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Abstract: This paper proposes a novel formulation of economic MPC for nonlinear discrete-time
systems that is able to drive the closed-loop system to the (unknown) optimal equilibrium, despite
the presence of plant/model mismatch. The proposed algorithm takes advantage of: (i) an augmented
system model which includes integrating disturbance states as commonly used in offset-free tracking
MPC; (ii) a modifier-adaptation strategy to correct the asymptotic equilibrium reached by the closed-loop
system. It is shown that, whenever convergence occurs, the reached equilibrium is the true optimal one
achievable by the plant. An example of a CSTR is used to show the superior performance with respect
to conventional economic MPC and a previously proposed offset-free MPC still based on a tracking
cost. The implementation of this offset-free economic MPC requires knowledge of plant input-output
steady-state map gradient, which is generally not available. To this aim a simple linear identification
procedure is explored numerically for the CSTR example, showing that convergence to a neighborhood
of the optimal equilibrium is possible.
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1. INTRODUCTION

Model predictive control (MPC) algorithms are wide-spread in
the process industries given their ability to control large-scale,
multivariable, constrained (linear and nonlinear) processes (Qin
and Badgwell, 2000, 2003). Typical industrial formulations of
MPC are implemented within a hierarchical architecture (Scat-
tolini, 2009), so that they indirectly achieve economic optimiza-
tion goals by tracking setpoints computed by an upper steady-
state economic optimization layer, usually referred to as Real-
Time Optimization (RTO).

Model uncertainties and disturbances can cause performance
degradation in both layers, such as reaching suboptimal equi-
libria, violating constraints and in worst cases even instability.
This motivated extensive research studies, which often found
practical implementations with rigorous theoretical guarantees.
In RTO, several approaches have been proposed so that, upon
convergence, the reached equilibrium is an optimal point for
the true unknown plant (Marchetti et al., 2009; Francois and
Bonvin, 2013; Navia et al., 2015). One key aspect of so-called
“modifier-adaption” methods is that they require knowledge of
the true plant gradient, which is typically not available and this
prompted for the search of possible alternative routes (Costello
et al., 2016). In MPC, offset-free control action is obtained
by augmenting the system model with so-called “disturbance”,
which integrates at each decision time the prediction error
until this is eliminated. In this way, the model prediction is
asymptotically correct and the MPC tracks admissible setpoints
without offset (Pannocchia et al., 2015). This disturbance may
take the form of a simple output bias or more elaborated, and
effective, state and input disturbance, applicable to both linear
and nonlinear MPC algorithms (Pannocchia et al., 2015; Morari
and Maeder, 2012). Other offset-free MPC implementations are
based on velocity models, which are shown to be still equivalent
to particular disturbance models (Pannocchia, 2015).

Recently, the hierarchical separation between economic opti-
mization (RTO) and constrained tracking (MPC) has been ques-
tioned by formulations in which a single dynamic optimization
layer exists, running at the usual MPC rates, in which an eco-
nomic cost is minimized. These formulations are now referred
to as Economic MPC (Rawlings et al., 2012; Ellis et al., 2014).
The key aspect of economic MPC, opposed to standard tracking
MPC, is that the cost function is not necessarily positive defi-
nite around the equilibrium, so that in the transient it may be
more convenient to operate away from the equilibrium (Rawl-
ings et al., 2012). Depending on various factors (system, cost,
horizon) asymptotically stable behavior may be optimal, but in
some cases even oscillating or chaotic regimes can outperform
the steady-state cost on average (Angeli et al., 2012). Closed-
loop convergence analysis is now better understood thanks
to dissipativity arguments and turnpike properties (Grüne and
Müller, 2016; Faulwasser and Bonvin, 2017).

