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Abstract: The modern steel industry aims to produce high-quality products with higher
product yield, lower costs, and lower energy consumption to meet market demands. To
accomplish these goals, it is necessary to reduce or eliminate product defects. However, the
relationship of operating conditions to the defect formation is not fully understood. There is
increasing interest in developing models to monitor the quality and predict the number of defects
in real time. Modeling and analyzing the defect count data is a very challenging problem because
the defect count data exhibit the unique characteristics of non-negative integers, overdispersion,
high skewed distribution, and excess zeros. To explicitly account for these unique characteristics,
the present work develops an on-line quality monitoring and prediction system based on the
hurdle regression model. The basic idea of the hurdle model is that a binomial model governs
the binary outcome of the dependent variable being zero or positive. If the dependent variable
takes a positive value, ”hurdle is crossed”, and the conditional distribution of the positives can
be modeled by a zero-truncated Poisson or negative binomial (NB) model. Compared to Poisson
and NB models, the hurdle model is not only suitable for modeling discrete and non-negative
integer data, but also sufficient for handling both overdispersion and excess zeros data. The
effectiveness of the hurdle model was verified through its application to the real defect data of a
steelmaking plant. The results have demonstrated that the hurdle NB model is superior to the
Poisson, NB, hurdle Poisson, and PLS models in the prediction performance.
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1. INTRODUCTION

To meet the high competitive market demands, the steel
industry aims to improve product quality and productiv-
ity with low production costs and sustainable production
environment. However, products and production processes
are always subject to variations. Equipment malfunctions,
process perturbations, and inappropriate operation will
lead to a variety of defective products. Defects not only
increase the production cost because of reworking or repro-
ducing, but also waste materials, energy consumption, and
lead time. Therefore, it is important to develop a model
to monitor the quality and predict the number of defects
in real time.

Virtual sensing or soft-sensor is a key technology for
predicting product quality or other key variables in real
time, and has been successfully applied to many indus-
trial processes (Kano and Nakagawa (2008); Kadlec et al.
(2009); Wang et al. (2010); Zhang et al. (2015, 2017)).
The basic idea of soft-sensor is to construct an inference
model that relates product quality (response) to process

operating conditions (predictors). Multiple linear regres-
sion (MLR) and partial least squares (PLS) regression are
the most popular approaches (Geladi and Kowalski (1986);
Kano and Ogawa (2010); Yin et al. (2015)). However,
they cannot work well in modeling defect data due to
their basic assumptions of normality and homoscedasticity,
because defect count data often violate these assumptions
and show overdispersion (or heteroskedasticity) and high
skewed distribution. Furthermore, MLR or PLS models
might result in the prediction of negative counts although
the defect count data are characterized by non-negative
integers.

The Poisson regression model assumes that the response
variable or error structure follows a Poisson distribution,
which is a discrete distribution expressing the probability
of only nonnegative integers, and it is a basic model for
modeling and analyzing non-negative integers (Cameron
and Trivedi (2013); Fox (2015)). The Poisson regression
belongs to the family of generalized linear regression,
where the (canonical) link function is the natural log. The
Poisson regression is suitable for modeling count data, but
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it assumes that the mean and variance are equal. This
assumption may be restrictive for its application to the
overdispersed data, such as the defect data investigated in
this study. In the overdispersion circumstance, the Poisson
regression model tends to underestimate the dispersion of
the observed count data. A remedy to this overdispersion
problem is the use of a negative binomial (NB) model,
which is derived as a gamma mixture of Poisson random
variables (Cameron and Trivedi (2013)). Although the NB
model is more suitable for modelling overdispersed data,
it is not appropriate for modeling count data when an
excess of zeros exists. Since the observed defect data are
characterized by a large number of zeros, the NB model
will not work well.

