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Abstract: Process monitoring is considered to be one of the most important problems in process
systems engineering, which can be benefited significantly from deep learning techniques. In this
paper, deep neural networks are applied to the problem of fault detection and classification to
illustrate their capability. First, the fault detection and classification problems are formulated
as neural network based classification problems. Then, neural networks are trained to perform
fault detection, and the effects of two hyperparameters (number of hidden layers and number of
neurons in the last hidden layer) and data augmentation on the performance of neural networks
are examined. Fault classification problem is also tackled using neural networks with data
augmentation. Finally, the results obtained from deep neural networks are compared with other
data-driven methods to illustrate the advantages of deep neural networks.
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1. INTRODUCTION

Fault detection and diagnosis has been an active area of
research for the last few decades, which is an essential
part of modern industries to ensure safety and product
quality. Numerous fault diagnosis methods have been pro-
posed, and they can be classified into three categories
(Venkatasubramanian et al., 2003b): quantitative model
based methods, qualitative model based methods and data
driven methods. As the complexity of modern processes in-
creases, it becomes more challenging to build a mathemati-
cal model which effectively captures the system’s dynamic
behavior. As a result, data driven methods, which rely
only on the data acquired from processes, are getting more
and more attention (Venkatasubramanian et al., 2003a; Ge
et al., 2013).

The key step in data driven methods is the feature extrac-
tion step, where the process data is transformed into more
informative, lower dimension data. Multivariate statistical
techniques, such as principal component analysis (PCA)
(e.g. Wold et al., 1987) and partial least squares (PLS)
(e.g. Wold et al., 1984), have been traditional methods to
perform such transformation. In order to overcome inher-
ent limitations of traditional approaches (e.g. assumption
of Gaussian distribution), the variants of PCA and PLS,
such as dynamic PCA (e.g. Ku et al., 1995) and modified
PLS (e.g. Yin et al., 2011), as well as other methods,
such as independent component analysis (ICA) (e.g. Kano
et al., 2003) and fisher discriminant analysis (FDA) (e.g.
Chiang et al., 2004), have been developed.

Artificial neural network based approach is another pos-
sibility, which receives significant amount of interest in
recent years. Artificial neural network is a network of
neurons, which learns very complex functions through a

series of nonlinear transformation, and with the advent
of deep learning techniques (see e.g. Schmidhuber, 2015,
for an overview), it has been successfully applied to com-
plex classification tasks such as image recognition (e.g.
Simonyan and Zisserman, 2014) and speech recognition
(e.g. Hinton et al., 2012). Artificial neural networks have
been also adopted to address fault diagnosis problem (e.g.
Eslamloueyan, 2011; Zhang and Zhao, 2017). However,
most of the works utilized shallow neural networks or
neural networks with hierarchical structures. Thus, the
full potential of deep neural networks for addressing fault
diagnosis is yet to be explored.

To this end, in this work, we apply deep artificial neural
networks to address the problems of fault detection and
classification. First, we formulate fault detection and clas-
sification problems as neural network based classification
problems. Then, we first address fault detection problem
using deep neural networks with different hyperparame-
ter values. Specifically, we investigate the effects of two
hyperparameters, number of hidden layers and number of
neurons in the last hidden layer, on the performance of
neural networks. We also evaluate how data augmentation
affects the network performance. Finally, we examine the
capability of deep neural networks for fault classification.
A benchmark chemical process, the Tennessee Eastman
process, is considered as an illustrative example, and the
results are compared with other data-driven methods and
neural network models.

2. FAULT DIAGNOSIS USING ARTIFICIAL NEURAL
NETWORKS

In this section, we briefly review the concept of artificial
neural networks, and how they can be used to perform
classification problems. Then, we formulate fault detec-
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tion and classification problems as neural network based
classification problems.

