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Abstract: We present a fast sensitivity-based nonlinear model predictive control (NMPC)
algorithm, that can handle non-unique multipliers in the discretized dynamic optimization
problem. Non-unique multipliers may arise, for example when path constraints are active
for longer periods of the prediction horizon. This is a common situation in economic model
predictive control. In such cases, the optimal nonlinear programming (NLP) solution often
satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ), which implies non-unique,
but bounded multipliers. Consequently, any sensitivity-based fast NMPC scheme must allow for
discontinuous jumps in the multipliers. In this paper, we apply a sensitivity-based path-following
algorithm that allows multiplier jumps within the advance-step NMPC (asNMPC) framework.
The path-following method consists of a corrector and a predictor step, which are computed by
solving a system of linear equations, and a quadratic programming problem, respectively, and
a multiplier jump step determined by the solution of a linear program. We demonstrate the
proposed method on an economic NMPC case study with a CSTR.

Keywords: Optimal control, Economic model predictive control, Parametric optimization,
Path-following.

1. INTRODUCTION

A common practice in the process industries is to divide
the control system into two layers: an economic real-time
optimization (RTO) layer and a lower level model pre-
dictive control (MPC) layer. Since the RTO is typically
performed using a steady-state model, the two-layer con-
trol system is not able to handle transient optimally. To
address this, it was proposed to combine economics and
control into a single layer, and solve a dynamic optimiza-
tion problem with economic cost function. This gives rise
to economic MPC, which is explained in details in a book
by Ellis et al. (2016).

As the dynamic process models in economic MPC become
more complex, the online optimization problem cannot
be solved sufficiently fast, which may result in instability
of the closed loop system. To reduce the delay between
obtaining a new measurement and implementing the in-
puts in the plant, fast sensitivity-based approaches were
proposed. Two prominent methods are real-time iteration
(RTI) (Diehl et al., 2002) and the advanced-step NMPC
(Zavala and Biegler, 2009). These methods are based on
the concept of parametric nonlinear programming (NLP)
(Guddat et al., 1990), where the initial state values are
considered as a parameter in the optimization problem.

Most sensitivity-based methods for NMPC assume strong
regularity conditions on the NLP solution, typically
the linear independence constraint qualification (LICQ),
which guarantees unique multipliers. The more general

case with non-unique multipliers was first addressed
in Jäschke et al. (2014), who developed a pathfollow-
ing NMPC procedure, under the condition that the
Mangasarian-Fromovitz constraint qualification (MFCQ)
holds. MFCQ may be satisfied during prediction hori-
zon, for example, when path constraints are active for
longer durations, a situation that occurs quite commonly
in NMPC with economic cost functions (see also Vicente
and Wright (2002) for a more general discussion).

The contribution of this work is to present an improved
version of the path-following NMPC presented in Jäschke
et al. (2014). In particular, we employ the path-following
algorithm proposed in Kungurtsev and Jäschke (2017) to
obtain approximate solutions to the dynamic optimization
problem, and apply it in an asNMPC framework (Zavala
and Biegler, 2009) in a similar manner as Suwartadi et al.
(2017). The improved path-following method tracks the
optimal solution along a parameter change by performing
the following steps: first, a system of linear equations is
solved as a Newton corrector step. This step refines the
current primal and dual variables. Secondly, a quadratic
programming (QP) problem is solved to find the direc-
tional derivative that is used as a predictor step. Finally,
a linear program (LP) is solved to allow for jumps in the
multipliers.

This paper is organized as follows. We formulate the
NMPC problem in Section 2, and present the ideal NMPC
that assumes zero computation time. The predictor-
corrector path-following method for degenerate NLP (non-
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unique multipliers) is explained in Section 3, as well as its
application in an advanced-step NMPC. We present our
a case study in Section 4 and conclude the paper with a
discussion and remarks in Section 5.