The existing economic MPC algorithms can cope with some
kind of bounded perturbations and preserve stability properties
(Bayer et al., 2014), but in the presence of plant/model mis-
match, the closed-loop system may converge to an equilibrium
that is not the most economically optimal one. In some cases,
a remedy to achieve the optimal equilibrium is to augment
the system model with offset-free disturbances (Pannocchia
et al., 2015). Other approaches are based on multi-model lin-
ear offset-free formulations (Alvarez and Odloak, 2012; Fer-
ramosca et al., 2017). In a recent work (Vaccari and Pannoc-
chia, 2017) a new offset-free MPC formulation was proposed
in which an economic steady-state modifier-adaption strategy
was coupled with offset-free augmented models. This method
allows the closed-loop system to reach the optimal equilibrium
despite plant/model mismatch, but convergence is guaranteed
only when the finite-horizon optimal control problem uses a
tracking cost.
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In the present paper, the work in (Vaccari and Pannocchia,
2017) is extended to achieve a fully economic, offset-free MPC,
by including a suitable modifier term into the optimal control
problem so that the reached equilibrium is the true optimum
for the plant. A second contribution of this paper is to explore
by simulation a simple, easily implementable strategy for plant
steady-state input/output map gradient estimation from data.
The rest of this paper is organized as follows. The problem
statement and related material is presented in Section 2, while
the proposed method is described in Section 3. A detailed sim-
ulation study is reported in Section 4. The main achievements
are recapped in Section 5 along with possible future work.

2. PROBLEM STATEMENT AND RELATED WORKS

2.1 Plant, cost and constraints

In this paper we consider that the controlled plant is given by
the following discrete-time nonlinear system:

x+ = fp(x,u)
y = hp(x)

(1)

in which x ∈ Rnx is the current state, x+ ∈ Rnx is the successor
state, u ∈ Rnu is the current input, and y ∈ Rny is the current
output. The functions fp : Rnx×Rnu →Rnx and hp : Rnx →Rny

are not known precisely but are assumed (at least) continu-
ously differentiable. Unless differently specified, the following
assumption is used throughout this paper.
Assumption 1. The output y is measured at each decision time
k, and its measured value is denoted by y(k).

A triple (xs,us,ys) is defined as an equilibrium for the plant (1)
if it satisfies:

xs = fp(xs,us)

ys = hp(xs)
(2)

Input and output constraints in the following form should be
fulfilled:

u(k) ∈ U, y(k) ∈ Y, ∀k ∈ N (3)
in which Y⊂ Rny and U⊂ Rnu are given, compact sets.

We consider that the controlled system is economically opti-
mized when a given cost function `(y,u) is minimized, in which
` :Rny×Rnu→R is assumed continuously differentiable. Thus,
the optimal equilibrium for the plant (1) is defined as:

(x0
s ,u

0
s ,y

0
s ) = argmin

(x,u,y)
`(y,u) (4a)

subject to

x = fp(x,u) (4b)
y = hp(x) (4c)

y ∈ Y, u ∈ U (4d)
We make the following assumption.
Assumption 2. The triple (x0

s ,u
0
s ,y

0
s ) is the unique KKT point

of (4).
Remark 3. Given that the plant (1) is not precisely known, the
optimal solution (x0

s ,u
0
s ,y

0
s ) is unknown.

2.2 Nominal model and standard economic MPC formulation

In order to design an MPC for controlling plant (1), a nominal
model is known, and has the following form:

x+ = f (x,u)
y = h(x)

(5)

in which the functions f : Rnx ×Rnu → Rnx and h : Rnx → Rny

are continuously differentiable.

Let x̂ denote the current state (estimate) of the nominal model
(5). A standard economic MPC algorithm, using the plant
model (5), is based on the repeated solution of the following
finite-horizon optimal control problem (FHOCP):

PN(x̂) : min
x,u

N−1

∑
i=0

`(yi,ui) (6a)

subject to:

x0 = x̂ (6b)
xi+1 = f (xi,ui), yi = h(xi) (6c)

xN = xs (6d)
yi ∈ Y, ui ∈ U (6e)

in which N is a positive integer, x = (x0,x1, . . . ,xN), and u =
(u0,u1, . . . ,uN−1) are state and input sequences. For any given
initial state x̂, we denote the optimal solution of PN(x̂) as
(x∗,u∗)(x̂), and hence the feedback control law is given by:

κN(x̂) = u∗0(x̂) (7)
Thus, the closed-loop system has the following dynamics:

x+ = fp(x,κN(x̂))
y = hp(x)

(8)

In conventional MPC algorithms `(·) is a tracking cost, i.e. it is
nonnegative everywhere and zero only at the equilibrium. Then,
when the model (5) is perfect, under standard assumptions one
can show that the equilibrium is an asymptotically stable fixed
point of the closed-loop system. On the other hand, if `(·) is a
generic cost, there exist non-equilibrium triples (x,u,y = h(x))
at which `(y,u) < `(y0

s ,u
0
s ), and this fact may induce complex

asymptotic closed-loop behaviors other than asymptotic stabil-
ity of the equilibrium. Establishing conditions under which the
equilibrium of the closed-loop system, with economic MPC,
is asymptotically stable has been an active research domain. A
Lyapunov candidate for terminally constrained problems was
found in (Diehl et al., 2011), and then the concept of dissipativ-
ity arose as the most natural one to establish stability (Angeli
et al., 2012; Müller et al., 2015). Another approach to prove
asymptotic stability is by analyzing the so-called turnpike prop-
erty (Faulwasser and Bonvin, 2017), which can also be related
to dissipativity (Grüne and Müller, 2016).

The situation becomes even more complex when mismatch
exists between the model (5) and the actual plant (1). This
plant/model mismatch may lead to closed-loop instability and,
even when stability is preserved, the closed-loop system does
not necessarily converge to the correct optimal equilibrium.
However, in the context of tracking MPC, so-called “offset-
free” formulations ensure that if the closed-loop convergences
to an equilibrium, then the output tracks a given output setpoint.
The goal of this work is to design an economic MPC algorithm
such that, if the closed-loop system reaches an equilibrium, this
corresponds to the most profitable equilibrium for the true plant.

2.3 State observer and state-feedback case

Since the state x may not be measurable, in general it is neces-
sary to use an observer. Many different options can be consid-
ered, ranging from simple linear, static observers to nonlinear,
time-varying and possibly constrained observers such as the so-
called Moving Horizon Estimators (MHE). For simplicity of
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exposition, we restrict our attention to a static observer in the
form:

x̂(k|k) = x̂(k|k−1)+κ(y(k)−h(x̂(k|k−1))) (9)
in which x̂(k|k) represents the filtered estimate of the current
state, x̂(k|k− 1) the prediction of the current state made at the
previous decision time, using the model (5), i.e

x̂(k|k−1) = f (x̂(k−1|k−1),u(k−1)) (10)
and κ : Rny →Rnx . The argument of κ(·) in (9) is referred to as
the prediction error:

e(k) = y(k)−h(x̂(k|k−1)) (11)
which represents the difference between the actual measured
output and its predicted value using the information available
at the previous decision time. Such an error may arise due to
plant/model mismatch, as well as measurement noise.
Remark 4. The function κ(·) is assumed continuous and sat-
isfying the condition κ(0) = 0, i.e. the state prediction is not
updated when the prediction error is zero.
Remark 5. If the state is measurable, i.e. hp(x) = h(x) = x,
the general formulation (9)-(10) can be recovered by simply
defining the observer function as κ(e) = e which leads to
x̂(k|k) = x(k). This is also known as a deadbeat observer.

3. PROPOSED METHOD

We here present a novel economic MPC that allows the closed-
loop system to converge to the true optimal equilibrium (y0

s ,u
0
s ),

without knowing such an optimal equilibrium. We denote such
a controller as offset-free economic MPC.