2.1 Artificial neural network based classification

A typical neural network for classification problems con-
sists of 4 different types of layers as shown in Figure 1:
input layer, hidden layer, softmax layer and output layer.
As it is typically the case for data-driven fault diagnosis
methods, input data needs to be normalized before it is fed
into the input layer, and one possible way is to apply the
feature scaling of the following form so that all the values
are in the range [0,1]:

x′ =
x−min(x)

max(x)−min(x)
(1)

In the hidden layers, the information contained in the
input data is successively transformed into higher repre-
sentations (i.e. features) through the following nonlinear
transformations:

h1 = σ(W1x+ b1)

hl = σ(Wlhl−1 + bl), l = {2, . . . , d} (2)

where x ∈ Rnx , hl ∈ Rnhl are the vectors of input
and hidden representations, respectively, Wl ∈ Rnhl

×nhl−1

and bl ∈ Rnhl are the weight matrices and bias vectors,
respectively, and d is the number of hidden layers. Note
that nhl

(i.e. number of neurons in each hidden layer) and
d are hyperparameters whose values need to be determined
prior to the training of neural networks. σ is a nonlinear
activation function which makes the above transformation
nonlinear, and in this work, we employ the rectified linear
unit (ReLU) which is defined as:

σ(x) = max(0, x) (3)

The transformation shown in Eq.(2) without the activation
function is applied to the output of the last hidden layer:

hs = Wshd + bs
and the softmax layer calculates the values of each output
neuron using the softmax function of the following form:

yj =
exp(hs,j)∑nhs
j=1 exp(hs,j)

(4)

Then, the network assigns a predicted label to the input
data by selecting the label with the largest output value.

Fig. 1. Typical neural network structure for classification

The objective of the network training is to maximize the
accuracy of the network, which is defined as follows:

Accuracy =
# of samples with correct label

# of samples
(5)

Note that the training of neural network classifier is
a supervised one since the calculation of the accuracy
requires the true label of each data sample.

2.2 Fault diagnosis as a classification problem

Now, let us formulate fault detection and classification
problems as neural network based classification problems.
First, a fault detection problem can be formulated as a
binary classification problem where the two labels are
normal and fault. A neural network, in this case, can be
trained using two different data sets: one with the normal
operation data, and the other with the operation data
with a specific type of fault. Along with the accuracy, two
indices generally used for fault diagnosis, fault detection
rate (FDR) and false alarm rate (FAR), can be defined as:

FDR =
# of faulty samples with fault label

# of faulty samples
(6)

FAR =
# of normal samples with fault label

# of normal samples
(7)

Then, a fault classification problem can be formulated
similarly as a multiclass classification problem. Now, we
can train a neural network using multiple data sets each of
which contains normal and various faulty operation data.
In this case, the performance of neural networks can be
evaluated using the accuracy and confusion matrix, which
is a square matrix whose i, j-th element is defined as the
number of samples whose true and predicted labels are i
and j, respectively. Note that the accuracy can be directly
calculated from the diagonal elements of the confusion
matrix.

In what follows, via a case study of a benchmark chemical
process, we analyze the effects of network structures on
the fault detection, and the effects of data structure on
the fault detection and classification.

3. CASE STUDY - TENNESSEE EASTMAN PROCESS

In this section, we apply neural network classifiers to the
Tennessee Eastman (TE) process, which is a benchmark
process for various studies including fault diagnosis. First,
we provide brief descriptions of the TE process, and how
neural networks are trained. Then, the fault detection and
classification results are analyzed.

3.1 Process description

The TE process was introduced in Downs and Vogel (1993)
as a test problem for process control and monitoring
techniques. It consists of five major process units, the
reactor, condenser, compressor, separator and stripper, as
shown in Figure 2, and produces two products, G and H,
and a byproduct, F, from four reactants, A, C, D and
E. There also exists an inert compound, B. There are
52 measurements available (41 measurements for process
variables and 11 measurements for manipulated variables),
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Fig. 2. Process flow diagram of the TE process

Fault ID Process variable Type

Fault 1 A/C feed ratio, B composition con-
stant (stream 4)

Step

Fault 2 B composition, A/C ratio constant
(stream 4)

