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Abstract:
This paper proposes the use of the extent decomposition on homogeneous reaction systems for control
purposes. The decomposition results in a Linear Parameter-Varying (LPV) representation, upon which
parametric feedback and feedforward strategies are developed. In the first part of the paper, three
different ways to obtain the Extent-Based LPV (ELPV) representation of the system are proposed. The
representation is advantageous since the physical meaning of all the variables are kept, and it has a
Jordan type of structure which is used to establish controllability conditions. In the second part, general
parametric feedback and feedforward control laws are proposed for the ELPV system. The nonlinear
state-parameter dependence is first considered in the feedback term. This fact allows converting the
original ELPV system into a Linear Time Invariant (LTI) system, which is used to design optimal
control laws for reference tracking. Finally, the performance of the control strategy for the ELPV system
is illustrated in simulation and compared with a controller based on a constant-parameter LTI model
(ELTI).

Keywords: Linear Parameter Varying (LPV) Systems, Extent-based models, Homogeneous Reaction
Systems.

1. INTRODUCTION

The use of rigorous models for online model-based applica-
tions, such as control and monitoring, is an ongoing research
area in process control. This is not surprising as rigorous mod-
els contain valuable information to predict states and antici-
pate disturbances. On the other hand, most industrial processes
are driven by chemical kinetics, thermodynamics and transport
phenomena, which are described by nonlinear differential al-
gebraic equations. Despite the computational resources, these
kinds of models are in general inconvenient for online model-
based applications, because the implementation of nonlinear
strategies in the process industry remains a big challenge.
Therefore, a good alternative is to find different representations
of rigorous models using state transformation such as projec-
tion methods, state space decomposition, or the inclusion of
empirical linear models (grey-box modeling). These methods
have been reviewed by Marquardt (2002). Nevertheless, this
type of approaches presents several disadvantages. Perhaps one
of the most relevant is the loss of physical interpretation of the
transformed variables. This issue becomes very important when
imposing constraints on the control design, and during process
monitoring. An attractive alternative is the concept of extent
decomposition (Srinivasan et al., 1998), which arises as a useful
tool to deal with this problem. The extent approach is derived
from the work on reaction variant-invariant decomposition of
reaction systems for process analysis (Asbjørnsen, 1972; Fjeld
et al., 1974) and allows for the calculation of the contribution of
every phenomenon in the process independently. For example,
the mole balance equation of a Continuous Stirred Tank Reactor
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(CSTR) can be decomposed into its phenomenological contri-
butions (reaction, inlet flow, and outlet flow) (Srinivasan et al.,
1998; Amrhein et al., 2010). This separation by phenomena is
a subspace separation using a linear transformation that allows
the decoupling of relevant variables for control (inputs, outputs,
and disturbances) while maintaining the physical meaning of
the variables. This approach presents many advantages, such as
model reduction, identification of reaction systems from mea-
sured data, parametric sensitivity analysis among others. The
extent decomposition is used in this paper to propose a general
framework to control homogeneous reaction systems.

Moreover, from the control perspective, the extent decomposi-
tion allows for the development of a Linear Parameter-Varying
(LPV) representation with a diagonal state matrix. The LPV
systems describe a family of linear systems parametrized by a
vector of parameters (Tóth, 2010). Nonetheless, the identifica-
tion of the LPV system is not an easy task, and it is possibly the
most challenging aspect of this kind of systems, see for example
(Bamieh and Giarre, 2002; Balas et al., 2003; Bruzelius et al.,
2004; Tóth et al., 2010; Bachnas et al., 2014). In this paper,
the LPV representation mentioned above for homogeneous re-
action system based on extents is proposed. This approach
helps to reduce the identification procedure due to two main
reasons: the derivation of the model is natural, resulting directly
from First Principle Models (FPM), and the second one is the
physical meaning of the LPV system variables and parameters.

Normally, LPV systems are controlled by gain-scheduling ap-
proaches (Apkarian and Gahinet, 1995; Apkarian et al., 1995;
Apkarian and Adams, 1998). However, in this paper, the par-
ticular structure of the LVP system matrices and the physical
interpretation of its parameters are used to propose parametric
state feedback and feedforward laws. The final result is an
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LTI representation of the closed-loop system, which is used to
design optimal control laws for reference tracking.

