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Abstract:
This article deals with the development of a reduced model describing the temporal evolution of the
fructo-oligosaccharide production by Aureobasidium pullulans and the optimal process control. First, a
reduced model is derived from a detailed model reproducing with good accuracy the dynamics of the
fructo-oligosaccharide production. The reduced model is obtained using maximum likelihood principal
component analysis and parameter identification based on a weighted least squares criterion. Next, the
fructo-oligosaccharide concentration at an a priori undetermined time is maximized using Pontryagin
maximum principle. The methodology is analyzed based on experimental data from batch and fed-
batch cultures, and results are compared with those obtained with another simple model available in the
literature.
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1. INTRODUCTION

In recent years, consumers have become increasingly con-
cerned about processed food and have since attempted to con-
sume healthy. To match this change in consumers’ eating habits,
organisations and industries developing foods for health ben-
efit are encouraged to think differently. New research areas
are hence emerging, trying to develop characteristic functional
ingredients which confer health benefits such as dietary fiber,
with prebiotic and probiotic effects (Sangeetha et al., 2005).
As an example, thanks to these prebiotic effects on the human
health, studies on fructo-oligosaccharides (FOS) are currently
conducted.

FOS belong to the class of dietary carbohydrates. They are used
as an alternative to classic sugar for their 30% relative sweet-
ness. Moreover, they selectively increase the probiotic bacteria
development resulting in the prevention of many gastrointesti-
nal diseases, colorectal cancer, diabetes (see e.g. (Tomomatsu,
1994)). Naturally, FOS can be found in honey with a concen-
tration of 70%, bananas as well as rye. Industrially, they are
difficult to produce and several processes are required to obtain
them with an acceptable degree of purity (Nobre et al., 2015,
2016).

FOS are generally produced in a bioreactor by transfructosy-
lation of sucrose (GF) which is composed of monosaccharides
glucose (G) and fructose (F), through microbial enzymes (fruc-
tosyltransferase and β-fructofuranosidase) present in microor-
ganisms (such as Aureobasidium pullulans (Dominguez et al.,
2012) or Aspergillus sp. (Rocha et al., 2009)). These enzymatic

activities produce complex sugars, namely 1-Kestose (GF2),
Nystose (GF3) and 1-Fructofuranosyl Nystose (GF4) which
constitute the FOS family.

This paper focuses on two objectives. First, a new mathematical
model is developed to reproduce the temporal evolution of the
FOS production in a bioreactor operated in a fed-batch mode.
From this model, an optimization method is next developed to
maximize the FOS concentration.

Modeling FOS production is not straightforward and requires a
good knowledge of all occurring chemical reactions. In addition
to the enzymatic reactions, hydrolysis and synthesis reactions
should be evaluated. Moreover, FOS production yield is af-
fected by the generated by-products (glucose or fructose). All
these constraints render difficult the development of a math-
ematical model since more than 7 states and a large set of
unknown parameters are then required to reproduce the time
evolution of FOS concentration.

A model reduction based on an existing model developed in
Rocha et al. (2009); Fekih-Salem et al. (2015) is therefore pro-
posed. It would allow the reduction of the number of parameters
that need to be identified, while conserving the mass balances
between each component. A two steps procedure is employed.
The structure of the reduced model is first obtained by re-
sorting to a maximum likelihood principal component analysis
(MLPCA) (Mailier et al., 2013). Afterwards, the parameters are
identified by using the weighted least squares (WLS) criterion.
Based on the development of this model, an optimization strat-
egy is performed to maximize the FOS concentration in a fed-
batch mode.
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The optimization of a fed-batch bioreactor process consists in
determining the best substrate feed rate to maximize the by-
product or the enzyme concentrations. Since we are faced with
a singular problem in this case, the optimization is achieved by
applying Pontryagin’s maximum principle, and more precisely
by considering a bang-bang method. This method uses the
constraints on the substrate feed rate to determine the best
protocol to maximize the FOS concentration (see e.g. Bryson
and Ho (1969); Van Impe and Bastin (1995); Smets et al.
(2004)).