To explicitly account for the unique characteristics of non-
negative integers, overdispersion, high skewed distribution,
and excess zeros in the observed defect count data, the
present work develops an on-line quality monitoring sys-
tem based on the hurdle regression model. The hurdle
model is a two-component mixture model that combines
a binomial model governing the binary outcome of the
dependent variable being zero or positive and a zero-
truncated Poisson or NB model for strictly positives. In
contrast with the single Poisson or NB model, the hurdle
model is not only suitable for modeling discrete and non-
negative integer data, but also sufficient for handling both
over-dispersion and excess zeros data. This research is
motivated to verify the suitability of potential applications
of hurdle modeling technique to the defect count data in
a steel manufacturing process.

The rest of this paper is organized as follows. Section 2
gives a brief introduction of the Poisson regression and
negative binomial regression. Then the hurdle modeling
technique for defect data with excess zeros is presented in
section 3. In section 4, the effectiveness of hurdle modeling
is verified through its application to the real defect data
of a steelmaking plant, and its application results are
compared with those of Poisson, NB, and PLS models.
The conclusions of this work are presented in section 5.

2. PRELIMINARIES

2.1 Poisson regression

Poisson regression is a basic tool for modeling and analyz-
ing count data, which follows the Poisson probability dis-
tribution. Given the input-output data pairs {(xi, yi)}Ni=1,
where xTi ∈ <K denotes the i-th observation of the pre-
dictor variables and yi is the corresponding output. The
Poisson probability mass function is expressed as

f(yi|xi) =
e−µiµyii
yi!

, (yi = 0, 1, 2, · · · ) (1)

where yi! is the factorial of yi, e is the base of the
natural logarithm, and µi is the average number of events
(also called rate parameter or shape parameter). The
conditional mean and conditional variance are given by

E(yi|xi) = Var(yi|xi) = µi. (2)

In Poisson regression, the conditional mean of yi is pa-
rameterized as an exponential function of the predictor
variables xi:

µi = exp(xTi β) (3)

where β is a vector of unknown parameters (regression
coefficients). This exponential parameterization ensures
the non-negativity of µi. Furthermore, equation (3) also
implies that the Poisson model is a multiplicative regres-
sion model.

Traditionally, the maximum likelihood technique is used to
estimate the parameters of Poisson regression (Cameron
and Trivedi (2013); Fox (2015)). The log-likelihood func-
tion is given by

`(β) =

N∑
i=1

[
yi ln(µi)− µi − ln(yi!)

]
=

n∑
i=1

[
yix

T
i β − exp(xTi β)− ln(yi!)

]
.

(4)

A restrictive property of the Poisson regression is the
equality of the mean and variance. When overdispersion
becomes an issue, the estimates of Poisson model may be
inefficient. The negative binomial regression model offers
a remedy to this problem.

2.2 Negative binomial regression

The negative-binomial (NB) model can be viewed as a
generalization of Poisson model that allows for overdis-
persion (Hilbe (2011); Cameron and Trivedi (2013)). In
NB regression, the distribution of yi given xi is derived as
a gamma mixture of Poisson distributions in terms of its
mean µi:

f(yi|xi) =
Γ(yi + θ)

yi!Γ(θ)

(
θ

θ + µi

)θ(
µi

θ + µi

)yi
(5)

where θ > 0 is the shape parameter and Γ(·) is the gamma
function. With α = 1/θ (α > 0), the NB distribution can
then be rewritten as

f(yi|xi) =
Γ(yi + 1/α)

yi!Γ(1/α)

(
1

1 + αµi

)1/α(
αµi

1 + αµi

)yi
(6)

where α is referred to as the dispersion parameter in
generalized linear models (Fox (2015)). The conditional
mean and conditional variance of the NB distribution are

E(yi|xi) = µi = exp(xTi β) (7)

Var(yi|xi) = µi + αµ2
i = µi(1 + αµi). (8)

Note that the conditional variance of the NB distribution
is always larger than the conditional mean. Thus, the NB
distribution is suitable for capturing the overdispersion in
data. Furthermore, as α→ 0, Var(yi|xi)→ µi and the NB
distribution converges to the Poisson distribution. For NB
regression, the parameters of α and β are calculated using
maximum likelihood estimation (Cameron and Trivedi
(2013); Fox (2015)). The log-likelihood function is given
by

