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Abstract: Microorganisms have developed complex regulatory features controlling their re-
action and internal adaptation to changing environments. When modeling these organisms
we usually do not have full understanding of the regulation and rely on substituting it with
an optimization problem using a biologically reasonable objective function. The resulting
constraint-based methods like the Flux Balance Analysis (FBA) and Resource Balance Analysis
(RBA) have proven to be powerful tools to predict growth rates, by-products, and pathway usage
for fixed environments. In this work, we focus on the dynamic enzyme-cost Flux Balance Analysis
(deFBA), which models the environment, biomass products, and their composition dynamically
and contains reaction rate constraints based on enzyme capacity. We extend the original deFBA
formalism to include storage molecules and biomass-related maintenance costs. Furthermore, we
present a novel usage of the receding prediction horizon as used in Model Predictive Control
(MPC) in the deFBA framework, which we call the short-term deFBA (sdeFBA). This way we
eliminate some mathematical artifacts arising from the formulation as an optimization problem
and gain access to new applications in MPC schemes. A major contribution of this paper is a
systematic approach for choosing the prediction horizon and identifying conditions to ensure
solutions grow exponentially. We showcase the effects of using the sdeFBA with different horizons
through a numerical example.

Keywords: model predictive control, metabolic engineering, gene expression, linear
optimization

1. INTRODUCTION

Microorganisms encounter a vast array of environmental
conditions and have developed complex regulatory mech-
anisms to cope with them. While a lot of research is
done to investigate this, most regulatory features are still
unknown. An effective alternative approach is the sub-
stitution of the regulation with an optimization problem
as originally done with the Flux Balance Analysis (FBA)
in (Varma and Palsson, 1994b). This method models the
organism as a metabolic network in steady-state and max-
imizes a single biomass flux. This approach led to a family
of methods focusing on different aspects.

Initial steps towards dynamic models with the ability to
react to changing environments were made with the dy-
namic FBA (Mahadevan et al., 2002). But this method still
lacks a connection between reaction rates and the enzyme
levels necessary to realize them. The first optimization
method to take this into account is the Resource Balance

? H.L. and A.-M.R are funded by ERANET for Systems Bi-
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Analysis (RBA) (Goelzer et al., 2011). In this method the
growth rate of the cell is optimized to a fixed medium
composition while enzymatic flux constraints limit uptake
and metabolic reaction rates. The combination of these
enzymatic constraints and a dynamic approach resulted in
the dynamic enzyme-cost Flux Balance Analysis (deFBA)
presented in (Waldherr et al., 2015). The deFBA predicts
all reaction rates and enzymatic levels for given nutrient
dynamics on a chosen time frame. An application of the
deFBA to a genome scale model can be found in (Reimers
et al., 2017a).

During a recent study (Waldherr and Lindhorst, 2017) we
learned that the fixed end-time in the deFBA can lead
to artificial solutions usually not observed in the modeled
organisms. Furthermore, we plan to use deFBA inside a
model predictive controller to maximize certain biomass
products by manipulation of the medium composition.
Thus, we present in this work the short-term deFBA
(sdeFBA), which combines the deFBA with the idea of
a receding prediction horizon. This also allows us to solve
problems with large end-times piece-wise and in some cases
reduces the computational cost for the simulation.
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2. DYNAMIC ENZYME-COST FLUX BALANCE
ANALYSIS

2.1 Constructing the optimization problem

In this section we present the basics of the deFBA and
showcase the extensions of our current formulation in
comparison to the original one (Waldherr et al., 2015). At
the heart of deFBA models lies a metabolic reaction net-
work consisting of n biochemical species and m reactions
converting the species into each other. We further classify
the species depending on their physical location and their
biological function as either

• external species Y ∈ Rny

≥0 outside of the cell (carbon

sources, oxygen, etc.),
• metabolic species X ∈ Rnx

≥0 which are intermediates

and intracellular products of the metabolism (amino
acids, ATP, etc.),

• storage species C ∈ Rnc

≥0 which are allowed to accu-

mulate in the model (glycogen, starch, etc.),
• macromolecules P ∈ Rnp

≥0 representing biomass com-

ponents (enzymes, cell walls, DNA, etc.),

with n = ny + nx + np + nc. We measure all species in
molar amounts, e.g., [X] = mol.