The paper is organized as follows: In section 2 the extent
of reaction and inlets are introduced and based on the extent
concept, the LPV representation for a homogeneous reaction
system is presented. In section 3 the control strategy for extent-
based LPV systems is proposed. Here, the diagonal form of the
LPV systems is exploited to propose parametric feedback and
feedforward laws. In section 4 the control strategy for Extent-
Based LPV systems (ELPV) is illustrated in the simulation
results and compared with a controller based on a constant-
parameter LTI model (ELTI). Finally, in section 5 the conclu-
sions are presented.

2. EXTENT-BASED LPV REPRESENTATION FOR A
HOMOGENEOUS REACTION SYSTEM

The extent of reaction is a measure of the degree of completion
of any reaction. In other words, they quantify the progress of
a reaction while it consumes the reactants (Vandezande et al.,
2013). The extent of reaction can be applied directly to a
chemical reaction process where the evolution of moles in time
is solely related to the reaction and the amount of reacting
mixture. Under this circumstance, the system is uniquely driven
by the chemical reaction. Hence, the dynamic space can be split
into two subspaces, namely the reaction variant and reaction
invariant. The reaction variants coincide with the extent of
reaction if and only if the initial conditions of the former are
strictly zero. Moreover, if the process contains an inlet stream,
then the change of moles in time is affected by two independent
dynamics, reaction and inlet flow. Under this situation, the
reactor dynamics cannot be expressed in terms of the extent
of reaction directly. To circumvent this situation, the concept of
extent is broadened to the extents of reaction, and inlet flows
(Amrhein et al., 2010).

2.1 Extent of Reaction and Inlet Flow

Consider the mole balance equation for a homogeneous reac-
tion system with S species, RI independent reactions, p inde-
pendent inlet flows and one outlet flow, given by:

ṅ(t) =V (t)N⊺r(t)+Winuin(t)−
uout(t)

m(t)
n(t) n(0) = n0 (1)

where n ∈R
S is the number of moles, V is the reaction mixture

volume; r ∈R
RI is the reaction rate vector; uin ∈ R

p and uout ∈
R

1 are the inlet and outlet mass flows; m is the reacting mixture
mass; N ∈ R

RI×S is the stoichiometric coefficient matrix and
Win ∈ R

S×p is the inlet composition matrix defined as Win =
M−1

w win; Mw ∈ R
S×S is the diagonal molecular weight matrix

and win ∈ R
S×p the matrix of weight fraction. Equation (1)

is nonlinear due to the reaction rate represented in the vector
r(t). One could find a linear transformation T such that the
system can be expressed in terms of new states that each of
them only evolves with respect to the reaction and the inlet flow
as follows:

[
xr

xin

xinv

]

=





T
⊺

1
T

⊺
2

T
⊺

3





︸ ︷︷ ︸

T

(n−λ n0) =⇒

[
xr

xin

λ

]

=





T
⊺

1e

T
⊺

2e

T
⊺

3e





︸ ︷︷ ︸

Te

n (2)

where xr ∈R
RI is the extent of reaction, xin ∈R

p is the extent of
inlet flow, xinv ∈R

S−RI−p is the extent of reaction and inlet flow

invariants. In addition, λ ∈ [0,1] is the initial conditions dis-
counting factor, and following the definition given by Amrhein
et al. (2010), λ can be defined in terms of the xinv as,

λ =
1
⊺
S−R−pxinv

1
⊺
S−R−pT

⊺
3 n0

+ 1

The relationship between with T and Te is given by (Amrhein
et al., 2010),

T
⊺

1e
= T

⊺
1 (IS − n0T

⊺
3e
)

T
⊺

2e
= T

⊺
2 (IS − n0T

⊺
3e
)

T
⊺

3e
=

1
⊺
S−R−pT

⊺
3

1
⊺
S−R−pT

⊺
3 n0

where T1e is the transformation matrix of the reaction space,
T2e is the transformation matrix of the inlet space, and T3e is
the transformation matrix of the reaction and inlet flow invariant
space, all with discounted initial conditions n0.

Assumption 1. In this work, it is assumed that 1
⊺
S−R−pT

⊺
3 n0 6=

0. This condition is satisfied if and only if rank([W⊺
in,n0]) = p+

1 (Amrhein et al., 2010).