2. ECONOMIC NMPC

2.1 Ideal Economic NMPC

The economic MPC controller computes the optimal con-
trol input by solving the following optimization problem

PN (xk) : min
zl,vl

Ψ (zN ) +

N−1∑
l=0

ψ (zl,vl) (1)

s.t. zl+1 = f (zl,vl) , l = 0, . . . , N − 1

z0 = xk,

(zl,vl) ∈ Z, l = 0, . . . , N − 1

zN ∈ Xf ,
where zl ∈ Rnz and vl ∈ Rnv are predicted state
and control variables at sample time l, respectively. The
economic objective function consists of the terminal cost
Ψ (zN ) ∈ C2 : Rnz → R and the stage costs ψ (zl,vl) ∈
C2 : Rnz × Rnv → R. The constraints include a discrete
time dynamical system f ∈ C2 : Rnz × Rnv → Rnz ,
the equality constraint for initial condition z0, which is
obtained from the measurement of the actual state xk ∈
Rnz at the time instance k, and the final state variable zN
is contained within the set of terminal constraint Xf . The
set Z denotes the path constraint limiting the predicted
state and control.

Having obtained a solution of the optimization problem
PN , the first move of the optimized predicted control input
uk := v0 is applied to the plant which evolves such that

xk+1 = f (xk,uk) , (2)

where xk is the actual plant. When noise is present, the
plant dynamics become

xk+1 = f (xk,uk) + wk, (3)

where wk ∈ Rnz represents the process noise. As the time
k = 1, 2, . . . evolves, the optimization problem PN is solved
repeatedly in a receding horizon fashion as follows:

(1) Obtain measurement data xk,
(2) Solve the optimization problem PN (xk),
(3) Inject the control input uk := v0 in the plant,
(4) Set k ← k + 1, repeat from Step (1).

We refer to the procedure above as an ideal NMPC
(iNMPC ) controller.

2.2 Enforcing convergence for economic NMPC

Since the stage cost in the optimization problem PN
(1) can be any arbitrary economic measure, it may be
difficult to ensure that the closed loop system is stable.
See Faulwasser et al. (2018) for a detailed treatment of this
topic. Stability may be ensured by regulating the NMPC
problem such that the process approaches its steady-state
optimal point, which can be found by solving

min
(x,u)∈Z

ψ (x,u) (4)

s.t. x− f (x,u) = 0.

Denoting the solution of (4) as (xs,us), we modify the
economic NMPC stage cost in (1) by incorporating a
regularization term so that it becomes
ψm (z,v) := ψ (z,v) + αstate (‖ z− xs ‖) + αinput (‖ v − us ‖) . (5)

The value of the weights αstate and αinput may be chosen,
for example, by the Gershgorin bound criteria, see Jäschke
et al. (2014). Sufficiently large values of the weights guar-
antee that the resulting closed-loop system is asymptoti-
cally stable (Angeli et al., 2012).

2.3 The Advanced-step NMPC

The optimization problem (1) is the same from one MPC
iteration to another, except for the changing measurement
xk. Hence, the initial state variable may be considered a
parameter. To reduce the computational time for solving
the optimization problem PN (1), instead of solving a
full NLP problem, the asNMPC computes the sensitivity
of NLP solution with respect to the initial a variable
(parameter) xk. This can be used to obtain a first-order
approximation of the solution at a nearby parameter.
Based on NLP sensitivity, the asNMPC procedure includes
the following three steps (Zavala and Biegler, 2009).

(1) (Offline step) Solve the NLP problem PN (zk+1)
offline at time k while setting the initial state value
to the predicted state at k + 1.

(2) (Online step) When the measurement xk+1 becomes
available at time k + 1, update the optimal solution
obtained from the offline step using the sensitivity of
the optimal solution from step 1.

(3) Implement the optimal control input and update k ←
k + 1 and repeat from Step 1.

If LICQ and strict complementarity hold together with
a suitable second order condition, the optimal sensitivity
update is step 2 can be calculated by solving a system of
linear equations that can be formulated using the Karush-
Kuhn-Tucker (KKT) system of the NLP.

The original asNMPC algorithm faces a challenge when an
active-set change occurs along the parameter updates. In
this case, the sensitivity must be computed by solving a
quadratic program (Jäschke et al., 2014; Suwartadi et al.,
2017) described in the next section, or by introducing
heuristics such as ”clipping in the first interval” (Biegler
et al., 2015).

