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Abstract: Process network planning is an important and challenging task in process systems
engineering. Due to the penetration of uncertainties such as random demands and market
prices, stochastic programming and robust optimization have been extensively used in process
network planning for better protection against uncertainties. However, both methods fall short
of addressing the ambiguity of probability distributions, which is quite common in practice.
In this work, we apply distributionally robust optimization to handling the inexactness of
probability distributions of uncertain demands in process network planning problems. By
extracting useful information from historical data, ambiguity sets can be readily constructed,
which seamlessly integrate statistical information into the optimization model. To account
for the sequential decision-making structure in process network planning, we further develop
multi-stage distributionally robust optimization models and adopt affine decision rules to
address the computational issue. Finally, the optimization problem can be recast as a mixed-
integer linear program. Applications in industrial-scale process network planning demonstrate
that, the proposed distributionally robust optimization approach can better hedge against
distributional ambiguity and yield rational long-term decisions by effectively utilizing demand
data information.

Keywords: Data-based decision-making, distributionally robust optimization, multi-stage
decision-making, process network planning.

1. INTRODUCTION

Nowadays, massive chemical complexes are erected and
integrated by chemical manufacturers, which commonly
leads to a large-scale process network. However, due to the
increasingly fierce competitions in the global marketplace
as well as stringent requirements in both economic and
environmental aspects, making appropriate decisions for
versatile activities involved in such a complicated net-
work environment brings significant challenges in process
industries (Wassick (2009)). On one hand, the synergies
between dedicated and flexible processes provide multiple
options to produce diversified products, and it is necessary
to coordinate different decisions as a whole (Norton and
Grossmann (1994)). On the other hand, some uncertain
factors such as demand and price variations tend to ex-
ert significant influence on decision-making (Pistikopoulos
(1995)). Since planning decisions are commonly made in a
long horizon, it is impossible to obtain accurate predictions
of long-term market variations. Therefore, uncertainties
must be taken into account to yield rational planning
decisions.

To address these challenges, optimization under uncertain-
ties has been widely adopted as an effective tool in making
planning decisions. The adopted methodologies can be
generally classified into stochastic programming (SP) (Liu
and Sahinidis (1996); You and Grossmann (2008)) and

robust optimization (RO) (Gong et al. (2016); Shang et al.
(2017)). In the context of SP, the expected performance
is typically optimized with the random nature of uncer-
tainties addressed by probability distribution functions
(PDFs), which are assumed as known a priori (Birge and
Louveaux (2011)). Nonetheless, an accurate distribution
of uncertainties is commonly unavailable in practice, and
the induced optimization problems are difficult to solve.
RO optimizes the worst-case performance over the sup-
port of uncertainties, which is expressed as an uncertainty
set of various shapes (Bertsimas et al. (2011)). However,
RO bears no statistical interpretations, and the worst-
case realization of uncertainties is typically excessively
pessimistic, leading to over-conservative decisions.

As an intermediate approach, distributionally robust op-
timization (DRO) has gained increasing popularity in the
operations research community in recent years (Delage and
Ye (2010); Van Parys et al. (2016); Hanasusanto et al.
(2017)). Different from RO and SP, DRO can be deemed
as optimizing the worst-case expected performance on a set
constituted by an infinite number of distributions, typical-
ly referred to as the ambiguity set and constructed based
on uncertainty data, thereby seamlessly incorporating data
information into optimization models. In this way, DRO
could effectively hedge against the ambiguity of probability
distributions of uncertainties in decision-making, which is
a crucial issue unaddressed by both SP and RO.
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Therefore, in this article, we propose a novel DRO model
for process network planning under demand uncertainties.
An ambiguity set is first constructed by extracting sta-
tistical information from historical demand data. In this
way, partial data information can be organically integrated
into the optimization model, leading to more reasonable
planning decisions. In addition, to address the sequential
nature of multi-period uncertain demands, a multi-stage
DRO model is developed. To solve the resulting optimiza-
tion problem, the affine decision rules (ADRs) have been
adopted to yield a suboptimal yet tractable solution. The
final optimization problem can be cast as a mixed-integer
linear program (MILP) that can be conveniently solved
using off-the-shelf solvers. Applications in an large-scale
industrial process network planning task demonstrate that
the proposed approach is advantageous to classic methods
in utilizing data information and balancing between risks
and profits.

The organization of this paper is given as follows: Section
2 develops the multi-stage DRO model for process network
planning problem. Section 3 discusses a tractable solution
approach based on ADRs. Section 4 reports the application
results. Finally conclusions are drawn.