The nonlinear differential equation (1) for the mole balance is
transformed to:

ẋr(t) =−
uout(t)

m(t)
xr(t)+V(t)r(t), xr(0) = 0

ẋin(t) =−
uout(t)

m(t)
xin(t)+ uin(t), xin(0) = 0

λ̇ (t) =−
uout(t)

m(t)
λ (t), λ (0) = 1

(3)

Now, the moles can be calculated using the extents from the
following equation:

n(t) = N⊺xr(t)+Winxin(t)+ n0λ (t) (4)

The Figure 1 shows a scheme of the extents transformations.

Extents

space
Mole

space

Fig. 1. Decomposition of the space of numbers of moles into re-
action space, inlet-flow space, and one-dimensional space
describing the discounting of n0

The aforementioned transformation requires the following con-
ditions:

• T
⊺

1e
N⊺ = IR, T

⊺
1e

Win = 0R×p

• T
⊺

2e
N⊺ = 0p×R, T

⊺
2e

Win = Ip

• T
⊺

3e
N⊺ = 01×R, T

⊺
3e

Win = 01×p

• rank([N⊺ Win]) = RI + p < S
• rank([N⊺ Win n0]) = RI + p+ 1.

The calculation of the matrices Ti, ∀i = 1,2,3 can be done
by means of a singular value decomposition of N⊺ and Win.
Details about this procedure can be found in (Srinivasan et al.,
1998) and (Amrhein et al., 2010). Notice the decoupling effect
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that the extent of reaction and inlet flow has on the system
dynamics. Under this representation, the independent evolution
of the reaction, the inlet flow, and outlet flow can be easily
observed.

2.2 Inclusion of Energy Balance

So far it has been shown how the extents of reaction and
inlet are used in isothermal systems. Let us make the system
description more realistic combining the extent representation
equations (3) with the energy balance as follows:

ẋr =−θxr +V(t)r(t)

ẋin =−θxin + uin(t)

λ̇ =−θλ

Ṫ =−θT (t)+αuin(t)−βV(t)r(t)+ γQin

(5)

where θ = uout (t)
m(t) , α =

Cpin
Tin

m(t)Cpmix
, β =

∆H⊖
f

N⊺

m(t)Cpmix
, γ = 1

m(t)Cpmix
,

Cpin
Tin = [Cpin,1Tin,1, . . . ,Cpin,pTin,p]∈R

1×p, ∆H⊖
f ∈R

1×S is the

vector of standard enthalpy of formation and T (0) = T0.

Assumption 2. In this work, the parameters α , β and γ are
considered constant. For that a local controller for the total mass
is assumed such that m(t) = m.

2.3 Extent-based LPV representations

There are three ways to get an LPV representation for the set of
equations (5). The first one is based on a time scale separation
of the dynamics of the system, the second is using a change
of variable to eliminate the reaction rate from the equations,
and the third one is assuming the reaction rate directly as a
disturbance. In the following, every method is explained.

Remark 1. The initial condition discounting factor λ does not
depend on the manipulated variables of the system uin and Qin,
therefore, and for control purposes, the differential equation of
λ can be removed from the state space representation of the
system in (5).

1.Time scale separation: In this case, the dynamics of xr is
much faster than xin and T , therefore ẋr ≈ 0 compared to ẋin

and Ṫ . Therefore, rearranging (5), we obtain the following LPV
system,

[
ẋin

Ṫ

]

=

[
−θ Ip 0

0 −θ

][
xin

T

]

+

[
Ip 0
α γ

][
uin

Qin

]

+

[
0

β θ

]

xr

[
n
T

]

=

[
Win 0
0 1

][
xin

T

]

+

[
N⊺

0

]

xr +

[
n0

0

]

λ

(6)

where Ip ∈ R
p×p is the identity matrix. Finally, system (6) can

be seen as:

ẋ = A(θ )x+Bu+D(θ )d

y =Cx+Cdd+Cλ λ
(7)

with x ∈R
p+1, u ∈R

p+1, y ∈R
S+1, θ ∈R

1 and d ∈R
RI , where

C =

[
Win 0
0 1

]

, Cd = [N 0]
⊺

and Cλ = [n⊺0 0]⊺.

2.Change of variable: When ẋr cannot be neglected in the
model, the nonlinear reaction rate r(t) plays an important role
in the plant’s behavior. Thus we want to find a transformation

such that xr can be expressed linearly in terms of a new variable.
Let us define a change of variable z as:

z = β xr +T = Z

[
xr

T

]

(8)

where Z = [β 1]. Then, taking derivatives of both sides of
equation (8) with respect to time, and only considering time-
varying the states xr and T , we obtain,

ż =−θ z+αuin+ γQin

Assumption 3. During the differentiation of z, the mass m and
heat capacity of the mixture Cpmix

are assumed constant, i.e. the
term m(t)Cpmix

does not vary significantly during the operation.

