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Abstract: Stratification of patients into different risk subcategories for disease development
plays an important role in medical treatments. It sets the basis for physicians to decide upon
personalized interventions. This patient-specific therapy design increasingly becomes supported
by mathematical models that describe the underlying disease processes on a detailed molecular
level. However, the mathematical description of disease development is challenging. Often
the underlying processes act on different time scales. Furthermore, the biomedical data and
measurements have different quantities, qualities and uncertainties. New methods are required
to address this heterogeneity in the data landscape and to integrate measurements on different
time scales in order to extract meaningful information over the disease process. We devise
an approach for integrating biological signals for short and long-term molecular processes
into a coherent framework. To this end, we combine set-based estimation methods for short-
term molecular pathways with classification approaches of long-term disease development. The
developed framework is demonstrated by means of IL-6-induced Jak-STAT3 and MAPK trans-
signaling.
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1. INTRODUCTION

Signal transduction pathways are important for transmit-
ting initial signals at the receptor level into a cascade
of various protein-protein interactions, eventually result-
ing in cellular responses such as cell differentiation, cell
death or growth. Deregulation of such signal transduction
processes, potentially induced by altered protein levels or
missense mutations, can eventually lead to the develop-
ment of severe diseases. To this end, several inflammation-
related diseases, such as Inflammatory Bowel Diseases,
Rheumatoid Arthritis and even cancer have been associ-
ated to altered signaling (Roy et al. (2008); Kamimura
et al. (2003); Veltman et al. (2017)).

Mathematical models to understand disease progression
over time can, often in combination with model-driven
experiments, help to gain insight into the key players of
misbalanced signaling and unravel drug targets to mitigate
or reverse disease progression. Yet, the provision of reliable
mathematical models faces several challenges. Firstly, such
models contain often unknown model parameters such
as kinetic parameters and initial protein concentrations,
preventing the establishment of quantitative and reliable
models. Secondly, measurement data are almost ever sub-
ject to large uncertainties and are often even unreliable
(Streif et al. (2016)). Finally, the cellular and molecular

1 NR, PA, and RF are members of the International Max Planck
Research School (IMPRS) for Advanced Methods in Process and
System Engineering, Magdeburg.
2 The authors acknowledge partial funding by the BMBF in the
frame of the research project InTraSig, grant number 031A300A and
the research center of dynamic systems (CDS) funded in the frame
of the ERDF (European Regional Development Fund).
3 Corresponding author: rolf.findeisen@ovgu.de

processes that govern disease development over time oper-
ate on different time scales and can cover fast ones, such as
pathway initialization, receptor formation and activation,
or slower ones such as cell growth and differentiation. This
heterogeneity gets aggravated by the fact that the presence
of these different time scales is reflected by a different
landscape in data quality. Specifically, data for short-term
measurements can be obtained with high temporal resolu-
tion (such as protein levels over time), while only sparse
(such as measurements of tumour growth) or categorical
(survival/death, stage of inflammation) are often available
for long-term processes. The combination of these both
time scales is not trivial, but nevertheless indispensable
for the understanding of how and why diseases develop at
the molecular level.

To identify model parameters for short-term processes
from given, uncertain data, set-based and probability-
based estimation methods have been developed (Kreutz
et al. (2012); Rumschinski et al. (2010); Milanese and No-
vara (2004); Bemporad et al. (2005)). Set-based methods
account for data uncertainties by finding sets of possible
model parametrizations such that the model predictions
fit the uncertain experimental data over time. Set-based
methods have been applied in the context of parameter es-
timation, model invalidation, and experimental design for
biochemical problems. For reliably predicting disease pro-
gression, however, extension of such set-based frameworks
to identify parameters for short and long-term behavior
are needed.

The previous work Rudolph et al. (2015) presented a set-
based approach for combining both time scales for signal-
ing of the Jak-STAT3 pathway to relate early signaling
events with long-term responses. However, an appropriate
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classification of long-term patient risk for the development
of inflammatory diseases was not considered. We therefore
here provide an unified framework combining set-based es-
timation methods and classification approaches for patient
stratification into risk subcategories based on long-term
outcomes.

This contribution is structured as follows: In Section 2, the
set-based framework for combining short- and long-term
scales as well as an overview of the proposed framework
are outlined. In Section 3, our approach using IL-6-induced
Jak-STAT3 and MAPK trans-signaling is employed, fol-
lowed by a brief conclusion in Section 4.