3. PREDICTOR-CORRECTOR PATH-FOLLOWING
ECONOMIC NMPC

We explain the predictor-corrector path-following method
in this section along with its application to an advanced-
step economic NMPC controller. We define the following
notation. The ith component of a vector v is denoted by
[v]i and if K is is an index set then [v]K represents the
vector with |K| components composed of the entries of v.
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3.1 Preliminaries

We consider the optimization problem (1) as a parametric
nonlinear optimization problem of the form

min
χ

F (χ,p) (6)

subject to ci (χ,p) = 0, i ∈ E ,
ci (χ,p) ≤ 0, i ∈ I,

where F : Rnχ × Rnp → R is the objective function,
χ ∈ Rnχ is the primal variable and p ∈ Rnp is the
parameter. The equality and inequality constraint sets
are denoted by E = {1, . . . ,m} and I = {m+ 1, . . . , n},
respectively.

In the path-following algorithm, we track the optimal
solution for a parameter change starting from p0 (here
zk+1) to a final value pf (here xk+1).

The Lagrangian is defined as

L(χ,y,p) := F (χ,p) + yT c (χ,p) , (7)

where y ∈ Rn is the dual variable. The Karush-Kuhn-
Tucker (KKT) conditions for the problem are

∇χL(χ,y,p) = 0,

ci (χ,p) = 0, i ∈ E , (8)

ci (χ,p)≤ 0, i ∈ I,
yT c (χ,p) = 0,

yi ≥ 0, i ∈ I.

We denote set of active inequality constraints asA (χ,p) =
{ci (χ,p) = 0, i ∈ I}. For a given multiplier y that sat-
isfies (8) the active inequality set A (χ,p) has two sub-
sets, which are the weakly active set A0 (χ,y,p) =
{i ∈ A (χ,p) | yi = 0} and a strongly active set
A+ (χ,y,p) = {i ∈ A (χ,p) | yi > 0}. Furthermore, we
use notation A+,j to indicate strongly active set at itera-
tion index j.

The Hessian of the Lagrangian with respect to the primal
variables is

H (χ,y,p) = ∇2
χχF (χ,p) +

n∑
i=1

∇2
χχci (χ,p) yi. (9)

Definition 1. Strong second-order sufficient conditions
(SSOSC) holds at (χ,y,p) if a pair of primal-dual variable
(χ,y) satisfies the first-order conditions (8) at p and

dTH (χ,y,p) d > 0 ∀d ∈ C (χ,y,p) \ {0} ,

where the set C (χ,y,p) is defined as

C (χ,y,p) :=
{
d : ∇χci (χ,p)T d = 0 for i ∈ A+ (χ,y,p) ∪ E

}
.

Definition 2. General Strong Second-order Sufficient Op-
timality Conditions (GSSOSC) is satisfied if the SSOSC
is satisfied for all y that fulfill the first-order necessary
conditions (8).

We require a constraint qualification to ensure that the
KKT conditions (8) are a necessary condition for optimal-
ity. A standard constraint qualification that is frequently
used is the linear independence constraint qualification

(LICQ) which requires that the gradients of the active con-
straints are linearly independent. However, in dynamic op-
timization with path constraints, this may not be satisfied,
see Vicente and Wright (2002). A constraint qualification
that is more likely to hold in this case is the MFCQ.

Definition 3. Mangasarian-Fromovitz Constraint Qualifi-
cation (MFCQ) holds at (χ,y,p) if

(1) {∇χci (χ,p) , i ∈ E} is linearly independent,

(2) There exists a direction s such that ∇χci (χ,p)
T

s =

0 for all i ∈ E and ∇χci (χ,p)
T

s < 0 for all i ∈
A (χ,p).

The MFCQ implies that the set of multipliers that satisfy
(8) is a bounded polytope (Gauvin, 1977).

Definition 4. The Constant Rank Constraint Qualifica-
tion (CRCQ) holds at (χ,y,p) if there exists a neighbor-
hood N of χ such that for all subsets U ⊆ E ∪ A (χ,p),
the rank of {∇χci (χ,p) , i ∈ U} is equal to the rank of
{∇χci (χ̄,p) , i ∈ U} for all χ̄ ∈ N .