The macromolecules P represent the complete reproduc-
tive machinery of the organism and can be further di-
vided into a catalytic part, enabling reactions via enzymes
and taking care of reproduction via the ribosome, and
a non-catalytic part, like cell walls, DNA, etc. To keep
the notation simple we address both kinds with P . Most
organisms use some of the available nutrients to create
an energy storage, which can be used to survive phases
of starvation, e.g. production of starch during day for
consumption at night. The storage species C can either
be some macromolecules or simply metabolites allowed to
accumulate.

The deFBA assumes the network maximizes biomass ac-
cumulation over time. Thus, we assign the accumulating
species C,P their molecular weights wi, [wi] = g/mol and
define the total biomass B as

B(t) = wTCC(t) + wTPP (t), (1)

depending on the time t, [t] = h. As recent studies have
shown (Waldherr and Lindhorst, 2017) the inclusion of
non-catalytic biomass in the objective may lead to unex-
pected results if these species are very ”cheap” to produce
in comparison to their weights wC . Thus, we additionally
define the objective biomass Bo via the objective weights bi,
which in most cases coincide with the molecular weights,
but can be set to zero if necessary

Bo(t) = bTCC(t) + bTPP (t). (2)

The reactions R between the species are subdivided into
the following types:

• exchange reactions vY ∈ Rmy exchanging matter with
the outside,

• metabolic reactions vX ∈ Rmx transforming metabo-
lites into one another,

• storage reactions vC ∈ Rmc converting metabolites in
storage and vice versa,

• biomass reactions vP ∈ Rmp producing macro-
molecules,

with m = my + mx + mc + mp. We write shortly v =
(vTY , v

T
X , v

T
C , v

T
P )T , [v] = mol/h. The dynamics of the

species are then given by the stoichiometric matrix S ∈
Rn,m

d

dt



Y (t)
X(t)
C(t)
P (t)


 =



SY,Y 0 0 0
SX,Y SX,X SX,C SX,P

0 0 SC,C 0
0 0 0 SP,P






vY (t)
vX(t)
vC(t)
vP (t)




=



SY
SX
SC
SP






vY (t)
vX(t)
vC(t)
vP (t)


 = Sv(t),

(3)

with the submatrices SI,J ∈ RnI ,mJ , I, J ∈ {Y,X,C, P}.
Following (Waldherr et al., 2015), the metabolism is mod-
elled to operate in quasi steady-state. This translates to
the constraint

d

dt
X(t) = SXv(t) = 0, ∀t ≥ 0. (4)

The enzymatic biomass catalyzes the reactions in the
network and the maximal rates are determined by the
reaction-specific catalytic constants (or turnover numbers)
kcat,±j , j ∈ {1, . . . ,m}, [kcat,±j ] = h−1 and the amount of
the respective enzyme Pi. We differentiate between the
forward value kcat,+j and the backward value kcat,−j .

The bounds for the reactions rates are given by

−vj ≤ kcat,−jPi, vj ≤ kcat,+jPi. (5)

Furthermore, some enzymes are capable of catalyzing
multiple reactions, which we describe with the sets

cat(Pi) = {vj | Pi catalyzes vj}. (6)

The corresponding constraint with respect to reversibility
of the reactions then reads

∑

vj∈cat(Pi)

∣∣∣∣
vj(t)

kcat,±j

∣∣∣∣ ≤ Pi(t), ∀t ≥ 0. (7)

We call the matrix form the enzyme capacity constraint

Hcv(t) ≤ HeP (t), ∀t ≥ 0, (8)

with the filter matrix He. For more detail on the con-
struction of these matrices see (Waldherr et al., 2015).
The constraint (8) is the central constraint in deFBA
as it limits growth. In regular FBA the growth rate is
constrained by biomass independent constraints

vmin ≤ v(t) ≤ vmax (9)

derived from measured reaction rates. Because all reac-
tions can reach arbitrarily large rates given enough enzyme
is present (cf. (8)), we make the following assumption.

Assumption 1. The biomass independent constraints (9)
are only used to define the reversibility of the reactions
with vmin, vmax ∈ {±∞, 0}m.