2. SET-BASED STRATIFICATION APPROACH

We are interested in the combination of biological pro-
cesses that act on two different time scales and for which
uncertain measurement data are available. Furthermore,
we are interested in how to use the uncertain data and
dynamical model describing the fast and short-term pro-
cesses to make a prediction about the slow and long-term
outcomes.

A classical approach for the combination of different time
scales would be to consider a dynamical model for each
time scale and to look for a relation between the parame-
ters in each model. Although this could work in general,
a deep knowledge about the underlying processes at each
time scale, their interconnection and also insight in the
parameter variation due to the uncertainties would be
required. The challenge becomes even bigger if we consider
only sparse data on the long-term scale. We consider the
extreme case of a single data point on the long-term
scale which will be further used for the stratification of
a simulated patient cohort into risk subcategories.

We propose a framework that requires only one dynamical
model for the short-term scale processes as well as uncer-
tain patient data for processes on the short- and long-term
scale, and a classification method. We continue with the
mathematical formulation of the uncertain data, parame-
ters and dynamical processes. Afterwards we present the
framework and two algorithms, which illustrate how the
method learns the correct stratification and explain how
the method is applied.

2.1 Set-based Problem Setup

In the following, we focus on the first step to determine
uncertain parameters from short-term biochemistry ex-
periments that are used as inputs for the classification
methods. To this end, we utilize the set-based approach
presented in Rumschinski et al. (2010).

We consider a class of polynomial discrete-time systems of
the form

f(x(k + 1), x(k), u(k), p) = 0 (1a)

h(y(k), x(k), u(k), p) = 0, (1b)

where f : Rnx × Rnx × Rnu × Rnp → Rnx are polynomial
or rational functions, x(k) ∈ Rnx is the time-variant state
vector, u(k) ∈ Rnu the time-variant input vector, and
p ∈ Rnp the time-invariant parameter vector. The model
output equations are given by h : Rny×Rnx×Rnu×Rnp →
Rny , which are assumed as polynomial functions, and
y(k) ∈ Rny denote the time-variant model output vector.
Time is indexed by k ∈ N and considered within a finite
horizon T , k ∈ T for parameter estimation. Measurements

are considered to be uncertain at each time instance k, i. e.
y(k) and u(k), and lie inside the compact sets Yk and Uk,
respectively. Furthermore, the initial conditions x(0) and
the model parameters p are contained inside the sets X0

and P:
y(k) ∈ Yk, u(k) ∈ Uk,

x(0) ∈ X0, p ∈ P.
(2)

Considering the introduced uncertainty descriptions, our
goal is to estimate consistent and patient-specific parame-
ter sets Pc, such that a model for short-term and dynamic
processes is consistent with experimental patient data,
i. e. y(k) ∈ Yk and u(k) ∈ Uk, ∀k ∈ T . Therefore, we
reformulate the systems dynamics and uncertainties into
a so-called feasibility problem FP:

FP :

{
find ξ

subject to gi(ξ),
(3)

with ξ ∈ R(nx+ny+nu)nt+np being the vector containing all
time-variant and time-invariant variables of (1) and the
constraints gi(ξ) represent the nonlinear dynamics in (1)
as well as the set-based uncertainties from (2).

Due to the nonlinearities in (1), the stated FP becomes
nonconvex and is hard to solve. As shown in Borchers et al.
(2009), it is possible to relax the FP into a convex semi-
definite feasibility problem (SDP). To deal with larger
problems the SDP can be further relaxed into a linear
program (LP), which can be solved efficiently using state-
of-the art solvers, e. g. CPL (2007).

To obtain an outer-bounding of the feasible parameter
space, the FP in (3) is replaced by an optimization
problem in which the single parameters are minimized or
maximized (cf. Fig. 1, Rumschinski et al. (2010)).

Fig. 1. Outer-bounding of uncertain parameters pi and pj .
The algorithm allows to estimate tight lower (pestim

j
,

pestim
i

) and upper (pestimj , pestimi ) bounds for the con-

sistent parameter set Pc (light grey rectangle) by
sequentially and iteratively tightening the initial pa-
rameter bounds P0 (blue arrows and black rectangle).