Note that CRCQ is neither weaker nor stronger than
MFCQ. Finally, we define the optimality residual as

η (χ,y,p) =

∥∥∥∥∥
(∇χF (χ,p) +∇χc (χ,p) y

c (χ,p)E
[min (c (χ,p) ,y)]I

)∥∥∥∥∥
∞

, (10)

which indicates how far a point (χ,y,p) is from a KKT
point.

3.2 Predictor-Corrector Path-Following

The path-following method for tracing the optimal solu-
tion along a parameter change is described in Kungurtsev
and Jäschke (2017) and consists of three steps: a corrector
step, a predictor step, and a multiplier jump step. These
three steps are run repeatedly to follow the path of optimal
solutions, starting from initial parameter value p0 until
final parameter pf . The parameter p is updated according
to p (tj) = (1− tj) p0 + tjpf , where t0 = 0 until it reaches
tj = 1, that is t0 = 0 < t1 < t2 . . . < tj . . . ≤ 1. We
denote the primal and dual variables during the course of
path-following iteration as χj and yj respectively, where
j represents the index of the iteration along the path.

The three steps of the path-following algorithm are:

1.Corrector Step. This step takes an approximate solu-
tion of the primal variables and the strongly active dual
variables and refines them for a given value of p. This is
done by solving the system of a linear equations

A

(
∆cχ
∆+y

)
= −B, (11)

where A =

(
H
(
χj ,yj , t

)
∇χcA+,j

(
χj , t

)
∇χcA+,j

(
χj , t

)T
0

)
,

and B =

(
∇χF

(
χj , t

)
+∇χc

(
χj , t

)
yj

∇χcA+,j

(
χj , t

) )
.

Since LICQ may not hold, the Jacobian ∇χcA+,j

(
χj , t

)
is not full rank, unless the dual variables yk are chosen
from vertex of the polytope of feasible multipliers (Ralph
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and Dempe, 1995). This can be done by solving a linear
program using a simplex method. Further below we will
present a suitable linear program.

The approximate dual variables for the strongly ac-
tive constraint are obtained from the solution (11), i.e.,
[∆cy]A+,j

= ∆+y and the remaining multipliers are set to

zero, [∆cy]{1,...,n}\A+,j
= 0.

2.Predictor Step. Based on the improved solution from
the corrector step, we compute a predictor by solving the
following predictor QP

min
∆pχ

1

2
∆pHχT∆pχ+FT∆pχ (12)

subject to β + αT∆pχ = 0, i ∈ A+,j

β + αT∆pχ ≤ 0, i ∈ Aj\A+,j

where
H = H

(
χj ,yj , t+ ∆t

)
,

F =
(
∇χF

(
χj , t+ ∆t

)
−∇χF

(
χj , t

))
,

β = ∇tci
(
χj , t

)
∆t,

α =
(
∇χci

(
χj , t+ ∆t

)
+∇2

χχci
(
χj , t+ ∆t

)
∆cχ

)
.

We obtain the primal and dual solution in this step
(∆pχ,∆py). Combining this with the solution from the
corrector step, we get (∆χ,∆y) = (∆cχ+ ∆pχ,∆cy + ∆py).
Here, we update the primal and dual variables solutions,
i.e., χj+1 = χj + ∆χ, yj+1 = yj + ∆y and consequently
the strongly active set A+,j+1.

3.Multiplier Jump Step. In order to allow for disconti-
nuity in the multipliers along the path, we compute the
dual variable solutions by solving the following LP,

min
y

yT∇tc
(
χj + ∆χ, t+ ∆t

)
∆t (13)

subject to − |Ω| ≤ ϑ ≤ |Ω|
yI ≥ 0

yi/∈Aj+1
= 0.

where

Ω = ∇χL(χj + ∆χ,yj + ∆y, t+ ∆t),

ϑ = ∇χF (χj+∆χ, t+∆t)+
∑

i∈Aj+1

∇χci
(
χj + ∆χ, t+ ∆t

)
yi.

The solution (yLP ) redefines the dual variable solutions
yj+1 = yLP and the strongly active set A+,j+1 ={
i : [yj+1]i > 0

}
. The three steps are summarized in Al-

gorithm 1.

We include the predictor-corrector path-following method
in the online step 2 of the asNMPC controller. This is
shown in Algorithm 2.