Simultaneously, based on a simple second model developed
in (Jung et al., 1989) and identified according to a set of
experimental data, a comparison is performed to show the
efficiency of the developed reduced model.

The paper is organized as follows. In Section 2, the model is
presented and identified. Section 3 deals with the optimal con-
trol in order to optimize the FOS production. Both Sections are
concluded by an analysis of the results. A general conclusion is
delivered in Section 4.

2. MATHEMATICAL MODELS FOR FOS PRODUCTION

The development of mathematical models for FOS production
has already been performed in (Jung et al., 1989; Duan et al.,
1994) followed by (Rocha et al., 2009) and (Fekih-Salem et al.,
2015). In the sub-figures A, B and C from Fig. 1, the asso-
ciated networks of each reaction mechanisms are displayed.
The first model (model A-Fig. 1) considers only the synthesis
reactions of FOS by fructosyltransferase. In addition to this ini-
tial model, the Nystose hydrolysis reaction has been examined
(model B-Fig. 1). The fermentative process, i.e. the biomass
growth (X), and 1-Kestose and 1-Fructosylfuranosyl Nystose
hydrolysis reactions are next taken into consideration (model
C-Fig. 1). The latter is the most complete model and provides
accurate prediction results (Rocha et al., 2009; Fekih-Salem
et al., 2015). However, because of its complexity in terms of
the number of chemical reactions, namely 7 Michaelis-Menten
laws augmented with/without substrate inhibition and/or com-
petitive glucose inhibition and 2 Monod laws, 41 unknown
parameters have to be identified.

Ideally, the available data obtained from the experiments are
continuously measured. In this situation, it would be possible
to avoid the identifiability problem and provide unbiased esti-
mates, even with 41 parameters to be identified. However, in
real applications, the data is sampled and each experimental
sample has to be collected carefully without affecting the en-
zymatic and biological reactions. Respecting these conditions,
only one sample around every 5 hours is accessible in the FOS
case. This lack of data increases the uncertainties of the esti-
mated parameters. Such a situation has already been observed
for the identification of the complete model C in (Fekih-Salem
et al., 2015). To decrease these uncertainties, a solution is to
create a new model by reducing the complete model. The latter
is compared with the simple model developed by Jung et al.
(1989).

The identification of both models is performed from a combina-
tion of experiments: 2 in batch and 2 in fed-batch for different
initial conditions of sucrose. The enzymatic reactions have been
obtained from Aureobasidium Pullulans where the experimen-
tal conditions are described in Fekih-Salem et al. (2015).
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Fig. 1. Network of the reaction mechanisms; A: Jung et al.
model Jung et al. (1989); B: Kow et al. model Duan et al.
(1994); C: Rocha et al. model Rocha et al. (2009); D:
proposed model. Each color represents a reaction rate.

2.1 Model reduction

Using a MLPCA approach detailed in (Mailier et al., 2013), we
are able to determine the minimum number of reactions likely
to explain the noisy data and the related stoichiometric matrix.
The model C developed in (Rocha et al., 2009) involving 8 state
variables and 41 parameters is reduced to a 7 state variables
and 14 parameters model. Such model simplification has been
carried out through a step by step parameter identification
procedure:

• determine an initial reaction stoichiometry using MLPCA;
• estimate the kinetic parameters using weighted least

squares;
• compute the parameter confidence intervals and correla-

tions and eliminate highly correlated parameters from the
model;

• iterate the identification procedure questioning the stoi-
chiometry and kinetics.

