehman and Mandic (2009)), whereby

Principle 2: The expected MEMD: multivariate signal =
slower rotations + fast rotation.

The notion of rotation, which, moreover, is arguably a
multiple-dimensional extension of the usual notion of uni-
variate oscillation (Mandic et al. (2013)), can be briefly
summarized as a multivariate monocomponent that shows
the aligned frequency subbands across distinct channels.
Accordingly, a rotation is equal to a multivariate IMF
(MIMF) in this study. Let Sx (t) denotes the first mul-
tivariate mean (slower rotations) of the input signal x (t),
xθk (t) represents the projection of x (t) along vθk , and
Sxθk (t) denotes the first univariate mean (slower oscilla-
tions) of xθk (t), the solution for defining a multivariate
IMF is investigated:

i) According to Principle 2, the fast rotation (the first
MIMF with the highest frequency) of the original signal,
xfast (t), is extracted preferentially, which yields the for-
mula of Sx (t) as

Sx (t) =x (t)−xfast (t) (3)

ii) Similarly, the fast oscillation xfast (t) is separated from
xθk (t) based on Principle 1. Subtracting xfast (t) from the
projected function gives

Sxθk (t) = xθk (t)− xfast (t) (4)

iii) The projection of the multivariate signal x (t) under
projection vector vθk is essentially the summation of terms
that are equal to each dimension of x (t) multiplied by the
corresponding coefficients in vθk . Therefore, the projection
operator only changes the amplitude of each division of
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x (t) (the original amplitude multiplying with its corre-
sponding coefficient), while the frequency characteristic
remains. Consequently, the projection of the fast rotation
xfast (t) along vector vθk will still represent the fast os-
cillation in the projected function xθk (t). From step ii),
the separated fast oscillation is known as xfast (t), so it is
concluded that

xfast (t) = xfast (t) · vθk (5)

iv) Combining Eq. 5 with the prerequisite xθk (t) = x (t) ·
vθk , a new equation is given below

xθk (t)− xfast (t) =
[
x (t)−xfast (t)

]
· vθk (6)

Finally the relationship between Sxθk (t) and Sx (t) is
deducted by integrating Eqs. 3, 4 and 6, which yields

Sxθk (t) = Sx (t) · vθk (7)

According to the analysis above, it can be concluded that,

Axiom 1. Given a specified direction vector, the projection
of a multivariate mean is equal to the univariate mean that
is extracted from the projected signal.

If a p-variate signal x (t) is projected into K directions 1 ,{
vθk
}K
k=1

, to yield K projections,
{
xθk (t)

}K
k=1

, an overde-
termined linear equation set is obtained based on the

proposed theorem after the univariate mean
{
Sxθk (t)

}K
k=1

being extracted.{
Sxθk (t)

}K
k=1

= Sx (t) ·
{
vθk
}K
k=1

(8)

Accordingly, the multivariate mean of x (n) can be com-
puted by solving the above equations, and the first multi-
variate IMF, Fx (t), is therefore subtracted into

Fx (t) = x (t)− Sx (t) (9)

The procedures above can be re-applied by setting the
mean signal as a new input, then the iteration continues
until a monotonic mean (trend) is obtained. In conse-
quence, an indirect multivariate extension of the standard
EMD (namely, FMEMD) is accomplished.

3.2 Algorithm of FMEMD

The aforementioned axiom enables FMEMD to be general-
ized indirectly by back-projecting the decomposed results
of standard EMD. Based on solving an overdetermined sys-
tem of linear equations which is consists of the extracted
univariate means from all of the projected functions, the
p-variate mean of the input data can be simply computed.

Consider a sequence of p-dimensional vectors x (t) =
[x1 (t) , x2 (t) , . . . , xp (t)] which represents a multivariate

signal with p components, and vθk =
[
vk1 , v

k
2 , . . . , v

k
p

]T
denoting a set of vectors along the directions given by

angles θk =
[
θ1k, θ

2
k, . . . , θ

p−1
k

]T
on a (p − 1)-sphere, the

proposed FMEMD is summarized in Algo. 2.