In the second step of the analysis, we predict the long-
term behavior from model parameters determined in the
first step. Therefore, we arrange the sequence of long-
term data into ordered tupels for each patient, which we
associate to classes of long-term patient responses and
which serve as output categories for the classification
approach. If the long-term data only consists of a single
endpoint (as in our example below), its value are directly
associated with a group such as providing a stratification
for low, medium or high risk patient based on predefined
thresholds for the respective data. For this, the patients are
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split into groups for training, for validation and for test, in
line with standard procedures of classification approaches.
The analysis is performed for each patient of each group
separately.

2.2 Overview of the Stratification Framework

Our approach combines the set-based estimation frame-
work presented in Rumschinski et al. (2010) for data
on the fast, short-term scale with classification methods
for patient stratification using data on the slow, long-
term scale as detailed in Figure 2. We first assume that
short-term data obtained from biochemical surrogates of
patients (such as cells extracted from biopsies or blood
serum) are available. These surrogates are probed by bio-
chemical stimulation (e. g. excitation of a certain pathway)
and point us to changes in proteins or genes indicative of
disease status within seconds to minutes. We use dynam-
ical computational models to understand the short-term
signaling processes and apply set-based estimation meth-
ods to obtain model parameter sets that can describe the
biochemical data. These parameter sets are subsequently
transformed (piped) through a classification algorithm
(e. g. an artificial neural network, support vector machines,
etc.), resulting in a set of transformed parameters (in our
example: weights and thresholds in a neural network) to
match the long-term response (e. g. disease status over
days).

classification methods 
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Fig. 2. Proposed workflow for combining fast and uncer-
tain biochemical processes on the short-term scale
with slow and uncertain physiological responses on
the long-term scale. The short-term scale data often
describe the patient diagnosis over longer time and
may be seen as a means for patient strata for disease
development (e. g. low, medium and high risk).

The presented workflow is formalized in Algorithm 1. The
algorithm is used to obtain a trained classifier based on
short-term patient data. Once Algorithm 1 has produced
a classifier that has satisfying performance, the obtained
result is used to stratify new patients according their long-
term profiles as described in Algorithm 2.

In the following section, we illustrate applicability of
Algorithm 1 and 2.

3. EXAMPLE

In the following, we use simulated measurements for the
short- and long-term scale for a group of 50 patients.

Algorithm 1 Set-based classifier training

Input:
Short- and long-term scale data for each patient;
A dynamical model describing the behavior of the
short-term scale data;
Threshold values defining each risk group;
An untrained classifier;

Output:
A trained classifier;

1: Perform set-based parameter estimation using the
short-term scale data and the dynamical model

2: Process the data for each time instance on the long-
term scale into the risk subcategories

3: Stratify the patients into the corresponding risk sub-
categories

4: Arrange the corresponding parameter bounds of each
patient to the corresponding risk subcategory for each
long-term time instance

5: Split patients into groups for training, validation and
test

6: Train the chosen classifier
7: Verify the quality of the classifier and if needed adjust

and re-train the classifier

Algorithm 2 Patient stratification

Input:
Short-term scale data for each patient;
The same dynamical model describing the behavior of
the short-term scale data as in Algorithm 1;
The trained classifier from Algorithm 1;

Output:
A prediction of the patient-specific risk category;

1: Perform set-based parameter estimation using the
short-term scale data and the dynamical model

2: Input the set-based parameter estimation results into
the trained classifier

3: Obtain the stratification results

Simulated short-term data consist of a biochemical data
set, assumed to be provided by biochemically testing the
response of extracted patient tissue to a certain stim-
ulation. In particular, we assume to avail of protein
changes of patient tissue associated with two important
signaling pathways, IL-6-induced Jak-STAT3 and MAPK
trans-signaling. Thereby, trans-signaling refers to a specific
branch of the respective pathway inducing a large number
of genes, coding for proteins, that are involved in long-term
pathophysiology, such as cancer, Rheumatoid Arthritis,
and Multiple Sclerosis (Yu et al., 2009; Rose-John, 2012;
Lo et al., 2011).

As long-term response, we assume to avail of a single
endpoint at a later time point for each patient, which
we together associate to low, medium and high risk for
developing an inflammatory disease.

3.1 Mathematical Pathway Models

In the following, the implemented models for IL-6-induced
Jak-STAT3 and MAPK trans-signaling are introduced (cf.
Fig. 3 and Heinrich et al. (2003)).