The value of this procedure is to segment the original prob-
lem into subproblems that can be initiated by the solution of
previous steps. More precisely, the final reduced model has
8 Kinetic parameters and 6 pseudo-stoichiometric coefficients
and the differential equation system is as follows:

˙[GF] = −r1 + k14r4 +
1
V (GFin− [GF])Q

˙[GF2] = −r2 + k21r1− [GF2]
V Q

˙[GF3] = −r3 + k32r2− [GF3]
V Q

˙[GF4] = −r4 + k43r3− [GF4]
V Q

˙[F] = k54r4− [F]
V Q

˙[G] = k61r1− [G]
V Q

V̇ = Q

(1)

[α] denotes the concentration (in g.L−1) of the component α.
Q represents the substrate feed rate (in L.h−1), also denoted
control input variable. GFin is the substrate concentration (in
g.L−1). The V variable is the volume (in L) of the broth inside
the vessel of the bioreactor. The reaction rates (in g.L−1.h−1)
are defined by the Monod-law

ri = µmax
i

[GFi]

Kmi +[GFi]
, with i = 1,2,3,4, (2)
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Fig. 2. Measurements (dotted line) and simulations (continuous
lines) from model (1) with 8 kinetic parameters and 6
stoichiometric parameters. Blue and red colors represent
the fed-batch runs, and green and black colors show the
batch runs.

where µmax
i denotes the maximum rate (in g.L−1.h−1) of the re-

action i. Kmi (in g.L−1) represents the half-saturation Michaelis-
Menten constant associated with the component i. The associ-
ated reaction scheme is given by

GF
r1−−−−→ k21GF2 + k61G

GF2
r2−−−−→ k32GF3

GF3
r3−−−−→ k43GF4

GF4
r4−−−−→ k14GF+ k54F

(3)

The network of the reaction mechanisms is shown in (D-Fig.
1). Because of its limited impact on the FOS concentration, the
growth of the biomass is not taken into consideration in this
reduced model.

The estimated parameters, the confidence intervals as well as
the root mean-square error (RMSE) are displayed in Table 1.
The standard deviations are relatively small with respect to the
estimated parameters. The 4 experimental data sets and the
corresponding model (1) prediction are plotted in Fig. 2. It
can be noticed that the model satisfactorily fits the data which
validates the obtained results.

2.2 Jung et al. Model

The reaction scheme proposed by Jung et al. Jung et al. (1989)
is given by 

GF
r1−−−−→ k21GF2 + k51G

GF2
r2−−−−→ k12GF+ k32GF3

GF3
r3−−−−→ k23GF2 + k43GF4

(4)

where the time evolution of the concentrations is described by

˙[GF] = −r1 + k12r2 +
1
V (GFin− [GF])Q

˙[GF2] = −r2 + k21r1 + k23r3− [GF2]
V Q

˙[GF3] = −r3 + k32r2− [GF3]
V Q

˙[GF4] = k43r3− [GF4]
V Q

˙[G] = k51r1− [G]
V Q

V̇ = Q

(5)

In this case, the reaction rate r1 is given by a modified
Michaelis-Menten law describing the competitive glucose in-
hibition

r1 = µmax
1

[GF]
Km1 +[GF]+Km1/KG[G]

. (6)

The parameter KG is the competitive inhibition constant (in
g.L−1) for glucose. The reaction rates r2 and r3 are given by
the following Michaelis-Menten laws

r2 = µmax
2

[GF2]

Km2 +[GF2]
, r3 = µmax

3
[GF3]

Km3 +[GF3]
. (7)

This model consists in 7 kinetic parameters (µmax
i , Kmi for

i = 1,2,3 and KG) and 6 pseudo-stoichiometric k-coefficients
that have to be identified.

Notice that, for simplicity, the nomenclature for both models
are the same.
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Fig. 3. Measurements (dotted lines) and simulations (continu-
ous lines) from model (5) with 7 kinetic parameters and
6 stoichiometric parameters. Blue and red colors represent
the fed-batch runs, and green and black colors show the
batch runs.

The estimated parameters are obtained using weighted least
squares, in the same spirit as in the previous subsection. The
confidence intervals and the RMSE are displayed in Table 1.
Fig. 3 shows that the model (5) adequately reproduces the
experimental data in 2 batch and 2 fed-batch culture mode for
most of the state variables. In Fig. 4, model trajectories of (5)
are complemented by their related 95%-confidence corridors.
All the experimental samples have a non-empty intersection
with the 95%-confidence intervals of the simulated concentra-
tions. This result illustrates the good fitting of experimental data
and the accuracy of the estimated parameters.