Stacking the dynamics in a vector xin, and z, we obtain the
following model,

[
ẋin

ż

]

=

[
−θ Ip 0

0 −θ

][
xin

z

]

+

[
Ip 0
α γ

][
uin

Qin

]

[
n
T

]

=

[
Win n0

0 0

][
xin

λ

]

+

[
N⊺ 0
0 1

][
xr

T

] (9)

Remark 2. Using equation (8), we can find an expression for
[xr T ]⊺ in terms of z. However, Z cannot be set to 1 by means
of its pseudo-inverse. Z is full row-rank, thus it has a right
pseudo-inverse, i.e. Z Z † = 1 († represents the Moore-Penrose
psedoinverse). Therefore, we need to solve an underdetermined
equation to obtain an approximate value of z.

Finally, system (9) can be seen as:

ẋ = A(θ )x+Bu

y =Czx+Cλ λ
(10)

with x ∈ R
p+1, u ∈ R

p+1 and y ∈ R
S+1. Where Cλ = [n⊺0 0]⊺,

Cz =
[[

W
⊺
in 0

]⊺ ∣∣CNZ †
]
, and CN =

[
N⊺ 0
0 1

]

.

3.Reaction rate as a disturbance: In this case the reaction
rate r(t) is assumed as a disturbance such that the system (5)
can be written as:




ẋr

ẋin

Ṫ



=

[
−θ IRI

0 0
0 −θ Ip 0
0 0 −θ

][
xr

xin

T

]

+

[
0 0
Ip 0
α γ

][
uin

Qin

]

+

[
IRI

0
β

]

V r

[
n
T

]

=

[
Win 0
0 1

][
xin

T

]

+

[
N⊺

0

]

xr +

[
n0

0

]

λ

(11)

Note again that the manipulated variables uin and Qin do not
have any effect on the extents of reaction xr, therefore, the states
xr are uncontrollable modes. This fact is stated in the following
theorem.

Theorem 1. Consider the homogeneous reaction system given
by the set of equations (11), where the reaction rate r is
assumed as a bounded disturbance r ∈ D, with D convex and
compact. Then, if θ 6= 0, the system (11) is uncontrollable,
where the uncontrollable modes are stable if θ > 0. In addition
the uncontrollable modes are separable and correspond to the
extents of reaction xr.

The proof follows along the lines of the Hautus test of controlla-
bility (Hautus, 1970). However, the proof is omitted due to the
space limitations. Finally, separating the uncontrollable states
(xr), the system (11) can be seen as:
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ẋ = A(θ )x+Bu+Dd

y =Cx+Cuxu
(12)

with x ∈ R
p+1, u ∈ R

p+1, y ∈ R
S+1 and d ∈ R

RI , where Cu =
[

N⊺ n0

0 0

]

and xu = [xr λ ]⊺ are the uncontrollable states.

Remark 3. The LPV representation (7), (10) and (12) are
equivalent representations if feedforward controllers are in-
cluded to eliminate the disturbances xr and r in (6) and (11).
Therefore, in the rest of this work, we will be working with the
LPV representation (12).

Assumption 4. In this work, it is assumed that the number of
moles n and the temperature T can be measured, therefore, the
extent of reaction xr, the discounting factor λ , the uncontrol-
lable states xu, and the reaction rate r can be estimated directly
from n and Te.

3. CONTROL OF EXTENT-BASED LPV SYSTEMS

3.1 Parametric State Feedback and Feedforward laws

In this section, a parametric state feedback policy is proposed
to eliminate the parameter dependency of the A matrix. The
LPV system (12) is converted into a diagonal, controllable LTI
system that can be used to formulate a control strategy for the
system (1). Also, a feedforward law is proposed to reject the
disturbance d. The elimination of the parameter θ of the A
matrix is stated in the following theorem:

Theorem 2. Consider the homogeneous reaction system given
by the set of equations (12), where the reaction rate r is
assumed as a measured disturbance. Then, if γ 6= 0, there exist a
parametric feedback gain K(θ )∈R

p+1×p+1, and a feedforward

gain Kd ∈ R
p+1×RI such that u = K(θ )x + v +Kdd, and the

closed loop representation of the system (12) has an equivalent
LTI representation given by,

ẋ =

[
ϑ Ip 0

0 ϑ

]

x+

[
Ip 0
α γ

]

v

y =Cx+Cuxu

(13)

where ϑ are the constant desired poles of the closed loop
system, and v ∈ R

p are the new inputs of the system.

