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Abstract: Biological signal transduction models allow to explain and analyze biological cause-
effect relationships and to establish and test new hypotheses about biological pathways. Yet
their predictive capability crucially depends on the parameters involved. These parameters are
usually determined from experimental data. However, due to the appearing nonlinearities, the
resulting inverse problem is often ill-posed and difficult to solve. We outline how parameters
can be estimated based on Picard iterations. In case of linear parameter dependence and good
measurements of the involved entities, the method allows to retrieve good parameter estimates
for medium size problems. The proposed method is applied to an IL-6-dependent Jak-STAT3
signalling pathway model. As shown it it is well suited for data generated by life cell imaging
where accurate time series are available.

1. INTRODUCTION

Cellular signal transduction pathways are biochemical pro-
cesses whereby initial biological signals such as receptor
stimulation proceed via a cascade of biochemical interac-
tions (between proteins or genes) over time. Eventually
they lead to the initiation of a cellular response such as cell
growth, differentiation or cell death. Having to integrate
several cellular signals, balancing them against the cell
viability and being shaped by evolution, these pathways
are complex in nature. Furthermore, they contain several
regulatory elements such as multiple feedbacks to deter-
mine the appropriate cell fate (Milo et al., 2002; López-
Caamal et al., 2014). To understand the complexity of such
’cellular integrated circuits’, mathematical models, often
in form of Ordinary Differential Equation (ODE)-based,
have been widely used. These models crucially depend
upon several parameters describing biochemical properties
such as the speed and equilibrium of biochemical reac-
tions. While being of biochemical nature, the exact values
of these parameters often cannot be directly measured.
Instead, they have to be inferred indirectly by fitting the
model output to experimental time series data.

Many approaches for estimating parameters from measure-
ment data exist, see e.g. (Schaber and Klipp, 2011; Chou
and Voit, 2009; Moles et al., 2003; Chou and Voit, 2009;
Voit, 2013; Schliemann-Bullinger et al., 2016; Rumschinski
et al., 2010). Often parameters are fitted by numerical
optimisation (such as gradient descent) to minimise the
difference between model predictions and experimental
training data. However, such approaches can suffer from

1 NR and RF are members of the International Max Planck Research
School (IMPRS) for Advanced Methods in Process and System
Engineering, Magdeburg.
2 This work is supported by the BMBF in the frame of the research
project InTraSig, grant number 031A300A, and the Center for
Dynamical Systems in the frame of the IMPRS.
3 Authors for correspondence. Email: Heinrich.Huber@ovgu.de,
Rolf.Findeisen@ovgu.de

the presence of local minima that lead to different so-
lutions than the optimal one, resulting in sub-optimal
or spurios parametrisations. Furthermore, they do not
guarantee that a unique solution, or a valid solution at
all, can be identified. Therefore, several approaches have
been performed that, besides providing means for rigorous
parameter estimation, investigate structural identifiabil-
ity. The latter term refers to the theoretical property
whether or not a model including its parametrisation can
be fully regenerated from the model input, the topology
of the dynamical system and the experimental data (Chis
et al., 2011; Chou and Voit, 2009). These general methods
comprise approaches based on Generalized Mass Action,
S-system based methods (Savageau, 1969a,b; Torres and
Voit, 2002), and such from control theory (Geffen et al.,
2008; Farina et al., 2006; Lillacci and Khammash, 2010;
Otter, 1986).

Besides these more fundamental approaches, several meth-
ods to estimate parameters values from given experimental
data have been developed. Some approaches use direct
integration of the underlying ODE system (Docherty et al.,
2012), similar as in other fields of parameter estima-
tion inverse problem theory (Huber and Leeb, 1998). As
such example, incremental identification estimation meth-
ods, whereby parameter subsets are optimised sequentially
(Bhatt et al., 2012), have been developed such as the inte-
grated flux parameter estimation (IFPE) method (Liu and
Gunawan, 2014). Moreover, the application of an iterative
Picard formalism has been suggested (Kunze and Vrscay,
1999; Tanner, 1972) to identify parameters for determining
enzyme kinetics and estimating parameters in bioprocess-
ing. We provide an elaboration of these Picard iteration-
based approaches, and show their first application in a
realistic signal transduction context.