2.3 Discussion 1

In this study, two models are selected to reproduce the FOS con-
centration evolution. These models are easier to identify thean
the complex model detailed in (Rocha et al., 2009) and require
low computational effort for emulation. The latter consideration
is advantageous when considering optimal control.

The reduced model (1) and the identified Jung’s model (5)
both accurately reproduce the experimental data. However, the
reduced model, where the structure has been obtained using
MLPCA, is the most appropriate since 4 reaction rates are
considered to determine the temporal dynamics. Thanks to the
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Fig. 4. The 95%-confidence corridors related to the model
(5) for a control set of experimental data obtained in
batch mode. The green dots with blue error bars repre-
sent the experimental samples. The green solid and black
dashed lines are the simulated concentrations and the
95%-confidence intervals respectively.

Table 1. Parameter identification results of models
(1) and (5) in 2 batch -2 fed-batch culture mode.

Model (1) Model (5)
Name Estimated Name Estimated Unit
µmax

1 9.11 ± 0.31 µmax
1 9.5 ± 1.12 gGF.L−1.h−1

µmax
2 7.13 ± 0.17 µmax

2 58.02 ± 3.19 gGF2 .L−1.h−1

µmax
3 7.91 ± 0.12 µmax

3 9.69 ± 0.32 gGF3 .L−1.h−1

µmax
4 0.25 ± 0.01 gGF4 .L−1.h−1

KG 0.3 ± 0.06 gG.L−1

Km1 12.03 ± 7.89 Km1 0.039 ± 0.05 gGF.L−1

Km2 140.2 ± 12.5 Km2 592.4 ± 124.6 gGF2 .L−1

Km3 24.8± 8.9 Km3 39.46 ± 16.22 gGF3 .L−1

Km4 1.37 ± 0.59 gGF4 .L−1

k14 5.52 ± 0.76 k12 0.54 ± 0.24
k21 0.44 ± 0.03 k21 0.49 ± 0.07
k32 3.04 ± 0.36 k23 0.37 ± 0.15
k43 0.09 ± 0.01 k32 1.27 ± 0.34
k54 1.27 ± 0.11 k43 0.019 ± 0.0045
k61 0.25 ± 0.02 k51 0.23 ± 0.05
RMSE 8.18 RMSE 8.71

backward reaction rate r4, this latter model emulates more
precisely the time evolution of GF4. On the contrary, the model
initially developed by Jung et al. Jung et al. (1989) does not take
into consideration this backward reaction, explaining a lower
level of accuracy in the simulation of GF4 with this model, see
Fig. 5.

3. OPTIMIZATION OF FOS PRODUCTION

The aim of this section is to determine an optimal substrate feed
rate for optimizing the FOS concentration at an undetermined
final time. The feed profile implies the adjustment of different
issues, such as feeding starting time, feeding rate or again
feeding stopping time. Resorting to Pontryagin’s maximum
principle in the framework of singular control problem, the
optimal feed rate is here adjusted.

3.1 Pontryagin’s maximum principle

Both models (1) and (5) can be considered in the general
nonlinear form provided by

A

 Time  [h] 
0 50 100 150 200 250

 G
F

4
  
[g

/L
]

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

 Time  [h] 

 G
F

4 
 [

g
/L

]

B

Fig. 5. Measurements (dotted line) and simulations (continuous
line) from models (1) (subplot A) and (5) (subplot B).
Blue and red colors represent the fed-batch realization, and
green and black colors show the batch case.

dX
dt

= f (X )+g(X )Q with t0 ≤ t ≤ t f (8)

with X (t) the state vector (X = [GF,GF2,GF3,GF4,F,G,V]).
The function f represents the dynamics of the chemical pro-
cess while g determines the fed-batch dynamics. t is the time
variable (in h), t0 and t f represent the initial and the final time
values respectively. At t = t0 the system is subjected to the
initial condition X (t0) = X0. The final condition is provided by

Ω= V(t f )−Vmax = 0. (9)
This latter condition determines the vessel volume of the biore-
actor at the final time t f . Vmax represents the effective maximal
volume (in L).