Step

Fault 3 D feed temperature (stream 2) Step
Fault 4 Reactor cooling water inlet tem-

perature
Step

Fault 5 Condenser cooling water inlet tem-
perature

Step

Fault 6 A feed loss (stream 1) Step
Fault 7 C header pressure loss - reduced

availability (stream 4)
Step

Fault 8 A, B, C feed composition (stream
4)

Random
variation

Fault 9 D feed temperature (stream 2) Random
variation

Fault 10 C feed temperature (stream 4) Random
variation

Fault 11 Reactor cooling water inlet tem-
perature

Random
variation

Fault 12 Condenser cooling water inlet tem-
perature

Random
variation

Fault 13 Reaction kinetics Slow drift
Fault 14 Reactor cooling water valve Sticking
Fault 15 Condenser cooling water valve Sticking
Fault 16 Unknown Unknown
Fault 17 Unknown Unknown
Fault 18 Unknown Unknown
Fault 19 Unknown Unknown
Fault 20 Unknown Unknown

Table 1. Fault description of the TE process

Number of hidden layers Network structure

0 52-2
1 52-25-2
2 52-25-12-2
3 52-52-25-2-2
4 52-52-25-12-2-2

Table 2. Network structure of neural networks
with different number of layers

and 20 different fault types are defined in Downs and Vogel
(1993) as summarized in Table 1.

In Chiang et al. (2000) and Zhang (2009), it is pointed out
that it is especially difficult to detect Faults 3, 9 and 15 due
to the absence of observable change in the mean, variance
and the higher order variances. Thus, in this study, these
faults are not considered in the following analysis.

3.2 Network training

The data sets, which are recently published online (Rieth
et al., 2017), are used for the training and testing of neural
networks. The data sets in Rieth et al. (2017) provide data
of 500 simulation runs for each normal/fault state (10500
runs in total), and have basically the same structure as the
data sets provided in Chiang et al. (2000). Each data set
contains the results of a simulation run of 25 hours with a
sampling time of 3 minutes, resulting in 500 data samples.
In the case of faulty operation, a specific type of fault is
introduced after 1 hour. For each state, 300 simulation
runs are used for the training, and the remaining 200
simulation runs are used for the testing. The networks are
initially designed to have 52 input nodes so that each data
sample is directly used as the input to the network.

Neural networks are initialized using the Xavier initial-
ization (Glorot and Bengio, 2010) to make sure that,
initially, the signals do not fade away or explode, and the
ADAM optimizer (Kingma and Ba, 2014) is adopted for
the training. The training data sets are divided into 50
batches for batch training, and the networks are trained
for 400 training epochs.

3.3 Fault detection results

Number of hidden layers To examine the potential of
deep learning, we first solve the fault detection problem
using neural networks with different number of hidden
layers. Neural networks with 0, 1, 2, 3, and 4 hidden layers
are trained, and the network structure for each case is
summarized in Table 2.

Figure 3 shows the overall accuracy (over all the fault IDs)
of each network. From this figure, we can see that having
a single hidden layer (i.e. a shallow neural network) is
not very helpful, providing only a slight improvement over
the case where we directly apply the softmax layer to the
input layer (i.e. network with no hidden layer). The largest
improvement is obtained when we add a second hidden
layer to the network, and adding more hidden layers do not
have significant impact on the accuracy of the network.

Fig. 3. Overall fault detection accuracy of neural networks
with different number of hidden layers
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Fig. 4. Fault detection accuracy for Fault type 1 using
different number of hidden layers

Fig. 5. Fault detection accuracy for Fault type 2 using
different number of hidden layers

Also, different fault IDs can be classified into three cat-
egories based on the minimum number of hidden layers
required to achieve an acceptable level of fault detection
accuracy (here, defined as 90% of accuracy):

• Fault type 1: {1, 2, 4, 5, 6, 7}
• Fault type 2: {17, 18, 20}
• Fault type 3: {8, 10, 11, 12, 13, 14, 16, 19}

Fault type 1 is successfully detected even using the network
with no hidden layer as shown in Figure 4. Note that all
the faults of the step type are included in this fault type.
Figure 5 shows the accuracy of fault detection for Fault
type 2, and we can see that a shallow network is enough to
detect this fault type. Note that some of the unknown type
faults are classified as Fault type 2. Fault type 3 required
at least 2 hidden layers to be effectively detected as it
can be seen from Figure 6, and note that this fault type
contains the faults which are not step type as well as some
unknown faults. Figure 7 shows an example of how features
are evolving in time and how they are distributed in two
dimensional feature space.