The contribution is structured as follows: Section 2 de-
scribes the Picard iteration formalism to determine the
kinetic parameters. The biological example, an IL-6-
dependent Jak-STAT3 signalling pathway is introduced
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in Section 3. The application of the derived approach to
the example is summarized in Section 4 and concluded in
Section 5 with an outlook.

2. PROBLEM SET-UP AND SOLUTION METHOD

2.1 Modeling Biological Systems

Cellular signal transduction is the process, whereby an
initial cellular signal such a receptor stimulus is transferred
by a set of biochemical reaction into a certain cellular
response such as cell growth, differentiation and death. To
analyse these often intricate processes over time, computa-
tional models, based on ODEs are often used. Thereby, the
changes of concentrations of biochemical entities, such as
proteins, nucleic acids, lipids or metabolites are typically
modelled by different state variables (denoted as ’species’)
X1, ..., Xnx

,

x = ([x1], ...., [xn])T ∈ Rn (1)

comprising the concentration of the n species [xi] within
the cell and their variation in time. We further assume
concentrations of the model species to be sufficiently large
and the cellular content is well-mixed such that spatial
gradients and stochastic effects can be neglected. The
species are converted by chemical reactions following

α1jX1 + α2jX2 + ...+ αnjXn

r−
j−−⇀↽−−
r+
j

(2)

β1jX1 + β2jX2 + ...+ βnjXn. (3)

Thereby, αij and βij for i ∈ {1, ..., n} are non-negative
stoichiometric coefficients that describe the amount of
entities i within a reaction j,∈ {1, ..., nr}. Furthermore,
r+j denotes the forward and r−j the backward reaction
rate for reaction j. For modelling reaction rates, the law
of mass action, where the reaction rate is assumed to
be proportional to the substrate concentrations, is the
simplest and most widely-used assumption (Savageau,
1969a,b; Torres and Voit, 2002), i. e.

rj(t) = p+j

nx∏
i=1

x
αij

i (t)− p−j
nx∏
i=1

x
βij

i (t). (4)

In Eq. (4), p+j and p−j denote the forward and backward
reaction constants, whose determination from the state
variables over time (1) is the subject of this paper.

With this notation, the biochemical reaction network can
be written in a compact form as

ẋ(t) = Nr(t), (5)

where ẋ(t) denotes the change of concentration with time.
Furthermore, all reaction rates are collected into the vector
r(t) = (r1(t), ..., rnr (t)) and N ∈ Rn×nr denotes the
stoichimetric matrix given by

Nij = βij − αij , i ∈ {1, ..., n}, j ∈ {1, ..., nr}. (6)

The overall dynamics for a system without time-variant
input and defining a nonlinear vector function f : Rn ×
Rm → R , we have

ẋ(t) = Nr(t) = f(x(t), p). (7)

In Eq. (7), x(t) ∈ Rn, and p ∈ Rm denotes the time-
invariant parameter vector collecting all rate constants
p+j and p−j . Throughout this work, we assume that x(t)
belongs to the set X ⊆ Rn, and p to P ⊆ Rm.

In general, not all model species can be measured. There-
fore, we distinguish between the model states x(t) and
model outputs y(t) ∈ Rq. For simplification, all outputs
are aggregated into the nonlinear vector function g, i. e.

y(t) = g(x(t), p) (8)

where g : Rn × Rm → Rq.
Summarizing Eq. (7) and Eq. (8), one obtains the system{

ẋ(t) = f(x(t), p)
y(t) = g(x(t), p), (9)

which describes the time behavior of the biochemical
reaction network depending on the parameters p.

2.2 Determining Parameters based on Picard Iterations

We provide a method to obtain the vector of time invariant
parameters p from the model f(x(t), p). For simplicity of
presentation, we assume that we know all state values xk
at particular time points k, k = 1 . . . xk. Generalizations
are possible, but beyond the scope of this paper.