3.1 Offset-free augmented system and observer

The first “ingredient” of the proposed offset-free economic
MPC is an augmented model, which ensures that the prediction
error ultimately goes to zero, i.e. limk→∞ e(k) = 0 indepen-
dently of the true plant dynamics. Many different disturbance
models and observers can be used (Pannocchia et al., 2015), but
in order to streamline the presentation we restrict our attention
to linear disturbance models. Thus, the augmented system is:

x+ = f (x,u)+Bdd
d+ = d

y = h(x)+Cdd
(12)

in which d ∈ Rny is the so-called “disturbance”, whereas Bd ∈
Rnx×ny and Cd ∈ Rny×ny are user-defined matrices shaping the
effect of such disturbance on the state and output maps.
Remark 6. As detailed in (Pannocchia et al., 2015), the number
of disturbances should be equal to the number of outputs.

The state and disturbance are simultaneously estimated using
the output measurement by an augmented observer:

x̂(k|k) = x̂(k|k−1)+κx(e(k))

d̂(k|k) = d̂(k|k−1)+κd(e(k))
(13)

in which the predicted state, disturbance and output are com-
puted from the augmented model (12), i.e.:

x̂(k|k−1) = f (x̂(k−1|k−1),u(k−1))+Bd d̂(k−1|k−1)

d̂(k|k−1) = d̂(k−1|k−1)

ŷ(k|k−1) = h(x̂(k|k−1))+Cd d̂(k|k−1)
(14)

and the prediction error is given by:
e(k) = y(k)− ŷ(k|k−1)

= y(k)−h(x̂(k|k−1))−Cd d̂(k|k−1)
(15)

We make the following assumption on the augmented observer.
Assumption 7. The functions κx : Rny → Rnx and κd : Rny →
Rny are continuous, κx(0) = 0, and κd(e) = 0 if and only if
e = 0. Moreover, the observer formed by (13)-(14) is nominally
asymptotically stable.
Remark 8. The observer nominal stability implies detectability
of the augmented system (12).
Remark 9. If the state is measurable, hp(x) = h(x) = x, a state
disturbance model can be used by choosing Bd = I and Cd = 0
coupled with a linear deadbeat observer κx(e) = e and κd(e) =
e. This leads to the following deadbeat filtered state and distur-
bance

x̂(k|k) = x̂(k|k−1)+(x(k)− x̂(k|k−1) = x(k)

d̂(k|k) = d̂(k|k−1)+(x(k)− x̂(k|k−1)
= x(k)− f (x(k−1),u(k−1))

(16)

That is, the model state is realigned to the true plant state at
each decision time, and the disturbance is equal to the so-called
innovation x(k)− f (x(k−1),u(k−1)). From (12), with Bd = I,
it follows that such a disturbance is added to the successor state
prediction as a bias.

3.2 Steady-state target optimization with modifier adaptation

Given the current disturbance estimate d̂(k|k), as in offset-free
tracking MPC algorithms, we compute an equilibrium target
using the augmented model (12). However, in order to have this
equilibrium target converging to the true optimal equilibrium,
we need to add a first-order modifier. The idea of introducing a
modifier is borrowed from the RTO literature (Marchetti et al.,
2009). Specifically, the target problem solved at each decision
time is the following:

(x∗s (k),u
∗
s (k),y

∗
s (k)) = argmin

(x,u,y)
`(y,u) (17a)

subject to

x = f (x,u)+Bd d̂(k|k) (17b)

y = h(x)+Cd d̂(k|k)+Λ(k)(u−u∗s (k−1)) (17c)
y ∈ Y, u ∈ U (17d)

in which d̂(k|k) is the current disturbance estimate, Λ(k) ∈
Rny×nu is the current modifier matrix, later defined, and u∗s (k−
1) is the previous input target. The modifier matrix is initialized
as Λ(0) = 0, and updated at each decision time as follows:

Λ(k+1) = φΛ(k)+(1−φ)(DGp(u∗s (k))−DG(u∗s (k), d̂(k|k)))
(18)

in which:

• Gp : Rnu → Rny is the plant steady-state input-to-output
map, i.e. the solution ys(us) of (2), and DGp : Rnu →
Rny×nu is its Jacobian;
• G : Rnu ×Rny → Rny is the model steady-state map, i.e.

the solution ys(us, d̂(k|k)) of (17b), and DG : Rnu×Rny →
Rny×nu is its Jacobian with respect to the first argument;
• φ ∈ (0,1] is the first-order filter constant.