Proof. Let K(θ ) ∈ R
p+1×p+1 and Kd ∈ R

p+1×RI be the para-
metric feedback and feedforward gains, then, the input vector u
of the system can be written as,

u = K(θ )x+ v
︸ ︷︷ ︸

Feedback

+Kdd
︸ ︷︷ ︸

Feedforward

(14)

Replacing (14) in (12), we can write the LPV model (12) as,

ẋ = (A(θ )+BK(θ ))x+Bv+(BKd +D)d (15)

Now, to eliminate the parameter dependency of the A matrix
and the disturbance d from the equation (15) the following
conditions must be accomplished:

A(θ )+BK(θ ) =

[
ϑ Ip 0

0 ϑ

]

BKd +D = 0

Defining the matrix Acl = A(θ )+K(θ )B, then,

K(θ ) = B† (Acl −A(θ ))

Kd =−B†D

Now, if γ 6= 0 the rank(B) = p+ 1, then B† = B−1 = K. This
fact leads to the conclusion that the inverse of B can be always
calculated analytically. Finally the matrices K(θ ) and Kd are
given by,

K(θ ) =





(θ −ϑ)Ip 0
α

γ
(ϑ −θ )

θ −ϑ

γ



= (θ −ϑ)





Ip 0

−
α

γ

1

γ





︸ ︷︷ ︸

K

Kd =−B†D =−





0
β

γ





(16)

�

Remark 4. By the definition of γ = 1
m(t)Cpmix

, the condition of

γ 6= 0 for homogeneous reaction system is always satisfied if
the product m(t)Cpmix

is bounded.

Remark 5. Note that the matrix closed loop matrix Acl is
constant and does not depend of θ , therefore, it is possible
design linear controllers based on the system (13) for the new
input v.

Remark 6. K(θ ) can be seen as the inverse of the transfer func-

tion of the system (12), K(θ ) =G−1(θ ) = B−1 (ϑ Ip+1 −A(θ )).
This fact can be used in the context of the LPV systems to
design optimal feedback and feedforward controllers.

3.2 Optimal Control law for Tracking

The next step to control the system (1) is to design a control
strategy for tracking. Therefore, it is necessary to include an
integral action into the controller, and this can be done by means
of v as follows,

v = Kv

∫ t

0

(
yre f − y

)
dτ

where Kv ∈R
p+1×p+1 is the integral gain of the controller. Now,

to calculate Kv, let define the following additional state for (13),

ẋe = yre f − y = yre f −Cx−Cuxu (17)

Then, combining (13) with (17) we get the following aug-
mented system,

[
ẋ
ẋe

]

︸︷︷︸

˙̃x

=

[
Acl 0
−C 0

]

︸ ︷︷ ︸

Ã

[
x
xe

]

︸︷︷︸

x̃

+

[
B
0

]

︸︷︷︸

B̃

v+

[
0 0
I −Cu

][
yre f

xu

]

(18)

To find Kv, the following optimization problem must be solved,

min
v

∫ ∞

0
(x⊺e Qexe + v⊺Rev)dt

subject to: ˙̃x = Ãx̃+ B̃v

(19)

Finally the solution of the optimization problem (19) is given by
v=−R−1

e B⊺Pxe =Kvxe, where P is the solution of the algebraic

Riccati equation PÃ+ Ã⊺P− PBR−1B⊺P+Qe = 0. The final
control strategy for the LPV system (12) can be seen in the
Figure 2.

4. EXAMPLE

Let us consider a non-isothermal CSTR where a reversible
reaction A + B ⇆ C + D takes place. The system has four
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Reaction

system

LPV
LQI

LTI

Fig. 2. Control strategy for extent-based LPV homogeneous
reaction systems.

species nA, nB, nC and nD (S = 4), one independent reaction
(RI = 1), and two constant and independent inlets uin,1 and uin,2

(p = 2) of A and B. The reaction rates obey the mass-action
principle and the Arrhenius law, and are given by r = k f CACB−

krCCCD, where k f ,r = ko f ,r exp
(
−Ea f ,r

RT

)

is the preexponential

factor in the Arrhenius law, and Ea is the activation energy
of the reaction. In this example, the numerical values of the
parameters are given in the Table 1.