In consequence, the FMEMD uses the presented proce-
dures to decompose a p-variate signal x (t) into

x (t) =

M∑
i=1

di (t) + r (t) (10)

Algorithm 2 Algorithm of FMEMD.

Input: x1 (t) = x (t), i = 1
1: Generate a suitable point set for uniform projection;
2: Calculate the kth projection pθk (t) of the input signal

x1 (t) along direction vector vθk , for all k (i.e. k =
1, 2, . . . ,K);

3: Extract univariate mean Spθk (t) of the projected
function pθk (t) for all k using standard EMD;

4: Combine the means
{
Spθk (t)

}K
k=1

with their cor-

responding direction vectors
{
vθk
}K
k=1

, then the p-

variate mean Sx1 (n) can be obtained by solving the
following overdetermined equations{

Spθk (t)
}K
k=1

= Sx1 (t) ·
{
vθk
}K
k=1

(11)

5: The multivariate IMF is calculated by subtracting
the multivariate mean from the current input signal
di (t) = x1 (t)− Sx1 (t);

6: If Sx1 (t) becomes monotonous, stop the iterative pro-
cess and obtain the trend, r (t) = Sx1 (t). Otherwise,
update the current input as x1 (t) = Sx1 (t) and
i = i+ 1, then go to step 2;

7: return {di (t)}Mi=1 and r (t);

Remarks:

(1) In this work, the Halton and Hammersley sequence
(Niederreiter (1992)) which is proven to yield im-
proved generalized discrepancy estimates as com-
pared with other sampling methods, is introduced for
generating direction vectors.

(2) The standard EMD is a special form of the proposed
FMEMD algorithm. FMEMD will be simplified to

EMD when the direction vector is set to [1]
T

.
(3) The decomposition of a multivariate signal via

FMEMD exhibits mode alignment property, whereby
common frequency modes in different dimensional
components are aligned in a single MIMF. This prop-
erty is further demonstrated in Section 5.

3.3 Solution to overdetermined equations.

To enhance the reconstruction of the multivariate mean,
while attenuate some unexpected noise, the number of pro-
jections, K is usually chosen greater than the dimension
of the input 2 , p. As a result, Eq. 11 is usually designed
into an overdetermined system of linear equations. For
convenience, this system is rewritten into the form of
y = Sx, where matrix S ∈ RK×p and vector y ∈ RK×1

are given while the vector x ∈ Rp×1 is unknown. In
many industrial applications, the overdetermined system
is usually inconsistent, thus it is desired to find a best
approximation. The well known approach (Cadzow (2002))
is to find a selection of vector xo so that the `2 norm (sum
of squared errors criterion) of the residual error vector

e = y − Sxo (12)

is minimized. One of the main benefits accrued in employ-
ing a minimum `2 norm criterion is the existence of a closed
form solution to this approximation problem. According to

1 K ≥ p, and it is generally set as K > p for reducing noise.
2 K ≥ 6p is adopted in this work.
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the second theorem presented in Cadzow (2002), if matrix
S has full column rank, there exists a unique solution to
the normal equations as given by

xo =
[
STS

]−1
STy (13)

where xo is the unique optimal solution to x. Conse-
quently, the optimal approximation of p-variate mean
Sx1 (t) in Eq. 11 can be well captured by Eq. 13.

4. COMPARATIVE STUDY

This section compares the decomposition performance of
MEMD with our proposed FMEMD. For both MEMD
and FMEMD, the low-discrepancy sequences are used for
generating a set of K = 64 direction vectors. Furthermore,
end effects of the original signal were restrained in advance
before MEMD/FMEMD being applied.

4.1 Computational cost.

It has been claimed in the first section that the MEMD
method is computation extensive. In this section, a simple
comparison between the computational load of MEMD
and FMEMD is presented. It is noteworthy that some
other fixed-point arithmetic operations are negligible com-
pared with the sifting procedure 3 . Therefore, to facilitate
the analysis, the sifting time based comparison is deducted
between MEMD and FMEMD.