2. DISTRIBUTIONALLY ROBUST PROCESS
NETWORK PLANNING PROBLEM UNDER

DEMAND UNCERTAINTY

2.1 Deterministic process network planning problem

In chemical complexes, a number of interconnected pro-
cesses and versatile chemicals are involved. By synthesiz-
ing all factors and modeling the entire problem mathe-
matically, a rational decision can be made from multiple
manufacturing options for producing a certain chemical
(Yue and You (2013)). Moreover, capacity expansions are
allowed in each period to maximize the overall profit. We
first introduce the deterministic process network planning
problem, which is generally formulated as the following
MILP (Liu and Sahinidis (1996)):

max−
∑
i∈I

∑
t∈T

(αit ·QEit + βit · Yit + δit ·Wit)

+
∑
j∈J

∑
t∈T

(vjt · Sjt − τjt · Pjt)
(1)

s.t. qeLit · Yit ≤ QEit ≤ qeUit · Yit, ∀i, t (2)

Qit = Qi(t−1) +QEit, ∀i, t (3)∑
t∈T

Yit ≤ cei, ∀i (4)∑
i∈I

(αit ·QEit + βit · Yit) ≤ cit, ∀t (5)

Wit ≤ Qit, ∀i, t (6)

Pjt −
∑
i

κij ·Wit − Sjt = 0, ∀j, t (7)

Pjt ≤ sujt, ∀j, t (8)

Sjt ≤ dujt, ∀j, t (9)

QEit, Qit, Pjt,Wit, Sjt ≥ 0, ∀i, j, t (10)

Yit ∈ {0, 1}, ∀i, t (11)

The objective (1) intends to maximize the net present
value (NPV) of the process network over the entire plan-
ning horizon, which consists of investment costs, operating
costs, material purchase costs, and sales profits. Constraint
(2) enforces the upper and lower bounds of capacity ex-
pansions in each period, while (3) indicates the additive
characteristic of expanded capacities. Inequalities (4) and
(5) limit the budgets of capacity expansions in each time
period. The equality (7) speaks about the mass balance.
(8) and (9) enforce that the purchase amount and sales
amount cannot exceed the limits of suppliers and markets.
The non-negativity of continuous variables is ensured by
(10). Binary variables {Yit} are used to indicate whether
the capacity of process i will be expanded in time period
t.

For clear expositions, we adopt the following compact
description of the deterministic process network planning
problem in the sequel:

min
x

cTx

s.t. Ax ≤ b

Cx ≤ ξ
xint ∈ {0, 1}

(12)

where decision variables x include continuous decision
variables {QEit, Qit,Wit, Sjt, Pjt} and binary decision
variables {Yit}, and the latter ones are denoted by xint.
The inequality Ax ≤ b corresponds to constraints (2)-(8)
and (10), and Cx ≤ ξ stands for the demand constraints
(9), which are further assumed to be affected by uncertain
demands ξ.

2.2 Modeling demand uncertainty with ambiguity set

We assume that uncertain demands are represented by
an M -dimensional random vector ξ = [ξ1 · · · ξM ]T.
However, an exact knowledge about the distribution P of
uncertainties ξ is commonly unavailable. In the context of
DRO, we capture statistical properties of ξ by considering
a set of probability distributions, termed as the ambiguity
set. Here we employ the following formulation of ambiguity
sets:

D =

{
Pξ ∈MM

+

∣∣∣∣P{ξ ∈ Ξ} = 1

EP{gi(ξ)} ≤ γi, i = 1, · · · , I

}
. (13)

The first constraint in (13) ensures that D only contains
valid distributions supported over the support set Ξ. Here,
we use upper and lower bounds in each dimension to
specify the support Ξ of uncertainties:

Ξ =
{
ξ
∣∣ξmin
m ≤ ξm ≤ ξmax

m , m = 1, · · · ,M
}
. (14)

The second constraint in (13) characterizes generalized
moment information of uncertainties via I functions
{gi(·)}, and enforces the generalized moment EP{gi(ξ)}
cannot exceed a given threshold γi. For the sake of solv-
ability and practicability of DRO approach, we adopt a
piecewise linear formulation of moment functions {gi(·)}
in this study:

gi(ξ) = max
{
fT
i ξ − qi, 0

}
, i = 1, · · · , I (15)

which can be understood as the first-order deviation of
uncertain parameters along a certain projection direction
fi truncated at qi. Such a specification leads to equivalent
robust counterparts of planning problems that can be
efficiently solved, thereby benefiting decision-making in
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complicated process operations. In fact, the ambiguity set
D can be reexpressed as the projection of a lifted ambiguity
set D̄ by introducing an I-dimensional auxiliary random
vector ϕ:

D̄ =

{
Qξ,ϕ ∈M

∣∣∣∣P{(ξ,ϕ) ∈ Ξ̄} = 1

EQ{ϕ} ≤ γ

}
, (16)

where the domain of uncertainties is extended to a lifted
support set Ξ̄:

Ξ̄ =

{
(ξ,ϕ)

∣∣∣∣ ξ ∈ Ξ

gi(ξ) ≤ ϕi, i = 1, · · · , I

}
. (17)

It has been proved by Bertsimas et al. (2017) that the
ambiguity set D is essentially tantamount to the set
including all marginal distribution of ξ under Q ∈ D̄. With
the support set Ξ and functions {gi(·)} determined by (14)
and (15), we can easily rewrite the lifted support set Ξ̄ as
a set of linear inequalities:

Ξ̄ =

(ξ,ϕ)

∣∣∣∣∣∣∣∣∣
ξ ≤ ξmax

ξmin ≤ ξ
0 ≤ ϕi, i = 1, · · · , I
fT
i ξ − qi ≤ ϕi, i = 1, · · · , I

 , (18)

which can be further concisely expressed in a matrix form:

Ξ̄ = {(ξ,ϕ) |Gξ + Hϕ ≤ r} . (19)

Here matrices G,H and the vector r are given by:

G =

 I
−I
0
FT

 , H =

 0
0
−I
−I

 , r =

 ξmax

−ξmin

0
q

 , (20)

where I denotes unitary matrix with appropriate dimen-
sion, and F and q encompass parameters of piecewise
linear functions {gi(·)}:

F = [f1 f2 · · · fI ], q = [q1 q2 · · · qI ]T. (21)

In practice, the values of these parameters can be esti-
mated from historical demand data, thereby enabling a
data-driven decision-making scheme. Based on the above
choice of the ambiguity set D, we deal with the tractability
issue of the associated worst-case expectation problem

sup
Q∈D̄

EQ {L(x, ξ)} , (22)

which will be useful in the sequel. Here L(x, ξ) is a general
objective function affected by uncertainties ξ. In fact,
we could translate (22) into a minimization problem by
dualizations. An explicit expression of the inner problem
is given by:

sup
Q

∫
Ξ̄

p(ξ,ϕ)L(x, ξ)dξdϕ

s.t.

∫
Ξ̄

p(ξ,ϕ)dξdϕ = 1∫
Ξ̄

p(ξ,ϕ)ϕdξdϕ ≤ γ

(23)

Here the decision variable is the joint probability density
function p(ξ,ϕ) or the infinite-dimensional probability
measure Q. By associating Lagrangian multipliers η and
β with constraints in (23), we can arrive at the dual form
of (23) in the spirit of conic duality (Shapiro (2001)):

min
η,β

η + γTβ

s.t. β ≥ 0

η +ϕTβ ≥ L(x, ξ), ∀(ξ,ϕ) ∈ Ξ̄

(24)

where the last constraint is essentially a robust constraint
on the uncertainty set Ξ̄. In this sense (24) can be regarded
as a classic RO problem.

2.3 Multi-stage DRO planning model

Process network planning typically involves a long plan-
ning horizon, in which the unknown demands in each
period are revealed sequentially. This allows some decisions
to be determined after uncertainties are known in each
period, and hence leads to a sequential architecture of
the decision-making process. To be more specific, variables
{Yit, QEit, Qit} pertaining to capacity expansions should
be specified at first as long-term planning decisions, while
the operating levels {Wit}, purchase amounts {Pjt} and
sales amounts {Sjt} can be determined in a more flexible
manner after the uncertain demand dt in period t becomes
known. This can be mathematically expressed with the
following multi-stage formulation:

min
x

{
cT

0 x0 + sup
P1∈D1

E
{

min
x1∈Ω1

cT
1 x1 + · · ·+ min

xT∈ΩT

cT
TxT

}}
.

(25)
Here all uncertainties and recourse decisions decompose as

x = [xT
1 xT

2 · · ·xT
T ]T, ξ = [ξT

1 ξ
T
2 · · · ξ

T
T ]T, (26)

where random demands ξt are revealed in Stages t, and
afterwards xt are are made. More precisely, decisions
x0 = {Yit, QEit, Qit} shall be made in a here-and-now
manner, and recourse variables xt = {Wit, Pjt, Sjt} shall
be made in a wait-and-see manner in response to demand
uncertainties ξt observed at Stage t, which are described
by the associated ambiguity set Dt. Ωt denotes the feasible
region of recourse variables at Stage t, where we suppress
the dependence of Ωt on x0,x1, · · · ,xt−1 and ξt for
notational convenience.