`(α, β) =

N∑
i=1

(
yi lnα+ yix

T
i β

−
(
yi +

1

α

)
ln
(
1 + α exp(xTi β)

)
+ ln Γ

(
yi +

1

α

)
− ln(yi!)− ln Γ

( 1

α

))
(9)

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

370



3. HURDLE MODELING FOR DEFECT DATA WITH
EXCESS ZEROS

As discussed above, the Poisson regression is designed
under the equidispersion assumption. In practice, the ob-
served defect data exhibit overdispersion. Thus, the esti-
mates may be incorrect when the Poisson model is used.
NB regression relaxes this constraint of Poisson model,
and is more suitable for overdispersed data. However,
both Poisson and NB models cannot fully account for
the excess zeros, which are observed in the investigated
defect data. In comparison, hurdle model can deal with
both overdispersion and excess zeros problems effectively.

The basic idea of the hurdle model is that a binomial model
governs the binary outcome of the dependent variable
being zero or positive (Hu et al. (2011); Cameron and
Trivedi (2013)). If the dependent variable takes a positive
value, ”hurdle is crossed”, and the conditional distribution
of the positives can be modelled by a zero-truncated
Poisson or NB model. Let f1(·) denote the probability
distribution function for the hurdle part and f2(·) be the
probability distribution function for the positives part.
The probability distribution of the hurdle model is given
by

f(yi|xi, zi) =

{
f1(0|zi,β1) if yi = 0,

Φf2(yi|xi,β2) if yi > 0
(10)

with

Φ =
1− f1(0|zi,β1)

1− f2(0|xi,β2)
(11)

where the numerator of Φ represents the probability of
crossing the hurdle, and the denominator is the summation
of f2(·) on the support of the conditional density (i.e.,
the truncation normalization). The notations of zi and xi
indicates that the regressors for the zero hurdle part and
the positive count part could be different. The conditional
mean and conditional variance are given by

E(yi|xi) =
∑
i∈Ω1

yif2(yi|xi)Φ (12)

V ar(yi|xi) =
∑
i∈Ω1

y2
i f2(yi|xi)Φ−

[
Φ
∑
i∈Ω1

yif2(yi|xi)
]2
(13)

where Ω1 = {i|yi 6= 0}, and its complementary set is
Ω0 = {i|yi = 0}, and Ω0 ∪ Ω1 = {1, 2, · · · , N}. The
variance-mean ratio (VMR) is

VMR =
V ar(yi|xi)
E(yi|xi)

(14)

For example, if f2(·) is a Poisson distribution and Φ = 1,
the VMR is equal to 1; this is the case of equidispersion
of the Poisson distribution. In contrast, if Φ 6= 1, (10) is
the hurdle Poisson model, in which 0 < Φ < 1 corresponds
to the overdispersion case, and Φ > 1 corresponds to the
underdispersion case. The hurdle model provides a more
flexible framework for modeling and analyzing count data.

Estimation of the hurdle model is realized by using the
log-likelihood parameterization of the hurdle probability
distribution, with the aim of finding parameter values that
make the data most likely (Hu et al. (2011); Cameron and
Trivedi (2013)). The likelihood function is given by

L =
∏
i∈Ω0

{
f1(0|zi,β1)

} ∏
i∈Ω1

1− f1(0|zi,β1)

1− f2(0|xi,β2)
f2(yi|xi,β2)

(15)
Taking the natural logarithm of both sides of (15), we can
obtain the log likelihood function:

`(β1,β2; zi,xi) =
∑
i∈Ω0

ln
{
f1(0|zi,β1)

}
+
∑
i∈Ω1

ln
{

1− f1(0|zi,β1)
}

+
∑
i∈Ω1

[
ln
{
f2(yi|xi,β2)

}
− ln

{
1− f2(0|xi,β2)

}]
= `1(β1) + `2(β2).