Jak-STAT3 pathway model: IL-6 initiates trans-
signaling by binding to the soluble receptor subunit glyco-
protein 80 (sIL-6R). Two entities of the resulting receptor
complex are then bound to two receptor subunits glyco-

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

894



gp130 

Rcomplex 

extracellular space 

pRcomplex 

nucleus 

SOCS3 mRNA 

pSTAT3 

SOCS3 

Ras Ras* 

Raf 

Mek Mek* 

ERK ERK* 

pSHP2 

Raf* 

2x sIL-6R 

IL-6 2x 

2x 

Grb2 

Fig. 3. Schematic representation of IL-6-induced recep-
tor complex formation during trans-signaling, Jak-
STAT3 pathway activation and MAPK signaling.

protein 130 (gp130) forming a hexameric receptor complex
(Rcomplex). Due to the constitutive binding of tyrosine
kinases of the Jak family to the intracellular domain of
gp130, Jaks become activated and in turn phosphorylate
gp130 (pRcomplex). To this active hexameric complex, Sig-
nal Transducer and Activator of Transcription 3 (STAT3)
proteins are recruited to phosphorylated gp130. STAT3s
are phosphorylated (pSTAT3) by Jaks leading to the for-
mation of active STAT3 dimers. Phosphorylated STAT3
dimers function as nuclear transcription factors regulating
several target genes, including its own negative regulator
Suppressors of Cytokine Signaling 3 (SOCS3).

The above described reaction mechanisms can be de-
scribed as follows:

x1(k + 1) = x1(k) + ∆t
(
p1x7(k)u− p2x1(k)

− 2p3x2(k)2x1(k)2 + 2p4x8(k)
)

x2(k + 1) = x2(k) + ∆t
(
2p4x8(k)− 2p3x2(k)2x1(k)2

)
x3(k + 1) = x2(k) + ∆t

( p5x8(k)

1 + p13x6(k)
− p6x3(k)

)
x4(k + 1) = x4(k) + ∆t

(
p7x3(k)x9(k)− p8x4(k)

)
x5(k + 1) = x5(k) + ∆t

(
p9x4(k)− p10x5(k)

)
x6(k + 1) = x6(k) + ∆t

(
p11x5(k)− p12x6(k)

)
.

(4)

Thereby, the variables x1(k), x2(k), x3(k), x4(k), x5(k),
x6(k) and u denote IL-6∼sIL-6R, gp130, pRcomplex,
pSTAT3, SOCS3 mRNA, SOCS3, and IL-6. Furthermore
x7(k), x8(k), x9(k) describe the entities sIL-6R, Rcomplex

and STAT3, respectively which can be extracted from the
following conservation laws:

sIL−6RTotal = sIL−6R + IL−6∼sIL−6R
+ 2Rcomplex + 2pRcomplex

gp130Total = gp130 + 2Rcomplex + 2pRcomplex

STAT3Total = STAT3 + pSTAT3.

Furthermore, ∆t denotes the sampling time. Note that
for model simplification, we assumed Jak kinases to be
represented by gp130 species.

MAPK pathway model: Due to the activation of Jaks
and the subsequent phosphorylation of gp130 akin to
Jak-STAT3 signaling, the SH2-containing protein tyrosine
phosphatase 2 (SHP2) is recruited and phosphorylated.
Phosphorylated SHP2 (pSHP2) acts as an adaptor protein

for several proteins, including Growth factor receptor-
bound protein 2 (Grb2). Grb2 is constitutive associated
with SOS (Son Of Sevenless), which is a guanine nucleotide
exchange factor activating the small G-protein Ras which
is bound to the nucleotide guanosine diphosphate (GDP).
SOS forces Ras to release GDP and subsequently, Ras
binds to nucleotide guanosine triphosphate resulting in
Ras activation (Ras∗). Ras∗ interacts with and stimulates
downstream signaling effectors, including the kinase Raf.
Raf is activated to Raf∗ and stimulates its downstream
target, the MAP kinase ERK through the intermediate
kinase Mek. Stimulated ERK (ERK∗) activates a number
of transcription factors, which play an important role in
cell proliferation and differentiation.