3. TRACTABLE REFORMULATION BASED ON
AFFINE DECISION RULES

In a multi-stage setting, deriving an explicit expression
of optimal recourse policy and calculating the worst-case
expectation are generally intractable, since they involve
enumeration of all realizations of uncertainties within the
lifted support set Ξ̄ (Goh and Sim (2010)). A pragmatic
strategy to circumvent the intractability issue is to employ
the ADR with the nonanticipativity constraints (Ben-
Tal et al. (2004)), which enforce the recourse variable xt
at Stage t to be affinely dependent on the uncertainty
realizations ξ1:t = [ξT

1 · · · ξ
T
t ]T and the auxiliary random

variables ϕ1:t = [ϕT
1 · · · ϕT

t ]T up to Stage t:

xt(ξ1:t,ϕ1:t) = x0
t + Xξt ξ1:t + Xϕt ϕ1:t, ∀t. (27)

where x0
t denotes the constant, Xξt and Xϕt are coefficient

matrices associated with the random variables ξ1:t and the
auxiliary random variables ϕ1:t, respectively. By stacking
all affine equations in all periods, we can write (27) in a
concise form:

x1:T (ξ,ϕ) = x0 + Xξξ + Xϕϕ. (28)

where some elements of Xξ and Xϕ are enforced to be
zero to respect the spirit of nonanticipativity in (27). By
substituting the ADR approximation (28) for the optimal
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decision policy, a conservative approximation to the multi-
stage DRO problem (25) can be derived:

min
x

min
x(ξ,ϕ)

cT
0 x0 + sup

P∈D
EP
{
cT

1:Tx1:T (ξ,ϕ)
}

s.t. A0x0 + A1:Tx1:T (ξ,ϕ) ≤ b, ∀(ξ,ϕ) ∈ Ξ̄

C0x0 + C1:Tx1:T (ξ,ϕ) ≤ ξ, ∀(ξ,ϕ) ∈ Ξ̄

Nonanticipativity constraints

(29)

Here, coefficients {x0,Xξ,Xϕ} of the decision rule (28)
are absorbed into first-stage variables, thereby leading to
a single-stage optimization problem that is easier to tackle.
Based on the reformulation in Section 2.2, we could arrive
at the following identical RO problem by dualizing the
inner-most maximization problem:

min cT
0 x0 + η + γTβ (30)

s.t. β ≥ 0 (31)

η +ϕTβ ≥ cT
1:Tx1:T (ξ,ϕ), ∀(ξ,ϕ) ∈ Ξ̄ (32)

A0x0 + A1:Tx1:T (ξ,ϕ) ≤ b, ∀(ξ,ϕ) ∈ Ξ̄ (33)

C0x0 + C1:Tx1:T (ξ,ϕ) ≤ ξ, ∀(ξ,ϕ) ∈ Ξ̄ (34)

Nonanticipativity constraints (35)

Note that constraints (32)-(34) can be regarded as generic
robust constraints on the polytopic uncertainty set Ξ̄.
We can then adopt existing results from RO literature
to convert these infinite-dimensional constraints into their
corresponding robust counterparts, leading to a tractable
MILP reformulation of the multi-stage DRO process net-
work planning problem. It is worth noting that an MILP
reformulation owes to the piecewise linear formulations of
{gi(·)} (15) used in the ambiguity set D (13). Therefore
it can be conveniently solved by using the state-of-the-art
branch-and-cut methods implemented in solvers such as
CPLEX.

4. APPLICATION CASE STUDY

In this section, the proposed DRO approach is applied to
a large-scale process network involving 38 processes, 28
chemicals, 10 suppliers and 16 markets, whose structure is
depicted in Fig. 1. The chemicals can be classified into
raw materials (A-J), intermediates (AA,AB), and final
products (K-Z). A ten-year planning horizon is considered
here, which consists of five time periods in total, and each
time period has two years. It is assumed that Processes
12, 13, 16, and 38 have initial capacities of 19.9, 12.5, 150
and 100 kton/year, respectively.