(16)

This log likelihood function is separable with respect
to the parameters β1 and β2. In other words, the log
likelihood function describes the sum of a log likelihood for
the binary outcome model (`1(β1)), and a log likelihood
for a zero-truncated model (`2(β2)). This separability
indicates that the log likelihood can always be maximized
under the condition of without loss of information through
maximizing the two components separately (Hu et al.
(2011); Fox (2015)). Clearly, the hurdle model is specified
by the probability distributions f1(·) and f2(·). Generally,
f1(·) is specified by a binomial distribution with a logit link
function. For the hurdle Poisson model, f2(·) is specified
by a zero-truncated Poisson distribution with a log link
function. For the hurdle NB model, f2(·) is specified by a
zero-truncated NB distribution with a log link function.

4. CASE STUDY

In this section, the effectiveness of the hurdle modeling
technique is validated through its application to the real
defect data of a steelmaking plant. The application results
are compared with those of Poisson, NB, and PLS models.

The defect dataset was recorded from a continuous cast-
rolling process of the steelmaking plant. It consists of
3600 samples and 71 input variables. The objectives are
to predict the number of defects, identify the factors that
affect defect occurrence, and provide effective suggestions
and countermeasures to reduce the number of defects.
Thus, the output variable is the number of defects. To
construct the predictive model, the entire dataset was
partitioned into two subsets: a training set with 3000
samples and a testing set with 600 samples. Figure 1
shows the frequency distribution of the defects, which
is characterized by a large number of zeros and high
skewness. The percentage of no defect occurring is around
70%. Furthermore, its variance is much larger than its
mean; that is, overdispersion exists in the data.

The widely used Akaike’s information criterion (AIC)
(Cameron and Trivedi (2013)) and Bayesian information
criterion (BIC) (Cameron and Trivedi (2013)) are firstly
used to evaluate the relative performances of Poisson,
NB, hurdle Poisson, and hurdle NB models in modeling
and analyzing defect count data. Both AIC and BIC
are defined on the basis of the maximized log-likelihood
function:

AIC = 2 log `+ 2k (17)

BIC = 2 log `+ log(n)k (18)
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where ` denotes the log-likelihood function, k denotes the
number of model parameters, and n is the sample size.
A smaller value of AIC or BIC means that the model is
better. As shown in table 1, the hurdle NB model seems
to be the optimal model with the smallest AIC and BIC
values among the four models.

Although AIC and BIC are often used to evaluate the
goodness of fit of count data regression models, they are
based only on the maximized log-likelihood. In this work,
we used the hanging rootogram to evaluate the goodness-
of-fit of Poisson, NB, hurdle Poisson, and hurdle NB
models for defect data. The rootogram is a visualization
technique which evaluates the goodness-of-fit of the black-
box model in a graphical way (Kleiber and Zeileis (2016)).
Compared to AIC and BIC, the rootogram highlights the
discrepancies between observed and expected frequencies.
This property is particularly useful in diagnosing and
exploring issues such as overdispersion and excess zeros
when modeling count data. Figure 2 provides the hanging
rootograms of four models for fitting the defect data. The
red curved line represents the theoretical fit corresponding
to each model. The hanging bar (or rootogram bar) on the
red line represents the deviation between observed and
expected counts on a square-root scale. The square-root
transformation is employed to avoid smaller frequencies
being obscured and overwhelmed by larger frequencies.
The line at 0 is called the horizontal reference line, which
allows us to easily visualize where the model is over- or
underfitting. A bar hanging below or over 0 indicates
underfitting or overfitting in each count, respectively. As
shown in Fig. 2, the rootogram bars of the Poisson model
form a ’wave-like’ pattern around horizontal reference
line, and the small counts 1, · · · , 15 are severely overfitted
while both zeros and most counts from 16 to the end
are underfitted. This indicates that a large amount of
overdispersion in the data, but it is not captured by
the fitted Poisson model. Furthermore, the clear lack of
fit for 0 gives an additional indication of excess zeros.
Compared to the Poisson model, the rootogram bars of
the NB model looks better around the horizontal reference
line, which indicates that the NB model coped with the
overdispersion better than the Poisson model, as shown in
Fig. 2. However, the NB model is still underfitting the
number of zeros and overfitting the small counts. The
rootogram of hurdle Poisson model shows a good fit for
the number of zeros, as shown in Fig. 2. However, the
wave-like pattern in the positive counts reflects that there
is still massive overdispersion that is not captured by
the hurdle Poisson model. The rootogram of hurdle NB
model indicates that the hurdle NB model fits the defect
data better than the hurdle Poisson model, as shown in
Fig. 2. The deviations between observed and predicted
frequencies are smaller for most of the number of defects,
as compared to the other models. In summary, the Poisson
model performed the worst, and the hurdle NB model
performed the best.