If φ : R → Rn is a solution of (9) with initial condition
φ(0) = x0, then φ satisfies

φ(t) = x0 +

∫ t

0

f(φ(s), p) ds . (10)

The Picard iteration scheme provides a recursive way to
obtain from an approximate solution ψ0 of φ a better, at
least local, approximation. To this end, one computes a
sequence of approximations defined as

ψn+1(t) = x0 +

∫ t

0

f(ψn(s), p)ds . (11)

The sequence of approximations converges towards the
solution φ on the intervall [0, T ]. For the technical details,
please refer to (Arnold, 1992), chapter 4.

On the other hand, knowing the solution φ : R→ Rn with
φ(0) = x0 enables us to compute the parameters p ∈ Rm
of the differential equation. To achieve this, we assume
that we have k precise values of the states xj = φ(tj)
at times tj , j = 1, . . . , k, where k is defined such that
k × n ≥ m. According to the integral equation we obtain
k × n equations,

xj = x0 +

∫ tj

0

f(φ(s), p) ds.

These k × n equations allow, the computation of the
unknown parameters p ∈ Rm, provided that we have
chosen the measuring points such that the system of
nonlinear equations is solvable for p.

The key idea is now to exploit the method of approxi-
mation for parameter determination. We therefore assume
that we know the complete states x0 and xj at time tj ,
j = 1, . . . , k. If the time steps tj are assumed to be
sufficiently close to each other, it is the reasonable to posit
that an interpolating function, i.e., a function ϕ : R→ Rn
with

ϕ(tj) = xj
for j = 0, . . . , k provides an approximation of the solution
φ. Therefore, ϕ satisfies

xj ≈ x0 +

∫ tj

0

f(ϕ(s), p) ds (12)
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for j = 1, . . . , k. We then aim to determine parameters p̃
such that (12) becomes an equality. Thus, we obtain

ϕ+(t) = x0 +

∫ t

0

f(ϕ(s), p̃) ds (13)

passing at time tj through the point xj . Here, ϕ+ is an
interpolating function, which under proper circumstances
is a better approximation to φ than the original initial
interpolating function ϕ. Repeating this procedure now
with ϕ+ is expected to render better approximations of φ
and, eventually, the parameters p.

2.3 Linear Parameter Dependency

The formalism of the previous section can be simplified if
mass-action kinetics is used. Then, the model ẋ = f(x, p)
depends linearly on the parameters and in this case the
equations (12) become linear equations for the unknown
parameters p.

ẋ = A(x)p (14)

where A : Rn → Rn×m, x 7→ A(x) is an n×m-matrix and
we get the linear equation system,

x1 = x0 +

∫ t1

0

A (ϕ(s)) ds p. (15)

Since more complex kinetics such as Michaelis-Menten or
Hill kinetics are approximations of multi-step mass action
reaction kinetics, this assumption does not impede the
general applicability of our method to biochemical signal
transduction analysis.

2.4 Simple Example

This example illustrates the underlying ideas of the recur-
sive parameter determination, using the simplest case of
employing linear interpolation between two time points.

We consider the differential equation

ẋ = p x,

where p ∈ R has to be determined.

Let φ : R→ R be the solution with φ(0) = 1 and φ(1) = 2.
Then ϕ(t) = t+1 is an approximation of φ and interpolates
φ at times 0 and 1. Thus, we have the equation

2 = 1 +

∫ 1

0

p̃ ϕ(s) ds (16)

yielding p̃ = 2
3 . Using this parameter and the above

interpolation for ϕ(t) and setting it into equation (16) gives
for the next approximation

ϕ+(t) = 1 +

∫ t

0

2

3
(1 + s) ds = 1 +

2

3
t+

1

3
t2,

with ϕ+(0) = 1 and ϕ+(1) = 2.

In turn, when ϕ+ is substituted by ϕ in Equation (16),
we can calculate the next iteration for the parameter p̃.
We thereby obtain 9

13 = 0.692308 which is close to the
true value log(2) = 0.693147 that is derived from exact
solution of above example with the mentioned restrictions
for the values at t = 1 and 2. Continuing with this iteration

Rcomplex 

(p)Rcomplex 

nucleus 

SOCS3 mRNA 

(p)STAT3 

SOCS3 

IL-6 2x 

2x 

2x 

IL-6R 
gp130 

Fig. 1. Schematic representation of IL-6-dependent recep-
tor complex assembly, Jak-STAT3 pathway activation
and activation of target genes.

scheme leads to a convergent sequence of interpolating
functions with limit φ(t) = 2t together with a convergent
sequence of parameters with limit log(2).