Number of neurons in the last hidden layer Now, let us
analyze the effects of number of neurons in the last hidden
layer (i.e. number of features from which classification is
performed) on the performance of fault detection. In this

Fig. 6. Fault detection accuracy for Fault type 3 using
different number of hidden layers

(a) (b)

Fig. 7. Fault detection result of Fault 1 (a) temporal
evolution of features, (b) distribution of features

Number of neurons 1 2 3 12

Accuracy (%) 97.20 97.24 97.26 97.26

Table 3. Overall fault detection accuracy of
neural networks with different number of neu-

rons in the last hidden layer

Input data length 1 2 3

Accuracy (%) 97.24 97.65 97.73

Table 4. Overall fault detection accuracy with
the augmented input

analysis, we use the neural network with three hidden
layers whose structure up to the last hidden layer is 52-
52-25. Neural networks with 1, 2, 3 and 12 neurons in the
last hidden layer are trained, and the overall accuracy of
fault detection is summarized in Table 3.

We can see that, although having more neurons in the last
hidden layer improves the overall accuracy of fault detec-
tion, the rate of improvement is very small and it even-
tually diminishes. It may imply that the neural network
has reached its maximum potential to discriminate faulty
samples from the normal samples with the current input
data. Thus, in what follows, the input data is augmented
to test if the overall accuracy can be further improved.

Data augmentation In this analysis, we augment the
input data by combining a few consecutive samples, mim-
icking dynamic principal component analysis. The neural
network with three hidden layers, whose structure is 52-
52-25-2-2, is used to obtain the results, and the augmented
inputs are prepared by combining 2 and 3 consecutive
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samples. The overall fault detection accuracy with the data
augmentation is tabulated in Table 4. Note that the overall
accuracy is improved, and the data augmentation has
stronger impact on the overall accuracy than the number
of neurons in the last hidden layer.

Through the data augmentation, the fault detection accu-
racy for Faults 1, 4 and 5 has reached 100%. Also, the fault
detection accuracy for Faults 11 (from 94.8% to 97.2%), 19
(from 97.22% to 99.18%) and 20 (from 91.71% to 93.62%)
has been improved significantly.

Comparison with other data-driven methods Now, let
us compare our results with other data-driven methods.
The results obtained using dynamic principal component
analysis (DPCA), modified partial least squares (MPLS),
and independent component analysis (ICA), which are
reported in Yin et al. (2012), and the results from deep be-
lief network (DBN) with sigmoid and Gaussian activation
functions (abbreviated as s and G later on, respectively),
which are reported in Zhang and Zhao (2017), are used for
the comparison.

Table 5 summarizes the results from different methods,
and our deep neural network model shows the best overall
fault detection rate. However, in the case of Faults 8, 12,
14 and 17, traditional methods resulted in better fault
detection rates, and the DBN proposed in Zhang and
Zhao (2017) performed better than our model in the case
of Faults 10, 17 and 18. Note that our neural network
model is not fully optimized, especially in terms of data
augmentation, implying that there still exists a potential
for our model to produce better results than other methods
on the fault IDs mentioned above.

False alarm rate is also compared with the results reported
in the same references, and the values are shown in Table
6. Note that our deep neural network model outperforms
the other methods, showing very low false alarm rate.