To test the prediction performances of Poisson, NB, hurdle
Poisson, and hurdle NB models for the testing data, the
root mean squared error (RMSE) and correlation coeffi-
cient criteria were adopted. In addition, the PLS model
was also built as a reference model. The number of latent
variables used in PLS was 40, which was determined by
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Fig. 1. Distribution of number of defects. The vertical red
line represents the mean and horizontal line represents
a range of one standard deviation (mean ±1 standard
deviation).

cross-validation. Table 2 summarizes the prediction per-
formances of five models in terms of RMSEP (RMSE of
Prediction) and R2. The PLS model provided low predic-
tion accuracy with large RMSEP and a small correlation
coefficient. Compared to PLS, both the Poisson and NB
models presented better performance. In contrast with the
single Poisson or NB model, the hurdle Poisson and hurdle
NB models performed significantly better with smaller
RMSEP values and higher correlation coefficients. As a
result, the hurdle NB model achieved the best prediction
performance among the five methods. This is mainly be-
cause the hurdle NB model takes the advantage of model-
ing the zero counts and the overdispersed positive counts.
Fig. 3 shows the detailed comparisons of the PLS model
and the hurdle NB model, where the red line denotes the
horizontal zero line. There are a large amount of values
that below the red zero line, indicating that the PLS
model provided massive negative predictions, although the
number of defects should be nonnegative. Thus, the PLS
model should not be used for modeling and analyzing the
defect count data. In contrast, the Poisson, NB, hurdle
Poisson, and hurdle NB models can ensure the predictions
are nonnegative. The results have demonstrated that the
hurdle NB model is preferred for modeling and analyzing
the defect data.

Table 1. Goodness of fit tests by AIC and BIC
criteria.

Methods AIC BIC

Poisson 19360 19642
NB 11238 11340
Hurdle Poisson 15521 15701
Hurdle NB 10959 11158
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Fig. 2. Rootograms of four methods fit to the defect data.
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Fig. 3. Prediction results of PLS and hurdle NB model for
the defect data.

5. CONCLUSION

In this research, we focused on the modeling of defect data
in the steel manufacturing process with the purpose of
predicting the number of defects. However, modeling and
analysis the defect data is a challenging problem because
the defect data exhibit the unique characteristics of non-
negative integers, overdispersion, high skewed distribution,
and excess zeros. To explicitly account for these unique
characteristics, a quality monitoring system based on
hurdle modelling was proposed in this work. The hurdle
model is a two-component mixture model that combines
a binomial model governing the binary outcome of the
dependent variable being zero or positive and a zero-
truncated model for strictly positives. In contrast with
the Poisson and negative binomial (NB) models, hurdle

Table 2. Prediction results of five models for
the defect data.

Methods RMSEP R2

PLS 4.2533 0.3848
Poisson 4.1723 0.3959
NB 4.1615 0.3775
Hurdle Poisson 3.8379 0.4766
Hurdle NB 3.7624 0.4964
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model is not only suitable for modeling discrete and non-
negative integer data, but also sufficient for handling both
overdispersion and excess zeros data. The effectiveness of
the hurdle model was verified through its application to
the real defect data of a steelmaking plant. The results
have demonstrated that the hurdle NB model is superior
to the Poisson, NB, hurdle Poisson, and PLS models in
the prediction performance.
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