Table 1. Parameters of the case study

Parameter Values and units

ko f
6.06×105 m3kmol−1h−1

kor 9.84×106 m3kmol−1h−1

Ea f
63800 kJkmol−1

Ear 71710 kJkmol−1

R 8.314 kJkmol−1K−1

The matrices N and Win are given by:

N = [−1 −1 1 1] ,Win =

[
0.01665 0 0 0

0 0.03121 0 0

]⊺

The initial conditions are n0 = [0.5,1,0.5,0]⊺ kmol, and T0 =
373 K. The states, outputs and inputs of the system are de-
fined as: x = [nA,nB,nC,nD,T ]

⊺, y = [nA,nB,T ]
⊺ and u =

[uin,1,uin,2,Qin]
⊺. In this example, physical boundaries for the

outlet flow and mass are stated, and given byUout = {1≤ uout ≤
10} and M = {95 ≤ m ≤ 105}, therefore, the parameter θ is
always bounded.

The Figure 3 shows the comparison between the nonlinear
model and the LPV representations of the process. In the Figure
3, the notation nxr refers to the time scale separation model, nz

the model with change of variables z, and nr the model with
the reaction rate as a disturbance. In the Figure 3, it is possible
to observe that the three models are a good approximation of
the nonlinear model in the number of moles. Nevertheless, for
the temperature, the model based on time scale separation does
not have a good response at the beginning of the simulation.
However, the steady-state value and the shape of the curve
are the same. Therefore, it is possible to conclude that the
LPV models based on extents are a good representation of the
nonlinear homogeneous reactor systems and can be used to
design the ELPV.

In order to test the control strategy, the desired poles ϑ are
selected be equal to −1, and set point changes in nA and T are
done at 150 h and for nB at 300 h. In addition, the parameter
θ = uout(t)/m(t) is changed with a PI controller for the mass of
the reactor, as follows:

0 100 200 300
Time [h]

0.5

0.6

n
A
[k
m
ol
]

nA

nA,xr

nA,z

nA,r

0 100 200 300
Time [h]

1

1.2

n
B
[k
m
ol
]

nB

nB,xr

nB,z

nB,r

0 100 200 300
Time [h]

0.2

0.3

0.4

n
C
[k
m
ol
] nC

nC,xr

nC,z

nC,r

0 100 200 300
Time [h]

375

380

T
em

p
er
at
u
re
[K

]

T

Txr

Tz

Tr

Fig. 3. Open loop comparison of the LPV systems with the
nonlinear model.

uout(s) =

(

Kp +
Ki

s

)
(
mre f −m(s)

)

where mre f = 99.105 kg. The Figures 4, 5 and 6 show the simu-
lation results for outputs y, inputs u, and the parameter θ of the
ELPV and ELTI. The performance of the ELPV is better than
ELTI. The main reason for that is because the ELTI controller
is not informed about the change in θ , this leads to having a
big mismatch between the LTI model and the nonlinear model.
Therefore, the ELTI controller is taking decisions that affect
the performance of the PI controller drastically (see Figure 6).
Naturally, the results presented here are the consequence of the
best tuning that we have found for the controllers.
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Fig. 4. Closed-loop trajectories of the outputs nA, nB and T of
the ELPV (—) and ELTI (- - -) based controllers.
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Fig. 5. Closed-loop trajectories of the inputs uin,1, uin,2 and Q
of the ELPV (—) and ELTI (- - -) based controllers
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Fig. 6. Evolution of the scheduling parameter θ of the ELPV
and ELTI based controllers.

5. CONCLUSION

In this paper, the extent decomposition approach is used to
transform the general model of homogeneous reaction systems
into an LPV system. To this end, we have investigated three
options. An important feature of the ELPV system is its diago-
nal state matrix, which is used to guarantee the controllability
and propose general parametric state feedback and feedforward
laws. These control laws allow converting the original ELPV
system into an LTI system. General conditions of existence for
the parametric state feedback and feedforward have been estab-
lished and analyzed. For the LTI system, optimal control laws

for reference tracking have been designed. Finally, the control
strategy for the ELPV system was illustrated in simulation and
compared with a controller based on constant-parameter LTI
model (ELTI). In this simulation, the ELPV based controller
showed a better performance than the ELTI under the varying
parameter θ .
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