Any organism needs structural macromolecules to keep
working, e.g., the cell wall separating it from the outside.
We express this necessity by enforcing certain fractions
ψs ∈ [0, 1) of the total biomass B(t) to be made of
structural components, e.g.,for a structural macromolecule
Ps

ψsB(t) ≤ Ps(t), ∀t ≥ 0. (10)
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The extension of (10) to the network level can be expressed
by collecting the individual constraints into the biomass
composition matrix Hb with

Hb

(
C(t)
P (t)

)
≤ 0, (11)

where the rows of Hb are derived from (10). We call (11)
the biomass composition constraint. Furthermore, we can
enforce specific reaction rates

vm(t) ≥ φmB(t), ∀t ≥ 0 (12)

with the maintenance coefficient φm ∈ [0, 1) to model
maintenance reactions scaling with biomass, e.g., re-
synthesis of lipids. Hence, we call (13) the maintenance
constraint

v(t) ≥ Hm

(
C(t)
P (t)

)
, (13)

with the rows of Hm corresponding to φm(wTC , w
T
P )

(cf. (12)). To construct the full deFBA problem, we in-
troduce an end-time tend > 0 and define the objective
function as accumulation of the objective biomass (2) as

max
v(t)

∫ tend

0

Bo(t) dt

s.t. (4), (8), (9), (11), (13); ∀t ∈ [0, tend].

(14)

This dynamic optimization problem can be solved by dis-
cretization with a collocation method. The result is a linear
program (LP) for which efficient, specialized solvers are
available. With respect to the computational and numeri-
cal details of solving such problems, we refer the reader to
(Waldherr et al., 2015), and to (Reimers et al., 2017a)
for a large scale example. We provide an implementa-
tion of the deFBA model class in Python 2.7 1 , which
imports/exports models using libSBML (Bornstein et al.,
2008) and the resource allocation modeling (RAM) anno-
tations (Lindhorst et al., 2017). A step-by-step guide for
the generation of deFBA models is described in (Reimers
et al., 2017b).

2.2 Important growth modes

There are multiple reasons to discard the large end-time
tend in favor of a shorter prediction horizon 0 < tp << tend
and implement an iterative version of the original problem
(14). Foremost, the deFBA can produce linear phases,
defined as

dBo(t)/ dt = λ, (15)

with the constant linear growth rate λ ≥ 0. These phases
can occur if some macromolecules are very ”cheap” in
comparison to others. The model uses all resources to
solely produce the cheap molecules, regardless of their
utility. These phases can either be observed when using
very small end-times or as mean to top off the objective
value near nutrient depletion or the end-time tend (Wald-
herr and Lindhorst, 2017). We regard the linear phases as
mathematical artifacts of the optimization method itself as
we do not know of biological examples for this behavior.
Thus, one goal of the prediction horizon is to eliminate
these linear arcs in the solutions.

Another important growth mode, called a balanced phase,
is defined by

dBo(t)/ dt = µbalBo(t), (16)

1 https://bitbucket.org/hlindhor/defba-python-package

with the constant exponential growth rate µbal ∈ R≥0
depending on nutrient availability and the current biomass
composition. In these phases the composition of the
biomass stays fixed as it is already optimal for the en-
vironment. A dynamic solution generated by the deFBA
typically consists of a series of balanced growth phases and
the transitions between these.

3. SHORT-TERM DEFBA

3.1 Implementing the receding time horizon

The implementation of the receding prediction horizon tp
is straightforward. We split the time interval [0, tend] into
intervals [tk, tk+1] using the time grid ∆t(tc) = {tk =
ktc | k ∈ N} defined by the iteration time tc ∈ (0, tp).
Then we replace the original deFBA problem (14) with
a series of small problems we call the short-term deFBA
(sdeFBA). With given values Y tk , Ctk , P tk , these read

max
v(t)

∫ tk+tp

tk

Bo(t) dt (17a)

s.t. ∀t ∈ [tk, tk + tp] (17b)

d

dt

(
Y (t)
C(t)
P (t)

)
=

(
SY
SC
SP

)
v(t) (17c)

SXv(t) = 0 (17d)

Hcv(t) ≤ HeP (t) (17e)

Hb

(
C(t)
P (t)

)
≤ 0 (17f)

v(t) ≥ Hm

(
C(t)
P (t)

)
(17g)

vmin ≤ v(t) ≤ vmax (17h)

Y (t), C(t), P (t) ≥ 0 (17i)

Y (tk) = Y tk , C(tk) = Ctk , P (tk) = P tk . (17j)

For given initial values Y0, C0, P0, we solve the problem
iteratively starting at time zero and connecting the iter-
ations via (17j). The solution trajectories Y ∗(t), C∗(t),
P ∗(t), v∗(t), 0 ≤ t ≤ tend are generated by appending the
calculated slices over the iteration time [tk, tk + tc] after
each iteration.