3. BIOLOGICAL EXAMPLE

To illustrate the Picard iteration approach, we consider in
the following the activation of the Jak-STAT3 pathway,
a major pathway in cellular signalling. We thereby model
IL-6-dependent receptor complex assembly and signalling.

3.1 IL-6-dependent Jak-STAT3 Signalling

IL-6 is known as a key regulator of inflammatory processes.
Dysregulation of IL-6 function leads to numerous patholo-
gies such as Rheumatoid Arthritis, Crohn’s disease and
Multiple Sclerosis (Scheller et al., 2006). Computational
analysis of inflammatory signalling has proven to be use-
ful for studying underlying disease mechanisms (Dittrich
et al., 2012; Veltman et al., 2017).

The mechanisms by which IL-6 initiates signal transduc-
tion are given in Fig. 1 and have been reviewed in (Heinrich
et al., 2003). Briefly, IL-6 first forms a complex with the
receptor subunit glycoprotein 80 (IL-6R). Two of such
complexes dimerise and bind to another two adaptor pro-
teins of type glycoprotein 130 (gp130), resulting in a hex-
americ receptor complex (Rcomplex). Next, tyrosine kinases
of the Jak protein family, which are constitutively bound
to the intracellular domain of gp130, become activated
after receptor complex assembly and phosphorylate gp130
((p)Rcomplex). Then, Signal Transducer and Activator of
Transcription 3 proteins (STAT3) are recruited to the
phosphorylated gp130 complex. Thereby, STAT3 proteins
are in turn phosphorylated by Jak proteins, leading to the
formation of active STAT3 dimers. Phosphorylated STAT3
(pSTAT3) dimers are assumed to translocate into the nu-
cleus and act as transcription factors which induce several
target genes. These genes include the negative regulator
of the Jak-STAT3 pathway, the Suppressors of Cytokine
Signalling 3 (SOCS3) (Endo et al., 1997) (modelled here as
mRNAs and proteins), eventually leading to a termination
of Jak-STAT3 signalling.

3.2 Modeling Assumptions and Equations

The dynamic processes of IL-6-induced Jak-STAT sig-
nalling as well as inhibition via SOCS3 can be modelled
by the following set of differential equations:
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dx1
dt

= p1x7(t)u−p2x1(t)−2p3x2(t)2x1(t)2+2p4x8(t)

dx2
dt

= 2p4x8(t)− 2p3x2(t)2x1(t)2

dx3
dt

=
p5x8(t)

1 + p13x6(t)
− p6x3(t)

dx4
dt

= p7y3(t)x9(t)− p8x4(t)

dx5
dt

= p9x4(t)− p10x5(t)

dx6
dt

= p11x5(t)− p12x6(t).

(17)

In (17), u denotes the input IL-6 which is assumed to
be time-invariant, hence considering a constant receptor
stimulus. The dynamical variables of the system (17) x1(t),
x2(t), x3(t), x4(t), x5(t), x6(t) denote IL-6∼IL-6R, gp130,
(p)Rcomplex, (p)STAT3, SOCS3 mRNA and SOCS3 pro-
tein, respectively. We have further introduced x7(t), x8(t)
and x9(t) which denote the biochemical entities IL-6R,
Rcomplex and STAT3, respectively. These are dependent
variables, which can be obtained from biological conserva-
tion laws as follows:

xtotal2 = x2(t) + 2x3(t) + 2x8(t) := α

xtotal7 = x1(t) + 2x3(t) + x7(t) + 2x8(t) := β

xtotal4 = x9(t) + x4(t) := γ,

(18)

where we have introducted greek letters for simplifying the
further notation. Thereby, xtotal2 is set to 16.8 nM, xtotal4 to
83 nM, and xtotal7 to 2.1 nM according to quantitative bio-
chemistry measurements (F. Schaper, Magdeburg, private
communication). The constant IL-6 stimulus u is assumed
to be 0.17 nM, which is a typical concentration for IL-6
stimulation experiments (Dittrich et al., 2012). The initial
conditions were set to x(0) = (0, 16.8, 0, 0, 0, 0), reflecting
the fact that, while gp130 is at maximum, all other entities
are not available at time point t = 0 and formed after IL-6
stimulation. Notably, the (nonzero) initial conditions for
the dependent variables x7(t) (IL-6R), x8(t) (Rcomplex),
x9(t) (STAT3) can be derived from the conservation laws
(18). We finally remark that we have not explicitely mod-
elled Jak kinases as we assumed them to be an integral
part of gp130.