3.4 Fault classification results

Now, let us consider the fault classification problem of the
TE process. Fault classification problem is solved using

Fault ID DPCA MPLS ICA DBN
(s)

DBN
(G)

Ours

1 99.88 100 99.88 100 98 100
2 99.38 98.88 98.75 97 95 99.51
4 100 100 100 100 100 100
5 43.25 100 100 87 79 100
6 100 100 100 100 100 100
7 100 100 100 100 100 100
8 98 98.63 97.88 77 89 98.06
10 72 92.75 89 0 98 93.96
11 91.5 83.25 79.75 12 91 97.20
12 99.25 99.88 99.88 1 72 98.69
13 95.38 95.5 95.38 60 91 95.78
14 100 100 100 5 91 99.97
16 67.38 94.38 80.13 0 0 95.41
17 97.25 97.13 96.88 100 100 95.93
18 90.88 91.25 90.5 100 78 94.15
19 87.25 94.25 93.13 13 98 99.18
20 73.75 91.5 90.88 93 93 93.62

Overall 89.13 96.32 94.83 61.47 86.65 97.73

Table 5. Fault detection rates (%) of different
data-driven methods

the original input data and the augmented input data
prepared by combining 2 consecutive samples. The neural
networks with the structure of 52-52-52-40-18 and 102-
102-50-40-18 are trained using the original input and the
augmented input, respectively.

Classification accuracy for each normal/fault state is
shown in Figure 8, and the confusion matrices are not
provided here for brevity. Note that, for the most of the
normal/fault states, the classification accuracy is increased
by augmenting the input data. Note also that, while the
data augmentation improves the fault detection accuracy
of Fault 19, it results in significantly higher misclassifi-
cation rate of normal state as Fault 19 (from 3.27% to
10.56%), and of Fault 19 as normal state (from 6.12%
to 11.61%), and in turn, lower classification accuracy of
normal state and Fault 19.

DPCA MPLS ICA DBN
(s)

DBN
(G)

Ours

15.13 10.75 2.63 7.03 9.14 0.25

Table 6. False alarm rates (%) of different data-
driven methods

Fig. 8. Fault classification accuracy with the original and
augmented data

Fault ID SNN HNN SAE Ours

1 81.19 97.51 98.75 99.31
2 81.97 98.26 98.33 98.16
4 80.02 95.89 93.10 98.50
5 73.33 97.13 99.79 98.46
6 83.31 99.38 97.70 100
7 81.49 100 99.37 99.86
8 46.65 60.15 53.98 91.55
10 10.96 46.33 63.39 81.19
11 17.30 47.32 62.97 86.32
12 24.12 45.21 66.74 89.30
13 16.93 31.51 29.29 87.35
14 29.11 66.75 94.56 99.66
16 15.83 36.61 66.53 81.76
17 51.15 70.74 88.70 91.76
18 75.76 94.89 88.29 86.57
19 14.50 51.18 82.64 79.40
20 46.16 66.25 77.20 80.92

Overall 48.83 70.89 80.08 91.18

Table 7. Fault classification rates (%) of differ-
ent neural network models
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Our classification results are compared with the results
provided in two references. In Eslamloueyan (2011), a
hierarchical neural network (HNN), where multiple neural
networks are trained to classify subgroups of faults, is de-
signed, and compared with shallow neural network (SNN).
Stacked sparse auto encoder (SAE) is trained in Lv et al.
(2016) through deep learning. The results from different
methods are tabulated in Table 7. Note that, our network,
which in principle is designed to perform fault detection
and classification simultaneously (the normal state is also
included in the classification problem), outperforms other
networks which are designed only for the classification
problem.

4. CONCLUSION

In this paper, we applied deep neural networks to the
problem of fault detection and classification. In the case of
fault detection, we investigated the effects of two hyper-
parameters (number of hidden layer, number of neurons
in the last hidden layer) on the performance of networks,
and concluded that increasing the network size does not
improve the fault detection accuracy above certain level
(approximately 97.26%). Then, we showed that the data
augmentation can be a key to increase the fault detection
accuracy further, and it also turned out to be beneficial
for the fault classification case.

Although the results presented in this paper look promis-
ing, several points need to be addressed in the future work.
First, the characteristics of the features and the faults need
to be analyzed in detail to understand how neural network
classifier works and to improve its performance. Second,
the effects of data augmentation need to be investigated
further. Lastly, different types of neural network (e.g.
convolutional neural network) need to be tested to see if
they fit better for the fault detection and classification
problems.
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