3.2 Choosing the prediction horizon

We already stated that the native growth mode for
metabolic networks is exponential growth, while linear
phases are undesired. Our analysis in (Waldherr and Lind-
horst, 2017) shows, that linear solutions can arise on very
short time scales as exponential solutions need a longer
time horizon to outperform them. Hence, we must ensure
to choose the prediction horizon tp large enough such that
linear solutions become sub-optimal. At the same time we
want to keep tp as small as possible to minimize com-
putational cost. We suggest to determine the prediction
horizon by comparison of a strict upper bound on linear
growth with an arbitrary balanced growth phase. The idea
is sketched in Figure 1. This way we ensure the existence
of at least piece-wise exponential solutions on the time
horizon tp. This calculation is dependent on two sets of
variables; the nutrients available and the initial biomass
composition Pinit, Cinit at time zero (or tk in the sdeFBA).
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Fig. 1. Illustration for choosing the prediction horizon.
Upper bound on linear growth shown in red (◦),
balanced growth in blue (�), and optimal solution
in brown (x).

.

To eliminate the influence of nutrient availability in this
first investigation we make the following assumption.

Assumption 2. All external components Y are limitlessly
available.

We define the initial objective biomass as

Binit = bTCCinit + bTPPinit. (18)

First we identify a strict upper bound on linear growth
dependent on the initial biomass amount by constructing
an optimization problem inspired by the regular FBA
(Varma and Palsson, 1994a). We assume a linear growth
phase dBo(t)/dt = λ and maximize the linear growth rate

λ = bTCSCvlin + bTPSP vlin. (19)

Following Assumption 2, we ignore the nutrient dynamics.
The optimization problem is then constructed as

λs(Binit) = max
vlin,Plin,Clin

bTCSCvlin + bTPSP vlin (20a)

s.t. SXvlin = 0 (20b)

Hcvlin −HePlin ≤ 0 (20c)

Hb

(
Clin

Plin

)
≤ 0 (20d)

wTCClin + wTPPlin = Binit (20e)

vlin ≥ Hm

(
Clin

Plin

)
(20f)

vmin ≤ vlin ≤ vmax, (20g)

with (20e) fixing the initial amount of biomass to Binit.
The value of the specific growth rate λs(Binit) is dependent
on the amount of biomass. Instead we use the regularized
rate

λr =
λs(Binit)

Binit
. (21)

For easier reading we omit the dependency of λs on the
biomass.

We construct the linear solution as

P (t) = Plin + SP vlint, C(t) = Clin + SCvlint. (22)

This solution is usually not feasible for the original sdeFBA
problem (17) with tp > 0 as violations of (17f) and (17g)
are to be expected with increase in biomass over time.

As next step, we identify a balanced growth phase to
use as a lower bound for optimal exponential growth by
optimizing the static growth rate µ ≥ 0 at t = 0

d

dt

(
Cinit

Pinit

)
= µ

(
Cinit

Pinit

)
. (23)

The resulting optimization problem reads

µbal = max
vbal

µ (24a)

s.t. µ

(
Cinit

Pinit

)
=

(
SC
SP

)
vbal (24b)

SXvbal = 0 (24c)

Hcvbal −HEPinit ≤ 0 (24d)

vbal ≥ Hm

(
Cinit

Pinit

)
(24e)

vmin ≤ vbal ≤ vmax. (24f)

The trajectories of the balanced growth phase are derived
by solving the initial value problem

d

dt

(
C(t)
P (t)

)
= µbal

(
C(t)
P (t)

)
, (25)

with C(0) = Cinit, P (0) = Pinit. These trajectories are
realized by the rates v(t) = vbale

µbalt and represent a
feasible solution to (17), if Assumption 2 holds and the
initial values are feasible

Hb

(
Cinit

Pinit

)
≤ 0. (26)

We can calculate a suitable time tp, by comparing the the
balanced solution (25) to the linear one (22). The integral
of the biomass curve for (25) is derived as

IBbal(t, µbal, Binit) =

∫ t

0

bTCC(t) + bTPP (t) dt

= µ−1balBinit(e
µbalt − 1)

(27)

and the corresponding integral for the linear case is

IBlin(t, λr, Binit) =

∫ t

0

Blin(t) dt (28)

=
λrBinit

2
t2 +Binit t. (29)

We calculate the prediction horizon by solving

IBlin(tp, λr, Binit)− IBbal(tp, µbal, Binit) = 0 (30)

for tp. By looking at the slopes of the biomass curves at
time zero, we can deduce that this tp > 0 only exists if,
and only if, λr > µbal. Otherwise, the model does not tend
to the linear solution and we can chose tp arbitrarily.