3.3 Application of the Picard Iteration

To exemplify our method, we cast our biological model
(17) into the compact notation

ẋ = fc(x, p)

where fc : R6 × R13 → R6 and is defined as

fc(x, p) =



p1 u (−α+ β − x1 + x2)+
p4(α− x2 − 2x3)−
p3 x

2
1 x

2
2 − p2 x1 ,

p4 (α− x2 − 2x3)− p3 x21 x22 ,

p5
(
α−x2

2 − x3
)

1 + p13x6
− p6 x3 ,

x7 x3(γ − x4)− p8 x5 ,
p9 x4 − p10 x5 ,
p11 x5 − p12 x6


, (19)

and where we have separated the rows by commata for
clarity reasons. As we see, the parameter p13, is included
in a rational term denoting the SOCS3 feedback and hence
prevents the linear dependency of fc on its parameters. For
providing a straightforward exemplification of our method,
we will therefore first set p13 = 0 and later calculate this
parameter by steady state assumptions. With this choice,
our model ẋ = f(x, p) depends linearly on the parameters,
and we can hence write

ẋ = A(x)p , (20)

where A(x) is a 6× 12-matrix with block structure

A(x) =

(
A1(x) 0

0 A2(x)

)
,

and with A1(x) and A2(x) being 3× 6-matrices given as

A1(x) =

u (−α+ β − x1 + x2) −x1 −x21 x22
0 0 −x21 x22
0 0 0

α− x2 − 2x3 0 0
α− x2 − 2x3 0 0

0
α− x2

2
− x3 −x3

 (21)

and

A2(x) =

(
(γ − x4)x3 −x4 0 0 0 0

0 0 x4 −x5 0 0
0 0 0 0 x5 −x6

)
. (22)

As a consequence, for the determination of the 12 unknown
parameters we need the initial state x0 ∈ R6 and two more
states x1 and x2 ∈ R6 at times t1 and t2, respectively.
Assuming these two states, the Equations (12) become
linear equations and read as

x1 = x0 +

∫ t1

0

A (ϕ(s)) ds p

and

x2 = x0 +

∫ t2

0

A (ϕ(s)) ds p,

(23)

where ϕ is an interpolating function of our state vector x
passing through x1 and x2 at t1 and t2, respectively. Note
that we have 12 equations and 12 unknown parameters.

4. IMPLEMENTATION AND RESULTS

To numerically exemplify the method, we first calculated
the direct problem (17) giving us the temporal evolvement
of the state variables by assuming a set of biologically
reasonable parameters as given in Table 2. This is first
performed for the case without SOCS3 negative feedback
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Table 1. Outline: Picard iteration method

• We assume the ODE (20) with linear depen-
dency in the parameters p.

• We take a set of k experimental points of all n
state variables

• We assume a first approximation of the tempo-
ral behaviour of the solution by interpolating
with a polynomial function of kth order accord-
ing the example in subsection 2.4

• We plug the first interpolating function into the
Picard integral and integrate the polynomials

• We solve the resulting equation for k × n equa-
tions and m parameters (23)

• Finally, we construct the next interpolating
function over the xj , j = 0, . . . , k at time tj
and repeat for the procedure

(p13 = 0) leading to linear dependency on the parameters.
Using the initial condition of x(0)=(0, 16.8, 0, 0, 0, 0)
and the input u being fixed to 0.17 nM, we calculated the
dynamical behaviour for xj(t) at a step size of 0.04 min.
We then calculated the inverse problem for this situation
following the protocol in Table 1. We thereby used the
time series values of x1 at t1 = 1 (min) and x2 at t2 = 2
(min) that determines the first interpolating function of
the solution φ. We subsequently addressed the problem
including the negative feedback, where we recalculated the
direct probem with parameters above, yet including now
the negative SOCS3 feedback and setting p13 = 0.029.
Using the newly generated set of state variables at large
time points (i. e. at the steady state), we can recover
p13 using the steady state condition where the temporal
changes in the system (17) are set to zero. In particular,
the third component of Equation (19) becomes