By KKT matching (Marchetti et al., 2009), it is shown in
(Vaccari and Pannocchia, 2017) that:

lim
k→∞

y∗s (k) = y0
s , lim

k→∞
u∗s (k) = u0

s (19)
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provided that limk→∞ u(k) = limk→∞ u∗s (k).

3.3 FHOCP with modifier adaptation

Given the current state and disturbance estimates (x̂(k|k), d̂(k|k))
and the current input target us(k), we solve an FHOCP using the
augmented model (12). Moreover, as in the target optimization
(17) we introduce in the FHOCP a first-order modifier to ensure
convergence towards the target. In details, the FHOCP solved at
each decision time is:

PN(x̂(k|k), d̂(k|k),u∗s (k)) : min
x,u

N−1

∑
i=0

`(yi,ui) (20a)

subject to:

x0 = x̂(k|k) (20b)

xi+1 = f (xi,ui)+Bd d̂(k|k) (20c)

yi = h(xi)+Cd d̂(k|k)+Λ(k)(ui−u∗s (k)) (20d)
xN = xs (20e)

yi ∈ Y, ui ∈ U (20f)
Dropping the time argument for notational purposes, we denote
the optimal solution of this problem as (x∗,u∗)(x̂, d̂,u∗s ). Thus,
the input implemented in closed-loop is:

κN(x̂, d̂,u∗s ) = u∗0(x̂, d̂,u
∗
s ) (21)

It is important to remark that the key issues in modifier-
adaptation methods is how to obtain the plant gradient using
only input-output measurements. To this aim several gradient
estimation techniques have been proposed (Marchetti et al.,
2016). An alternative estimation based on linear system iden-
tification technique is sketched in Section 4.4.

3.4 Summary

The proposed economic MPC is summarized in Algorithm 1.

Algorithm 1. Offset-free economic MPC

1: Data: output measurement y(k), state and disturbance pre-
diction (x̂(k|k− 1), d̂(k|k− 1)), modifier matrix Λ(k) and
previous target u∗s (k−1).

2: Evaluate the prediction error from (15), and update
state and disturbance estimates from (13) to obtain
(x̂(k|k), d̂(k|k)).

3: Solve the target optimization problem (17) to obtain the
input target u∗s (k).

4: Solve the FHOCP (20) to obtain the input u(k) =

κN(x̂(k|k), d̂(k|k),u∗s (k)) as in (21).
5: Inject the input u(k) into the plant (1).
6: Update the modifier matrix from (18).
7: Update time index k ← k + 1 and predict successor state

and disturbance from (14).

We can state the main result of this work, which can be proved
by KKT matching techniques as in (Marchetti et al., 2009;
Vaccari and Pannocchia, 2017), given the previous considera-
tions on the prediction error going to zero, and the convergence
properties of economic MPC with terminal constraint (Diehl
et al., 2011).
Proposition 10. Assume that problems (17) and (20) remain
feasible at all times, and that the closed-loop system:

x+ = fp(x,κN(x̂, d̂,u∗s ))
y = hp(x)

(22)

reaches an equilibrium with input limk→∞ u(k) = u∞ and output
limk→∞ y(k) = y∞. It follows that the reached equilibrium is the
optimal one for the plant (1), i.e.:

y∞ = lim
k→∞

y∗s (k) = y0
s , u∞ = lim

k→∞
u∗s (k) = u0

s (23)

4. APPLICATION TO A CSTR EXAMPLE

4.1 Continuous-time dynamics and cost

As illustrative example, we consider an isothermal Continuous-
Stirred Tank Reactor (CSTR) in which two consecutive re-

actions occur: A
k1→ B

k2→ C. The system is described by the
following continuous-time dynamics:

ẋ1 =
u
V
(cA0− x1)− k1x1

ẋ2 =
u
V
(−x2)+ k1x1− k2x2

(24)

in which x1 and x2 are the molar concentrations of A and B in
the reactor, respectively; k1 and k2 are the two kinetic constants;
u is the feed flow-rate (which is the manipulated input, and is
assumed equal to the outlet flow-rate); V is the reactor volume;
cA0 is the inlet concentration of A. We assume that both states
(x1,x2) are measurable. The system parameters for the true
plant are as follows:

k1 = 1.0 min−1, k2 = 0.05 min−1,

cA0 = 1.0 kmol/m3, V = 1.0 kmol/m3 (25)
The following cost represents the economics of the system
(expenditure for raw material - revenue from product):

`c(x,u) = αucA0−βux2 (26)
in which α = 1.0e/kmol and β = 4.0e/kmol are the prices of
reactant and product, respectively. State and input constraints
are as follows:
0≤ x1 ≤ 1 kmol/m3, 0≤ x2 ≤ 1 kmol/m3, 0≤ u≤ 2 m3/min

(27)
The optimal equilibrium for the plant, which can be obtained
by solving the following target problem:

min
x1,x2,u

αucA0−βux2 (28a)

subject to (27) and
u
V
(cA0− x1)− k1x1 = 0 (28b)

u
V
(−x2)+ k1x1− k2x2 = 0 (28c)

is found to be:

u0
s = 1.04298, x0

s =

[
0.51052
0.46709

]
, `c(x0

s ,u
0
s ) =−0.90568

4.2 Discretized system and cost

Given a sampling time h, the system (24) and the cost (26) can
be discretized using the backward Euler scheme to obtain:

x+1 =
x1 +

u
V cA0h

1+ k1h+ u
V h

x+2 =
x2 + k1h

(
x1+

u
V cA0h

1+k1h+ u
V h

)
1+ k2h+ u

V h

(29)

`(x,u) = (αucA0−βux+2 )h (30)
From now on, both plant and model are given by the discretized
model (29) in which h = 1 min, but the MPC model uses
incorrect parameters as later detailed.
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4.3 Closed-loop performance comparison

In this section we evaluate the closed-loop performance of three
controllers, which use the same, incorrect model. Specifically,
the model used by the controllers is still given by (29) but the
known kinetic parameters are: k1 = 0.9 min−1, k2 = 0.0 min−1.
From a kinetic point of view the model ignores the consecutive
reaction B→ C and underestimates the rate of the first reaction
A→ B. The considered three controllers are:

• MPC0: standard economic MPC using the nominal model.
• MPC1: offset-free tracking MPC with modified target

calculation as described in Section 3.2. The FHOCP uses
a conventional (quadratic) tracking cost `T (x,u,xs,us) =
‖x− xs‖2

Q +‖u−us‖2
R, with Q = I, R = 10−4.

• MPC2: offset-free economic MPC, as summarized by
Algorithm 1 in Section 3.

The closed-loop behavior of states and input vs. time is reported
for all three controllers in Fig. 1, starting from the initial
condition x1(0) = x2(0) = 0. The same figure also shows the
optimal equilibrium value for each state and for the input,
which are obviously not known to the controllers given that
they use an incorrect model. From these results, we notice
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Fig. 1. Comparative closed-loop results using the three con-
trollers: states (top and middle) and input (bottom).

that the system controlled by the standard economic MPC
reaches an incorrect equilibrium, whereas both MPC1 and
MPC2 reach the correct equilibrium. However, MPC1 has a
suboptimal transient behavior since it is designed to be a
tracking controller. To further clarify this aspect, we report
in Fig. 2 the comparison of the closed-loop economic cost
`(x,u) obtained with the three controllers. Initially, the tracking
controller (MPC1) has higher economic cost than the two
economic controllers, which have similar behavior. Then, as
the closed-loop system approaches the equilibrium, the nominal
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Fig. 2. Comparative closed-loop results using the three con-
trollers: economic cost.

economic controller (MPC0) shows a bias with respect to the
optimal steady-state cost (see the zoomed box), reached instead
by both MPC1 and MPC2. Overall the cumulative cost, in the
considered time window, is: -7.159 for MPC0, -7.143 for MPC1
and -7.270 for MPC2. It is therefore confirmed that MPC2
shows superior transient and steady performance than the other
controllers.