Assumption 3. The linear growth rate is larger than the
balanced growth rate λr > µbal.

An optimal solution of (17) on [0, tp] can only produce an
objective value equal or larger than IBbal(tp), otherwise it
would contradict the optimality principle. Hence, we con-
clude that this optimal solution must contain a superlinear
(typically exponential) arc as shown in Figure 1.

Remark 1. Calculating tp is strongly dependent on the
initial biomass Pinit, Cinit. Hence, during an sdeFBA run
the prediction horizon should be recalculated after each
iteration step.
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3.3 Choosing the iteration time

To keep the computational cost of a sdeFBA run as small
as possible we choose the iteration time tc as large as
possible, such that the solution is still of exponential form.
Hence, we show that each solution of (17) starts with an
exponential phase. For this we assume a solution starting
with a linear phase

Bmix(t) =

{
Binitλrt+Binit 0 ≤ t ≤ ts
Binit(λrts + eµbal(t−ts)) ts < t ≤ tp,

(31)

with the switching time ts and assume Assumption 3 holds.
This solution is constructed on the assumption that the
linear growth phase does not benefit the autocatalytic
capabilities of the system.

Theorem 1. If Assumption 3 holds, any optimal solution
curve Bmix (31) consists only of a single linear phase with
ts = tp.

Proof. We identify the optimal switching time by solving

max
ts

∫ tp

0

Bmix(t) dt (32)

analytically by finding local extrema via the first order
derivative with respect to ts

0 =
d

dts

∫ tp

0

Bmix(t) dt

= Binit(λr(tp − ts) + 1− eµbal(tp−ts)),

(33)

with the obvious zero t̄s = tp. Evaluating the second
derivative at this point gives

d2

dt2s

∫ tp

0

Bmix(t) dt

∣∣∣∣
t̄s

= Binit(µbal − λr) < 0, (34)

with the last inequality following Assumption 3. Hence,
t̄s is a local maximum and any solution of the Bmix

form does not include an exponential arc. For the sake
of completeness, we must also mention that there exists
another zero of (33) t̄s,2 ∈ [0, tp), which cannot be given
in closed form. But, due to continuity and the intermediate
value theorem, t̄s,2 is a local minimum of (32). 2

As we have chosen tp such that the balanced growth
solution (27) outgrows the maximal linear one, we know
that there exists a time frame [0, tc] on which the solution
of (17) must at least grow exponentially. Thus, we assume
the following form for the solution

Bopt(t) =

{
Binite

µbalt, 0 ≤ t ≤ ts,
Binite

µbalts (λr(t− ts) + 1), ts < t ≤ tp,
(35)

with Binitλre
µbalts = λs(Bopt(ts)). We want to choose tc

such that no linear phase occurs in the final solution of the
sdeFBA. Otherwise, we can get faulty solutions as shown
in the next section.

Theorem 2. If Assumption 3 holds, an optimal solution
Bopt (35) of the sdeFBA (17) is growing exponentially on
the time frame [0, tc), with

0 < tc < tp − 2

(
1

µbal
− 1

λr

)
. (36)

Proof. As in the previous proof, we identify the optimal
switching time ts by solving the optimization problem

max
ts

∫ tp

0

Bopt(t) dt. (37)

The zeros of the first order derivative are given by

d

dts

∫ tp

0

Bopt(t) dt = 0 (38)

⇒ t̂s,1 = tp − 2

(
1

µbal
− 1

λr

)
, t̂s,2 = tp. (39)

The second-order derivative evaluated at these points is

d2

dt2s

∫ tp

0

Bopt(t) dt

∣∣∣∣
t̂s,1

= (µbal − λr)Binite
µbaltp < 0,

d2

dt2s

∫ tp

0

Bopt(t) dt

∣∣∣∣
t̂s,2

= (λr − µbal)Binite
µbaltp > 0.

(40)

Hence, t̂s,1 maximizes (37) and the solution is of exponen-

tial form until t̂s,1. 2

We strongly advise to choose the iteration time smaller
than given by (36) to compensate for numerical errors.
Otherwise, we might see solutions mixing linear and expo-
nential phases as shown in Figure 2 (C).

Please note that tc is also dependent on the prediction
horizon tp and the initial biomass composition Binit. So it
should be recalculated together with tp after each iteration
(cf. Remark 1).