The performance index, J, to be maximized is a function of X
defined by

J(t f ) = [GF2](t f )+ [GF3](t f )+ [GF4](t f )≡ h(X ), (10)
it is the sum of the concentration of the FOS components at the
final time. Notice that the model is affine in the control variable
Q and the performance index is independent from the latter.

The substrate feed rate Q is limited by the feed pump capacity.
Let Qmax and Qmin be the upper and lower capacities respec-
tively, the function Q is bounded by

Qmin ≤ Q≤ Qmax. (11)
The objective is to find an admissible control function, Q(t),
which yields an admissible trajectory for the system (8) and
which satisfies (9) and (11) while maximizing the performance
index J.

The classical maximum principle of Pontryagin is employed
to solve this problem. Maximizing the Hamiltonian H defined
below, is the same as maximizing the performance index (10)
(as introduced for instance in (Bryson and Ho, 1969))

H = φ+ψ Q (12)
where the functions φ and ψ are respectively given by

φ = λ
> f (X ) and ψ = λ

>g(X ). (13)
The vector λ is called costate vector and has the same dimen-
sions as X . It is defined by

dλ>

dt
=−∂H

∂X
=−λ

> ∂ f
∂X
−λ
> ∂g
∂X

Q. (14)

The general transversal conditions are given by

λ(t f ) =
∂h(X )

∂X
+ν

∂Ω(X )

∂X
(15)
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which provide λGF,G,F(t f ) = 0, λGF2,GF3,GF4(t f ) = 1 and λV(t f )
= ν with ν ∈ R where λα is the costate associated to the state
α.

We can observe that the Hamiltonian (12) is affine in the
control input. In general, no maximum exists in this context.
However, because of the linear inequality constraints on the
control variable, corresponding to the hardware constraints,
a solution exists by resorting to the bang-bang method with
singular arcs. This method consists in evaluating the sign of
the partial derivative of the Hamiltonian with respect to Q, i.e.
the value of ψ: { if ψ< 0, then Q = Qmin,

if ψ = 0, then Q = Qs,
if ψ> 0, then Q = Qmax.

(16)

Qs is called singular control law. It is obtained by taking the
second time derivative of ψ (see e.g. Bryson and Ho (1969)),
which yields

Qs =−
λ>( ∂q

∂X
f − ∂ f

∂X
q)

λ>( ∂q
∂X

g− ∂g
∂X

q)
(17)

under the condition that λ>( ∂q
∂X

g − ∂g
∂X

q) 6= 0, where q is
defined by

q =
∂g
∂X

f − ∂ f
∂X

g. (18)

This criteria is based on the necessary optimality conditions
which include

∂H
∂Q

= λ
>g = 0. (19)

Based on this development, an algorithm is now detailed.

3.2 Algorithm

The algorithm is composed of 5 steps. The first step corre-
sponds to the initialization part. Next, a first loop is achieved
to estimate the unknown coefficient ν. This coefficient has a
significant impact on the final volume. Finally, a second loop
is achieved to determine the optimal time horizon t f in the cost
function J.

(1) Guess t f , ν and a substrate feed rate Q respecting the final
condition (9), and integrate forward the model defined by
Equation (8).

(2) Determine λ by integrating backward Equation (14).
(3) Integrate forward the model defined in Equation (8) using

singular control (16).
(4) Repeat Steps 2 and 3, considering ν = ν+ δν, with δν as

small as required, until Ω= 0.
(5) Repeat Steps 2 to 3 with a new guess of t f in order to

maximize the cost function J defined in (10) and push the
Hamiltonian (12) to zero.

The final time t f is increased as long as the obtained FOS
concentration profile is monoticaly increasing. On the other
hand, if a maximum is observed, t f is decreased in order to stop
the operation when the maximum is reached.

3.3 Results

The models detailed in Equations (1) and (5) are used for
optimizing the FOS production. The initial conditions and set
points used in the process models are referenced in Table 2.