4.4 Gradient estimation from data

In the previous simulation, MPC1 and MPC2 were designed
under the assumption that the gradient of the input-to-output
steady-state map of the plant, DGp(·), is measurable. In prac-
tical situations, only input and output (state in this example)
measurements are available. Thus, one practical way to esti-
mate DGp(·) is to perform linear system identification to obtain
a local linear model, from which DGp(·) is readily computed.

We explore this simple path in the following simulation, using
the proposed Algorithm 1. While the controller is running we
collect the sequence of inputs and states, {u j,x j} j=k

j=k−Nid
, over

a moving horizon window of Nid = 40 sampling times. Then,
similarly to a subspace method, at each sampling time we
compute state-space matrices (A,B) from a least-square regres-
sion aimed at minimizing the one-step ahead prediction x j+1−
(Ax j +Bu j) over the moving horizon window. Consequently,
we define DGp(·) = (I−A)−1B. To avoid numerical instability,
the identification is performed only if the variance of states and
inputs is larger than a threshold. This controller is denoted by
MPC2id, and the obtained closed-loop results are reported in
Fig. 3 also including standard economic MPC0 for comparison.
From these results, we notice that during the first time period
[0, 20] the proposed controller still improves significantly the
performance despite the presence of some small oscillations in
the input which are due to the numerical estimate of DGp(·).
To further improve the quality of gradient estimation, during
the second time window [20, 40] a random signal with variance
0.01 is superimposed on the closed-loop input. In this way, the
identified local model matrices (A,B) are a better approxima-
tion of the nonlinear plant dynamics and force the plant input
to nearly converge to the true unknown optimal value.

5. CONCLUSIONS

We have presented in this paper a novel economic MPC al-
gorithm that is able to achieve the optimal asymptotic perfor-
mance, i.e. to make the closed-loop system converge to the most
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Fig. 3. Comparative closed-loop results using standard eco-
nomic MPC and proposed offset-free economic MPC with
plant gradient estimated from data: states (top and middle)
and input (bottom). From time 20 to 40, an additional
random signal is superimposed for identification purposes.

profitable equilibrium, in spite of possible plant/model mis-
match. The proposed MPC design merges the idea of modifier-
adaptation from the Real-Time Optimization field with the dis-
turbance models used in offset-free tracking MPC. Using a
numerical example of a CSTR in which the MPC model has
some errors in the kinetic parameters, we have shown how the
proposed controller achieves the optimal equilibrium whereas
conventional economic MPC leaves an offset.

In this paper, we have assumed that convergence to some equi-
librium occurs in closed-loop and that recursive feasibility is
preserved. Future research should be devoted to eliminating
these assumptions and showing under which circumstances
convergence and recursive feasibility is guaranteed. Another in-
teresting area of research is related to exploring and comparing
different strategies for plant gradient estimation.
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robust economic model predictive control. J. Proc. Contr.,
24(8), 1237 – 1246.

Costello, S., François, G., and Bonvin, D. (2016). A directional
modifier-adaptation algorithm for real-time optimization. J.
Proc. Contr., 39, 64–76.

Diehl, M., Amrit, R., and Rawlings, J.B. (2011). A Lyapunov
function for economic optimizing model predictive control.
IEEE Trans. Auto. Contr., 56(3), 703–707.

Ellis, M., Durand, H., and Christofides, P.D. (2014). A tutorial
review of economic model predictive control methods. J.
Proc. Contr., 24(8), 1156 – 1178.

Faulwasser, T. and Bonvin, D. (2017). Exact turnpike properties
and economic NMPC. Europ. J. Contr., 35, 34–41.
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