4. NUMERICAL EXAMPLE

We present a simple model, analyzed in detail in (Waldherr
and Lindhorst, 2017), to give the reader an idea about
the impact of end-times, prediction horizons, and iteration
times on the quality of the solution. In this minimal
example the organism can invest nutrients in either its’
auto catalytic capabilities by investing in enzymes or it
can produce non-catalytic components yielding a better
nutrients-to-biomass ratio. The three irreversible reactions
of the network are

vA : 1 N → 1 A (41a)

vE : 1 N + 1 A→ 1 E (41b)

vM : 1 N + 1 A→ 1 M. (41c)

The external nutrient N represents a collection of com-
ponents necessary for growth, such as carbon, nitrogen,
etc. Further processed components made from these nu-
trients are collected as the internal metabolite A. We
differentiate the macromolecules into the group of enzymes
E, collecting the whole enzymatic machinery needed for
growth, and non-enzymatic macromolecules M . These can
be interpreted as storage components such as lipids, starch,
or glycogen.

Assuming unlimited nutrients, we would expect a biolog-
ical system to work exclusively in the exponential phase
and produce no storage M at all. But the deFBA model
(14) may generate a solution containing linear phases
depending on the system parameters and the end-time.

In this work we are only interested in the effects of the
time variables and fix the system parameters to the values
shown in Table 1. The numerical results using these values
were all generated with our Python deFBA package 2

using a discretization step size d = 0.1 h and the initial
values E(0) = M(0) = 0.1 mol.

2 Available at bitbucket.org/hlindhor/defba-python-package
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Table 1. Values used in the numerical example

bM [ g
mol

] bE [ g
mol

] kA [h−1] kM [h−1] kE [h−1]
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1

Fig. 2. (A) deFBA solution tend = 3 h. (B) sdeFBA
solution tp = 3.25 h, tc = 1.45 h. (C) sdeFBA solution
tp = 2.5 h, tc = 1.5 h. (D) biomass comparison of
methods.

Following (Waldherr and Lindhorst, 2017), we can derive
the necessary condition for a single linear phase to be the
optimal solution as

tlin ≤
2(kMbM − kEbE)

bMkMkE
≈ 1.45 h. (42)

Choosing any tend > tlin results in a mixed trajectory
starting with an exponential phase and ending with a
linear one. This behavior can be observed in Figure 2 (A).
A purely exponential solution is not attainable with the
deFBA as any solution ends in a linear phase producing
only M to top off the objective.

But we can use the short-term deFBA to generate an
exponential solution. Using the idea from Section 3 we
calculate the initial prediction horizon as tp ≈ 3.25 h and
the iteration time as tc ≈ 1.45 h. The sdeFBA generates
a purely exponential solution as shown in Figure 2 (B).
While this is a more reasonable solution from a biological
view, the objective value for this solution is slightly smaller
than the one obtained by the deFBA (cf. Figure 2 (D)).

Figure 2 (C) shows a sdeFBA solution using a prediction
horizon tp = 2.5 h and an iteration time tc = 1.5 h. While
this tp is capable of producing an exponential phase in each
iteration the the chosen iteration time is way too large.
Hence, we see a solution in which exponential growth and
linear phases take turns on each iteration slice. This is
neither optimal nor observed in nature.

5. CONCLUSION

While our presentation of the sdeFBA focuses on the
quality of the solution, this method provides further ad-

vantages in comparison to the original deFBA. Foremost,
we can replace the fixed time frame [0, tend] in the original
deFBA (14) with a variable one dependent on the net-
work’s state. As example, the deFBA is not designed to
handle starvation scenarios and the optimization problem
may become infeasible if the nutrients deplete. But in the
sdeFBA we can simply stop iterating once the nutrients
deplete or another chosen threshold is reached. Of course,
this also means we can update state variables or dynamics
while setting up the next iteration. So we can use the
sdeFBA as predictor in an online model predictive con-
troller, which maximizes, e.g., some biomass component
by changing the nutrient composition.

Lastly, the sdeFBA can be a way to solve large scale
deFBA problems on large time-scales more efficiently. The
problem lies in the linear programs constructed by the
deFBA, whose states can vary several orders of magni-
tude due to exponential growth phases. This leads to ill-
posed problems, which take very long to solve even with
sophisticated commercial solvers. By breaking the problem
into smaller pieces via the sdeFBA we can reduce the
computational time.
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