0 =
p5
(
α−x2

2 − x3
)

1 + p13x6
− p6 x3

which yields

p13 =

[
p5 ·

(
0.5 · (xtotal2 − x2(∞))− x3(∞)

)
p6 · x3(∞)

− 1

]
· 1

x6(∞)

(24)

Thereby, we have used the values for x2, x3, x6 at steady
state conditions x2(∞), x3(∞), x6(∞), taken their numer-
ical approximation at late simulation times, t ≈ 90 min.

Analytical and numerical calculations were performed in
Mathematica 11 (Wolfram Research, Champain, Illinois).
Results of numeric calculations are depicted in Table 2.
There, recalculated parameters were retrieved with an
accuracy of 90% for smaller and 95% for larger parameters.

5. DISCUSSION AND CONCLUSIONS

We devised here a method to retrieve ODE model param-
eters from experimental time series based on Picard itera-
tion. The method was able to recover correct parameters
for a medium sized inverse problem, the Jak-STAT3 activa-
tion pathway, provided accurate time series of all involved
entities and assuming linear dependency of the model pa-
rameters. To guarantee linear dependency, we first applied

Table 2. Assumed kinetic parameter (17) and
those recalculated from the proposed inversion
method. The asterisk denotes the calculation

via steady state conditions.

Parameter Assumed Calculated

p1 0.122 0.1218
p2 0.04 0.0388
p3 3.59 3.5920
p4 0.05 0.0484
p5 0.08 0.0803
p6 0.08 0.0864
p7 0.16 0.156
p8 0.09 0.010
p9 0.03 0.026
p10 0.02 0.021
p11 0.03 0.029
p12 0.01 0.008
p13 0.029 0.028*

our method to a subproblem where feedback was neglected
and then demonstrated how the feedback parameter can
be retrieved using steady state conditions. We note that,
neglecting this feedback and determining it in a second
step requires also to generate experimental data where
this feedback is broken. This can be achieved either by
chemical inhibitors or by point mutations that block the
inhibitor or render it useless through missense mutation.
We further note that restriction to linear parameters is a
feature of our current implementation solving a Gaussian
system rather than a feature of the Picard implementation
and expect future implementations to address the issue of
non-linearity in an appropriate fashion.

For our analysis, we posit that the biological process can
be described by a given topology of ODEs, that the entire
set of biological intermediaries (such as truncated proteins,
multimers, etc.) is detectable and that the initial condi-
tions are given. Indeed, while measuring these biological
intermediaries can be cumbersome, it is expected that
they will be in future measurable through improvements in
protein labelling, immunoprecipitation of multimeric com-
plexes and usage of time-dependent expression techniques
(PCR, RNA-Seq).

Several limitations of the methods apply. First, conver-
gence of the Picard iteration requires good initial ap-
proximation in the function space. More importantly, our
method was sensitive against increase of the time interval
of the measurements that were taken into account for gen-
erating the Gaussian system. This is especially envisaged
to cause issues for stiff systems where certain variables con-
tain less information about temporal changes than others.
This drawback may argue for combining our methods with
such of experimental design (such as analysing the Fisher
Information Matrix) such that the most informative time
points for measurements can be taken into account. To
this end, we note that our method does not require to use
the same time points for all observables. To this end, our
numerical experiments allow us to determine the size of the
time interval in order to compute the parameters within
a certain accuracy, hence providing a hint for the number
and distance of measurements in a specific experiment.

Finally, the method requires that all states are detectable.
Despite these limitations, however, the method would be
suitable for experiments such as single cell fluorescent
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imaging (Connolly et al., 2016) where high frequency time
lapse-data are available for a large quantity of observables.
We further envisage the mehod to be extendible to the
inclusion of experimental errors and for disentangling
time-scales for fastly and slowly changing state variables.
An application to non-linear parameters to cover more
sophisticated kinetics such as Michaelis-Menten or Hill
kinetics is in preparation.
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