The reaction mechanisms for the MAPK pathway can be
described as follows:

x1(k + 1) = x1(k) + ∆t
(
p1x7(k)u− p2x1(k)

− 2p3x2(k)2x1(k)2 + 2p4x8(k)
)

x2(k + 1) = x2(k) + ∆t
(
2p4x8(k)− 2p3x2(k)2x1(k)2

)
x3(k + 1) = x2(k) + ∆t

(
p5x8(k)− p6x3(k)

)
x4(k + 1) = x4(k) + ∆t

(
p7x3(k)x8(k)− p8x4(k)

)
x5(k + 1) = x5(k) + ∆t

(
p9x4(k)x9(k)− p10x5(k)

)
,

x6(k + 1) = x6(k) + ∆t
(
p11x5(k)x10(k)− p12x6(k)

)
x7(k + 1) = x7(k) + ∆t

(
p13x6(k)x11(k)− p14x7(k)

)
.
(5)

In (5), the variables x1(k), x2(k) and x3(k) are similar to
(4), whereby the same conserved moieties hold for sIL-6R
and Rcomplex. Moreover, the variables x4(k), x5(k), x6(k),
and x7(k) denote Ras∗, Raf∗, Mek∗ and ERK∗, respec-
tively. The inactive forms Ras, Raf, Mek and ERK denoted
as x8(k), x9(k), x10(k), and x11(k) can be extracted from
the conservation laws:

RasTotal = Ras + Ras∗, RafTotal = Raf + Raf∗

MekTotal = Mek + Mek∗, ERKTotal = ERK + ERK∗.

We note that Grb2/SOS was not explicitly modeled but
considered as an integral part of the phosphorylated re-
ceptor.

3.2 Simulation of Short- and Long-term Patient Data

To demonstrate applicability of the presented approach,
we assume 50 patients and calculate simulated data for
the proteins pSTAT3 and ERK∗, acting as upstream
surrogates for inflammatory diseases.

For generating data on pSTAT3, the input IL-
6 was fixed to 0.2 and STAT3Total was set
to 10. Furthermore, we assumed the kinetic
parameters pJak−STAT3

i with i := {1, . . . , 13} as

pJak−STAT3
i =(0.075,0.056,0.01,0.00015,0.25,0.09,1.5,0.01,. . .

0.1,0.1,1,0.1,5)T and the initial conditions were set
to x(0)=(0,gp130Total,0,0,0,0). Values for the total
concentrations of gp130Total and IL-6RTotal were randomly
generated within the bounds of gp130Total=[1,5] and sIL-
6RTotal=[0.5,2], respectively.

For data generation on ERK∗, we fixed IL-6 to 0.2,
gp130Total to 5 and IL-6RTotal to 2. The kinetic
parameters pMAPK

i with i := {1, . . . , 14} were assumed as
pMAPK
i =(0.075,0.056,0.01,0.00015,0.25,0.09,0.1,0.1,0.1,. . .

0.1,0.1,0.1,0.1,0.1)T and the initial conditions were
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(a) (b) (c)

Fig. 4. Simulated data, exemplary for 4 patients. (a) Short-term profiles for pSTAT3 during Jak-STAT3 signaling and
(b) ERK∗ during MAPK signaling. (c) Calculated long-term outcomes (bars), which are obtained by multiplying
the integrals of the pSTAT3 and ERK∗ trajectories from (a) and (b), and the determined 75% and 25% quantiles
(black bold lines) for patient stratification.

set x(0)=(0,gp130Total,0,0,0,0,0). Values for the total
concentrations of RasTotal, RafTotal, MekTotal, and
ERKTotal were randomly generated within the bounds
[1,10], respectively.

As long-term patient outcome, we assumed the integrated
response of the activation of both pathways as a disease
surrogate. We therefore first calculated the integrals of the
pSTAT3 and ERK* trajectories for each patient using the
Matlab function trapz for a time horizon of 60 minutes.
Then, both integrals were multiplied to assess a collective
effect for inflammation on the long-term scale. These
results are then grouped over the patient cohort to classify
them into patients with values lower than 25%-quantile
“low risk patients”, such between 25%- and 75%-quantiles
“medium risk patients” and such with higher than the
75%-quantile “high risk patients”.

The simulated short (pSTAT3 and ERK*) and long time
scale data (corresponding integrals) together with the
patient stratification that is used for classification are
shown exemplarily for 4 patients in Fig. 4.