4. NUMERICAL CASE EXAMPLE

The proposed method is tested and compared against the
iNMPC controller. All simulations are done in MATLAB
using CasADi algorithmic differentation tool (Andersson,
2013) version 3.2.0, which includes IPOPT (Wächter and
Biegler, 2006) as NLP solver. We use MINOS QP (Murtagh

Algorithm 1 Predictor-corrector path-following method

Input: t, χ, y close to solution (χ∗ (t) ,y∗ (t)) such that
{∇χci (χ, t)}{i∈I:yi>0}∪E is linearly independent, ∆t,

ηmax < 1, and ιmax ∈ N.
Output: χ and y at pf

1: function mfcq pc pf(χ,y,p0,pf ,∆t)
2: Define parameter γ satisfying 0 < γ < 1.
3: Define A+.
4: Set j ← 0.
5: Set tj = 0.
6: while tj < 1 do
7: Solve (CorrectStep) for (∆cχ,∆+y).
8: if for some i /∈ E ,

[
yA+

+ ∆+y
]
< 0 then

9: Solve (1) using an NLP solver at tj
10: Set ι = 1
11: end if
12: Solve (QPPredict) for (∆pχ,∆py).
13: Set (∆χ,∆y) = (∆pχ,∆py) + (∆cχ,∆cy).
14: Compute ηj+∆ := η

(
χj + ∆χ, yj + ∆y, tj + ∆t

)
.

15: if ηj+∆ < ηmax then
16: χj+1 ← χj + ∆χ
17: yj+1 ← yj + ∆y
18: tj+1 ← tj + ∆t
19: p (tj) = (1− tj) p0 + tjpf
20: if ηj+∆ < η1+γ

j then . very good step

21: Increase ∆t.
22: end if
23: Update A+.
24: Solve (JumpLP) to redefine yj+1.
25: Let A+ =

{
i : [yj+1]i > 0

}
∪ E .

26: else
27: if ι ≥ ιmax then
28: Solve (1) using an NLP solver at tj
29: Set ι = 1
30: Go to line 7
31: else
32: Decrease ∆t
33: ι← ι+ 1
34: Go to line 12
35: end if
36: end if
37: j ← j + 1.
38: end while
39: Return χ
40: end function

Algorithm 2 Fast Economic pf-NMPC algorithm

Input: initial state x0 and stepsize ∆t.
Output: The actual state x1, x2, x3, . . .

1: for k = 0, 1, 2, . . . do
2: [χ∗,y∗]← solution of the NLP PN (zk+1) for
3: predicted value k + 1.
4: if a measurement of xk+1 is available then
5: Set p0 = zk+1
6: Set pf = xk+1

7: χ∗ ← MFCQ PC PF(χ∗,y∗,p0,pf ,∆t)
8: Inject the first input move of χ∗ to the plant
9: Update initial state x0 ← xk+1

10: Set k + 1← k
11: end if
12: end for
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and Saunders, 1982) solver from TOMLAB and CPLEX as LP
solver (IBM, 2017).

4.1 Process Description

We implement the pf-NMPC controller for a CSTR, taken
from Diehl et al. (2011), with first order reaction A → B
and slightly regularized objective function. The dynamic
model, derived from mass balance, is

dcA
dt

=
Q

V
(cAf − cA)− kcA (14)

dcB
dt

=
Q

V
(−cB)− kcA,

where cA and cB are the concentration of compo-
nents A and B, respectively. The rate constant is k =
1.2 L

molminute , the reactor volume is V = 10L, and the

feed concentration is cAf = 1 mol
L . The control input is

denoted by Q with unit L
minute and the state variables

are the concentration cA and cB . The economic objective
function is

J = −Q, (15)

which is incorporated with the regularization term as in
the equation (5)

ψm := J + (cA − 0.5)
2

+ (Q− 12)
2
. (16)

The bound constraints on the control and state are

10≤Q ≤ 20,

0.49≤ cB ≤ 1.