Table 2. Optimal control: hardware constraints and
initial conditions.

Hardware constraints Initial conditions
GFin 280 g.L−1 [GF](t0) 200 g.L−1

Vmax 3 L V(t0) 1 L
Qmax 0.5 L.h−1 [G](t0) and [F](t0) 0 g.L−1

Qmin 0 L.h−1 [GF2,3,4](t0) 0 g.L−1

For both models, the optimal substrate feed rate is equivalent
(subplot A in Figs. 6). First, the feed rate reaches its upper
boundary Qmax = 0.5 L.h−1 until the vessel of the bioreactor
is filled up. After 4 hours of feeding, the bioreactor operates
in a batch mode, where no substrate is added Qmin = 0 L.h−1.
This profile allows to maximize the productivity of GF2 which
is directly linked to the substrate concentration GF. This phe-
nomenon is shown on the subplot B of Figs. 6 by displaying the
corresponding reaction rate r1.

For the first model described by Equation (1), the time evolution
of r1 approaches without meeting its maximum rate µmax

1 . A
bigger substrate concentration GFin should then be required to
maximize this reaction. However, the global reaction rate, de-
fined by fGF2 + fGF3 + fGF4 , keeps increasing after the feeding
time and reaches its maximum after 10 hours (see subplot C in
Fig. 6).

Concerning the second model (5), the reaction rate r1 reaches
its maximum involving a maximal global reaction rate (subplot
C in Fig. 6). The global reaction rate starts to decrease once the
bioreactor is no longer fed.

Regarding the FOS concentration, the reduced model (1) pro-
vides a 125 g.L−1 FOS concentration after 45.4 hours. The pro-
ductivity and the yield (given in Equation (20)) are P (t f )= 2.75
g.L−1.h−1 and Y (t f ) = 49.3% respectively.

P (t f ) =
[GF2](t f )+ [GF3](t f )+ [GF4](t f )

t f
,

Y (t f )=Vmax
[GF2](t f )+ [GF3](t f )+ [GF4](t f )

[GF](t0)V(t0)+GFin(Vmax−V(t0))
.

(20)

The model developed by Jung et al. (5) gives at the final
time 40.3 hours a 118 g.L−1 FOS concentration, P (t f ) = 2.92
g.L−1.h−1 and Y (t f ) = 46.5%.

3.4 Discussion 2

Based on the two models identified in Section 2, an opti-
mization method to maximize the FOS concentration has been
here proposed. Using the Pontryagin’s maximum principle, the
optimal substrate feed rate is similar in both cases. First, the
bioreactor is filled. Secondly, the bioreactor operates in a batch
mode. This profile allows to maximize the reaction rate gener-
ating GF2 and then to promote the other reaction rates. A FOS
concentration of 121.5 g.L−1 for an average time of 42.85 hours
should be obtained.

These results show that the reduced model, developed in this
paper, is then well adapted for determining the optimal sub-
strate feed rate necessary to optimize the FOS concentration.
Moreover, this model is able to emulate more accurately each
components of the FOS concentration than the simple model.
Accurate knowledge of the concentration of each FOS is im-
portant for the study of the FOS separation, which can notably
be performed by simulated moving-bed chromatography Nobre
et al. (2016). Therefore the new model is believed to be superior
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Fig. 6. The blue and red colors correspond to the results obtained form the reduced model (1) and the simple model (5) respectively.
In subplot A the optimal substrate feed rate is plotted. Subplot B shows the reaction rates r1 (continuous line) and the
associated maximum rates (dotted line). The global FOS production rate is displayed in subplot C. In subplot D presents the
evolution of FOS concentrations.

to the simple model with regard to the study of the global FOS
production process.

4. CONCLUSION

A new approach for modeling and optimizing FOS produc-
tion has been presented. It consists in reducing an existing
complex model to simplify the identification and decrease the
uncertainty on the parameters. It allows to accurately reproduce
experimental data. From this model, an optimization procedure
has been developed to maximize the FOS concentration on the
basis of which an experimental protocol has been proposed.
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