3.3 Set-based Estimation of Patient-specific Parameters

The set-based approach described in Section 2.1 was used
to remodel the short-term scale data for each pathway
in order to render a set of outer-bounded parameters
for each patient and pathway. For solving the feasibility
problem of the dynamical system, ∆t was set to 2 min-
utes for a time horizon of 60 minutes. To account for
experimental uncertainties, errors of ±10% were added to
the vectors, pJak−STAT3

i and pMAPK
i as well as the simu-

lated short-term data for pSTAT3 and ERK*. From this
generated short-term data, the patient-specific parameters
gp130Total and IL-6RTotal in the Jak-STAT pathway and
RasTotal, RafTotal, MekTotal, and ERKTotal in the MAPK
pathway were estimated for each patient using the outer-
bounding approach as described in Section 2.1. Calcula-
tions were performed using the Analysis, Design and Model
Invalidation Toolbox (ADMIT) (Streif et al., 2012) and the
solver Cplex (CPL, 2007).

In Tables 1 and 2, the outer-bounding results for 4 simu-
lated patients (cf. Fig. 4) are presented.

3.4 Training and Validation of the Classifier

For the classification part of our method, several ap-
proaches can be used (cf. Dougherty (2013); Lu and
Weng (2007)). To demonstrate the proposed framework,

Table 1. Outer-bounding results for 4 pa-
tients for the Jak-STAT3 signaling pathway

(cf. Fig. 4(a))

Patients sIL-6RTotal gp130Total

1 [1.2, 1.8] [3.7, 4.9]
2 [0.9, 1.6] [3.2, 4.3]
3 [0.7, 1.1] [2.7, 3.6]
4 [1.4, 2.0] [4.1, 5.0]

Table 2. Outer-bounding results for 4 patients
for the MAPK signaling pathway (cf. Fig. 4(b))

Patients RasTotal RafTotal MekTotal ERKTotal

1 [7.6, 9.3] [6.7, 9.2] [7.2, 9.8] [8.3, 9.6]
2 [6.8, 9.2] [6.0, 9.0] [6.4, 9.6] [7.4, 8.5]
3 [5.9, 8.0] [5.2, 8.7] [5.6, 8.4] [6.5, 7.4]
4 [3.9, 5.3] [3.2, 5.4] [5.7, 8.5] [5.9, 6.8]

we opted to use Artificial Neural Networks (ANN), cf e. g.
Picton (1994); Dougherty (2013). Yet, also Support Vec-
tor Machines (Abe, 2005) or boosting methods (Schapire,
2003) can be used.

Structurally, the chosen ANN consisted of a hidden layer
with 10 neurons, to which the input information is fed, and
one output layer, which provides the classification results.
All neurons in the hidden layer have sigmoid activation
functions, in contrast to the output layer having softmax
activation functions (Sutton and Barto, 1998). The use
of softmax neurons normalizes the outcome such that
all outcomes add to 1, and hence the patient category
as outcome can be interpreted as probability function
(Goodfellow et al., 2016).

The input of the ANN is a vector of 12 inputs, which
correspond to the upper and lower boundary value of each
of the parameters of the two pathways, which preserves the
set-based notion. Calculations were performed using the
Neural Pattern Recognition app in MATLAB (Beale et al.,
2017). The patients were split into training, validation, and
test group according a split of 60%, 20% and 20%, respec-
tively. The resulting confusion matrices are presented in
Fig. 5. The results demonstrate a 83.3% correct classifi-
cation of the training set, 90% of the cross-validation set,
80% of the test set, and an overall correctness of 84%.

To ensure the reproducibility of the results different runs
were carried out. The used integrated random algorithm,
for choosing which patient falls in which group, demon-
strated that the results could only improve. Furthermore,
increasing the size of the hidden layer did not produce
improvement in the classification.
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Fig. 5. Estimation results after applying Algorithms 1 and
2 on the patients data.

4. CONCLUSIONS

We provided a modeling framework that allows for com-
bining processes and data on the short- and long-term
scale under the umbrella of an unified set-based approach.
The framework can be seen as an extension of methods
that provide a feasibility set for experimental data with
inherent uncertainties. The sets obtained for a fast, short-
term and often pathway-based description of the disease
process are transformed by piping it through a classifica-
tion algorithm to provide a prediction of long-term scale
data. With this, we aimed to provide a shift in reason-
ing over feasibility sets to define them as a super-class
for explaining data under uncertainty, while covering a
process of detailed dynamical modeling and more abstract
classification approaches at the same time.
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