Note that the second bound constraint is not included
in Diehl et al. (2011) and becomes active at the steady-
state solution. We run NMPC controllers with prediction
horizon N = 50 for 100 minutes simulation time with
sampling time 1 minute. We set initial ∆t = 0.5 for the pf-
NMPC controller and ηmax = 0.001. Direct collocation is
used to discretize the optimal control problem, yielding
452 optimization variables and 402 nonlinear equality
constraints from the discretized state equations (14) as
well as bound constraints for the control input and state
variables. The real plant model is simulated by ’ode15’
solver in MATLAB. We add noise to the state measurements,
where the noise is taken to have a normal distribution with
zero mean and a variance of one percent of the steady state
values.

We check the linear independence of the Jacobian of the
active bound constraints and equality constraints at the
solution of the open loop problem (1) and we find that
the Jacobian is rank deficient, which implies LICQ is not
satisfied. Another way to check, if LICQ does not hold,
is that the the number of active constraints (equality
constraints plus active bound constraints) exceeds the
number of optimization variables, as one can observe from
Figure 1.

We continue to check whether MFCQ holds. As in Defini-
tion 3 (MFCQ), there must exist a strictly feasible step s
that satisfies the inequality constraints in addition to the
linear independence of the equality constraints. The exis-
tence of the step s can be verified by solving an LP prob-
lem (Forsgren et al., 2002, Section 2.2). Another simpler

# active bound constraints

0 20 40 60 80 100
Number of NMPC iterations

100

120

140

160

180

Fig. 1. Number of active bound constraints during the
open-loop optimizations. The active constraints cor-
respond to the lower bound on cB .
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iNMPC
pf-NMPC

Fig. 2. Open loop solutions (state variables and control
input) comparison at iteration number 2 for iNMPC
and pf-NMPC controllers. The red color line in cB
figure denotes the lower bound constraint.
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Fig. 3. The difference in predicted state variables and con-
trol input between iNMPC and pf-NMPC at iteration
number 2.

approach can be employed in this case. It can be verified
that for suitable initial conditions there exists a feasible
control input such that cB > 0.49 and 10 ≤ Q ≤ 20. Also,
the system has been setup such that the model equations
(equality constraints) are linearly independent.

4.2 Comparison of Open-loop Optimization Results

Here, we compare open loop optimization solutions (pre-
dicted state and control) at MPC iteration number two.
Due to the added noise, the prediction is not perfect,
and is updated using the path-following algorithm. The
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Fig. 4. Closed-loop solutions (state variables and control
input) comparison of iNMPC and pf-NMPC con-
trollers.

Table 1.

online optimization runtime (in sec.)

min max average
iNmpc 0.0680 0.1191 0.0884

pf-Nmpc 0.0416 0.1022 0.0479

results are depicted in Figure 2 in which the solutions of
both controllers are plotted. The resulted trajectories of
state and control inputs of pf-NMPC follow precisely the
iNMPC solutions. The differences between the solutions
are shown in Figure 3. The differences in the state variables
and control input are in the order of 10−7 and 10−5,
respectively. This shows that the path-following algorithm
tracks the true NLP solution very accurately.

4.3 Closed-loop Results

We compare the closed-loop responses of pf-NMPC con-
troller, which are obtained from the plant measurement
data after injecting the first move of the optimized control
input. As can be seen in Figure 4, again, the pf-NMPC
solutions track accurately those of iNMPC. Furthermore,
we compare online runtime between iNMPC and pf-NMPC
updates in Table 1, where on average our pf-NMPC ap-
proach gives a speedup factor of almost two. However,
these numbers are very implementation dependent, and
should only be used as an indication. A detailed compari-
son is not the scope of this work.

5. CONCLUSION

We have proposed the use of a predictor-corrector path-
following method, consisting of the three steps (corrector,
predictor, and multiplier jump step), for solving the online
open-loop optimal control problem in an economic NMPC.
We have shown that the pf-NMPC works as expected in
the case example, and accurately tracks the solutions of
iNMPC controller, in the presence of non-unique multipli-
ers.
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Sensitivity-based economic nmpc with a path-following
approach. Processes, 5(1), 8.

Vicente, L.N. and Wright, S.J. (2002). Local convergence
of a primal-dual method for degenerate nonlinear pro-
gramming. Computational Optimization and Applica-
tions, 22(3), 311–328.
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