Suppose a single operation of the univariate sifting process
for standard EMD requires T0 time. According to Rehman
and Mandic (2009), the multivariate envelope associated
with a specified projection is computed by applying the
univariate cubic spline interpolation channel-wise. Conse-
quently, focus on each of the direction vectors, the sifting
time of MEMD of a p-variate input is p times of the
univariate sifting time, T0. If totally K direction vectors
are considered, the time cost of MEMD for extracting a
single MIMF is given

Tm = nm · p ·K · T0 (14)

where Tm denotes the computation cost, and nm is the
number of sifting times consumed for one MIMF extrac-
tion. In contrast to MEMD, the p-variate input of FMEMD
is projected and then operated univariable using standard
EMD. Therefore, the total consumption of FMEMD for a
p-variate IMF computation only involves

Tf = n̄f ·K · T0 (15)

time, where Tf denotes the time cost, while n̄f represents

an average of the sifting times, namely, n̄f = 1
K

K∑
i=1

ni

and ni, i = 1, 2, . . . ,K denotes the respective sifting times
of standard EMD corresponding to each of the projected
functions. As discussed in Rehman and Mandic (2009),
the stoppage criterion for multivariate IMFs is similar to

3 The sifting process includes all of the large computational oper-
ations, such as extrema identification and cubic spline procedures,
while the rest of MEMD/FMEMD only involves some simple opera-
tions like addition, multiplication, division and an infrequent matrix
operations (solving of the overdetermined system of linear equations
using least squares solution).

that applied for standard IMF, thus it is concluded that
nm = max {ni, i = 1, 2, . . . ,K}. Combine Eq. 14 with Eq.
15, a new formulation is given

Tm ≥ p · Tf (16)

This inequality illustrates that running of the proposed
FMEMD is p times or more faster than that of MEMD.

4.2 Phenomenon of over-decomposition.

In order to demonstrate that FMEMD outperforms
MEMD in multivariate signal decomposition, the fre-
quency responses and corresponding filter bank properties
of MEMD and FMEMD are studied.

At first, the MEMD is applied on N = 500 realizations
of four-channel white Gaussian noise with each of length
T = 1000. The power spectra of the first eight MIMFs
are then computed and ensemble averaged to yield an
averaged power spectra as shown in the top of Fig.
1(a). It seems that MEMD is able to properly align
the bandpass filters associated with the corresponding
IMFs for different noise channels. However, MEMD fails
to provide its frequency responses similar to that of a
dyadic filter bank 4 . More specifically, zero crossings in
these IMFs can not follow the structure of a dyadic filter,
which shows linear (slope close to−1) relationship between
the base-2 logarithm of number of zero crossings and
the IMF index. The uneven blue-points in the bottom of
Fig. 1(a) (with slope around −0.7409) have confirmed the
statement, and further indicated that over-decomposition
is inevitable when applying MEMD.

Next, the same experiment is processed based on the pro-
posed FMEMD. Fig. 1(b) gives the averaged spectra (top)
and fitting results using the base-2 logarithm of number
of the zero crossings against the IMF index (bottom).
It is evident from the figure that the alignment of IMF
based frequency bands, in case of FMEMD, results in the
stabilization of the filter bank structure. It revealed similar
behavior to those obtained from standard EMD, with the
slope of approximately −1.0104 for all the four channels
individually, indicating a quasi-dyadic filter bank nature
of FMEMD for white Gaussian noise. This noise-based
simulation has well verified the superiority of FMEMD
over the existing MEMD.