In this case, we consider random demands {dujt} over five
time periods, which constitute a 80-dimensional random
vector ξ, and one thousand historical demand data samples
are collected in total. We solve the planning case using the
deterministic model, multi-stage DRO model and multi-
stage adaptive robust optimization (ARO) model (Ben-
Tal et al. (2004)). Parameters in the deterministic model
are set as their nominal values. As with the multi-stage
ARO model, the box uncertainty set is adopted with its
size estimated with 1,000 available samples. Finally the
multi-stage ARO problem is cast as an MILP by means of
ADRs. In the multi-stage DRO model, we adopt principal
component analysis (PCA) to estimate projection direc-
tions {fi} in moment functions {gi(·)} from data samples,
and then set several truncation points {qi} evenly on each
principal axis. In this way, partial statistical information

within data can be incorporated into the ambiguity set
D, allowing for a systematic data-driven decision-making
schema. All problems are modelled in GAMS 24.7.4, in
which all induced MILPs are solved using CPLEX 12.7.0
with optimality gaps set as 0.1%.

Table 1 showcases the performance comparisons of solving
various optimization problems under demand uncertain-
ties. The multi-stage DRO problem has more variables
and constraints than the other two problems, and is thus
the most time-consuming. In spite of this, the computa-
tional burden is still affordable in practice. In terms of
objectives, solving the multi-stage DRO problem returns
12.61% higher NPV than solving the multi-stage ARO
problem, primarily due to different risk measures adopt-
ed. The optimal objective of the deterministic problem
is much higher than those of two multi-stage problems.
Such a gap in objectives is also due to the conservatism
induced by ADRs for solving two multi-stage problems.
Nonetheless, multi-stage problems are still preferred in an
uncertain environment, since the deterministic problem
organically falls short of addressing demand uncertainties
and reducing potential risks.

Table 1. Optimization Results in the Process
Network Planning Case

Deterministic Multi-Stage Multi-Stage
Planning DRO ARO

Cont. var. 851 753,732 189,012
Bin. var. 190 190 190

Constraints 1,224 407,775 103,215
CPU time (s) 0.11 1264.16 100.69
Objective (M$) 7,521 2,741 2,434

Next we investigate the conservatism of different approach-
es by taking a closer look at their decisions. The optimal
process design and planning decisions in the entire plan-
ning horizon derived by solving the deterministic problem,
the multi-stage DRO and ARO problems are listed in
Table 2. We can see that compared with the deterministic
planning model, less processes are operated by multi-stage
DRO and ARO since capacities of Processes 34, 35, and
36 have not been expanded all along. It bears rationali-
ty because less capacity expansions are determined in a
“here-and-now” manner by two multi-stage approaches
and some unnecessary costs can be avoided in face of
extremal realizations of random demands.

Table 2. Expansion Decisions Made in the
Entire Planning Horizon by Different Models

Planning Model Processes Selected for Expansions

Deterministic 8, 12, 13, 14, 16, 17, 28, 32, 34, 35, 36, 38
Multi-Stage DRO 8, 12, 13, 14, 16, 17, 28, 32, 38
Multi-Stage ARO 8, 12, 13, 14, 16, 17, 28, 32, 38

Although the same processes have been selected for ca-
pacity expansions by two multi-stage approaches, their
exact amounts of expansions are different, especially for
Processes 8, 14,17, 28, and 32. Fig. 2 further highlights
the changes of capacities over the entire planning horizon
determined by the two multi-stage approaches. Note that
capacities of Processes 8, 14, 17, and 28 are expanded by
all approaches at time period 2. As for Process 32, its
capacity is expanded at time period 4 one more time by the
multi-stage DRO approach. Therefore, it has a much larger
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Fig. 1. The chemical process network.

capacity at the final stage, which is much less conservative
than that obtained by multi-stage ARO, and could enable
higher profits under demand randomness. It indicates that
ARO only accounts for the worst-case realization within
the support set, thereby resulting in conservative solutions.
By contrast, the proposed DRO-based planning approach
is able to utilize more meaningful distributional informa-
tion from data by using the ambiguity set, thereby better
hedging against uncertainties.

5. CONCLUSION

In this paper, we put forward a novel DRO approach to
hedge against the ambiguity of probability distributions
of uncertain demands in process network planning. An
ambiguity set is constructed from data to capture partial

statistical information, on which the worst-case expected
objective value is optimized without knowing the exact
distribution of uncertainties. To describe the sequential
nature of uncertain demands revealed in multiple periods,
a multi-stage DRO model is developed. To address the
computational challenge, ADRs have been adopted to fur-
nish a conservative yet tractable solution. An application
case study on an industrial-scale process network planning
problem demonstrate that, the proposed approach can of
fully utilize statistical information underlying data, hedge
against distributional ambiguity, and hence leads to less
conservative solutions in comparison with classical ARO
approach.
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(a) Process 8

(b) Process 14

(c) Process 17

(d) Process 28

(e) Process 32

Fig. 2. Optimal capacity expansion decisions over the
entire planning horizon determined by multi-stage
DRO and ARO.
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