5. INDUSTRIAL CASE STUDY

A typical industrial case is presented in this section to
demonstrate the effectiveness of the proposed method for
plant-wide oscillations characterization. The data set un-
der study is borrowed from Thornhill et al. (2003a), which
is provided by a plant of Eastman Chemical Company.
The uncompressed nonlinear and nonstationary plant data
were sampled from the control system every 20 seconds on
each of the indicators. In order to facilitate the results for
displaying and analyzing, only the last 10 Tags (Tag 21 to
30) from total thirty loops with 2000 samples are investi-
gated in this study. The decomposition results obtained by
4 By analyzing the behavior of EMD in the presence of white
Gaussian noise, Flandrin et al. (2004) shows that standard EMD
essentially acts as a dyadic filter bank. Similarly, as a generalized
form of EMD, MEMD should also follow this filter bank structure.
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Fig. 1. Top: averaged spectra of IMFs (IMF1-IMF8) obtained from a N = 500 realizations of four-channel white
Gaussian noise by (a) MEMD, and (b) FMEMD. Bottom: averaged number of base-2 logarithm of zero crossings
plotted versus the IMF index (a) MEMD, and (b) FMEMD.

FMEMD are presented in Fig. 2. For simplicity, the first
five adjacent IMFs are added together. The top row of
Fig. 2 gives the process output, and the second and third
rows are d1−d5 and d6 respectively. The fourth row (d7)
denotes the plant-wide oscillations. d8 is shown in the fifth
row and last row (r) is the remainder of the process data.

Generally, an oscillation is considered to be regular if
the standard deviation σT of its zero-crossing intervals Ti
is less than one third of the mean value µT (Thornhill
et al. (2003b)). Therefore, the oscillation detection index
z proposed by Thornhill et al. (2003b) is adopted in
this work for monitoring the decomposed rotations. This
regularity index is defined as

z =
1

3
× µT
σT

(17)

which measures the variability relative to the mean. A sig-
nal is concluded to be oscillatory if its coefficient variable
satisfies z > 1.

Table. 1 depicts the monitoring results of d6 and d7,
respectively. d8 is not taken into account since none of the
significant components exists in this scale. Obviously, an
unignorable plant-wide oscillation is correctly detected in
rotation d7. Several tags (22 to 29) shows greatly indexes
in comparison with the confidence limit (z > 1), while
only two of the loops can not detect obvious oscillation.
A reasonable explanation is that Tag 21 is dominated
by the nonstationary trend, and Tag 30 is caught into
some intensive noise. In addition, combining Table. 1 with
the time-frequency characteristics of these rotations shows
that a slow plant-wide oscillation with a period around 115
min is presented throughout this plant. The interpretation
in (Thornhill et al. (2003a)) that it is a prominent and
widespread disturbance that accounts for most of the
process variability, further confirms the detecting results
accomplished by FMEMD. Compared with traditional
methods (such as spectral PCA and spectral envelop),
the proposed FMEMD shows several advantages from the
following:

(1) time-frequency information: FMEMD can not only
preserve the regularity of oscillations, but also pre-
cisely capture the critical evolution of the oscillatory
components in time scale.

(2) processing nonstationarity: FMEMD is especially
suitable for extraction and isolation of the nonsta-
tionary trends, as depicted in the last row of Fig. 2.

(3) adaptivity: unlike the Fourier-based approaches that
employ predefined basis functions, the FMEMD is
applied locally and adaptively.

Finally, a table (Table. 2) that compares the main differ-
ences and similarities between FMEMD/EMD and other
standard methods is added, enabling readers to keep an
overview of popular methods for time-frequency analysis.

6. CONCLUSION

A novel extension of standard EMD to FMEMD has been
provided to extract the p-variate common oscillations from
multiple control loops.

The mode-aligned property of FMEMD contributes to
the automatic categorizing of the same frequency oscilla-
tions as well as providing both time and frequency scales
information. Compared with the MEMD, the proposed
approach ensures the processing of multivariate data with
less computational cost and fewer IMF groups. FMEMD
also outperforms traditional methods in nonlinear and
nonstationary data analysis.

Simulations and an industrial case have verified the effec-
tiveness of the method in analyzing noise-contaminated
plant-wide oscillations. Future works will focus on source
localization of the oscillations based on FMEMD.
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