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Abstract: Thermal runaways cause significant safety issues and financial loss for industrial
batch reactors due to the disruption of normal operation. The intensification of processes is
restricted, since control systems are not capable of detecting stability boundaries of the system
and hence are overly conservative. For this purpose Lyapunov exponents are introduced as a
stability criterion. It is shown that Lyapunov exponents can correctly predict the stability of
batch reactor systems. This stability criterion is embedded in Model Predictive Control, which
results in a novel control scheme. This scheme allows the controlled increase of the reaction
temperature to achieve a target conversion in a reduced completion time of reaction.
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1. INTRODUCTION

Batch processes are very important for the chemical indus-
try, since a vast amount of speciality chemicals is produced
in this reactor type. One advantage of using batch or
semi-batch reactors, as opposed to continuous reactors, is
the flexibility in process strategy and control, due to the
possibility to control an additional input. This involves
processes operating in non-steady state operation, which
are harder to control.

Thermal runaways occur when the heat generated by
exothermic reactions exceeds the cooling capacity of the
reactor, ultimately resulting in an explosion. Stability
criteria which reliably predict how close the system is to
instability are therefore of major interest for the industry.

Many criteria can been found in literature which describe
system stability. The first stability criterion was developed
by Semenov, who introduced the Thermal Explosion The-
ory (Semenov, 1942). Introduction of many other stability
criteria followed (Barkelew, 1959) which, including the
Thermal Explosion Theory, gave bounds of steady-state
operating points.

For dynamic systems one very common criterion is the
Routh-Hurwitz criterion (Anagnost and Desoer, 1991).
This criterion only reliably describes the stability of sys-
tems at steady-state. For non steady-state systems this
criterion becomes unreliable.

The divergence criterion quantifies how much the variables
are ‘diverging’ from each other based on the underlying
system equations. This definition comes from chaos theory
(Arnold, 1973), but is not very reliable for non steady-state
systems and will therefore not be considered further.

Lyapunov exponents (Strozzi and Zaldvar, 1994) were later
introduced to measure the stability of nonlinear systems
using concepts from chaos theory. As will be shown, this
criterion gives more reliable results for non steady-state
systems, but can impose high computational cost.

In batch processes the heat generation of exothermic re-
actions decreases as the reagents are consumed. A time-
dependent increase in reaction temperature in the stable
region leads to an intensification of the process. The ability
to detect instability of the process is of major impor-
tance for the control of such systems. Furthermore, a reli-
able measure of stability can improve operator knowledge
greatly, and therefore vastly reduce the risk of thermal
runaways occurring in industry. This has an important
safety implication and decreases financial loss.

Model Predictive Control (MPC) is an advanced control
scheme which optimises the control variables of the system,
while considering system constraints. In literature most
MPC schemes implement a linearisation of the system
present, which can be used with a linear MPC scheme
(Rawlings and Mayne, 2015). With such a formulation the
stability of the closed-loop system can be proven theoreti-
cally by the use of Lyapunov functions (DeHaan and Guay,
2010). If no Lyapunov function can be found, end-point
constraints are often employed. For complex and highly
nonlinear systems this leads to higher computational cost
as the system has to be simulated for a larger time frame.
The use of an online stability criterion can reduce the time
frame used by giving an indication of the system stability
at each point of the simulation.

This work introduces a stability criterion based on Lya-
punov exponents in a novel way, such that it can be
integrated in Model Predictive Control algorithms in a
seamless manner. Case studies demonstrate the efficacy of
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the approach and the enhanced performance gained over
more traditional PI control systems and MPC algorithms
without such embedded stability criteria.

2. BATCH REACTOR SYSTEM

In the model used for the subsequent simulations of
batch processes, i.e. with constant volume, an irreversible,
exothermic reaction is analysed which is given by:

A+B→ C (1)

The model of the batch processes is based on differential
equations for mass and energy balances. The reaction
kinetics mainly consider component A, which are assumed
to follow the Arrhenius equation (Davis and Davis, 2003).
Examples of reactions with this kinetic scheme are poly-
condensation reactions, e.g. of dicarboxylic acid and diols,
or the addition reaction for the synthesis of ethylene glycol
from ethylene oxide and water. A diagram of the batch
reactor system used is shown in Figure 1.
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Fig. 1. Diagram of batch reactor with cooling jacket used
for simulations.

The mass balances for each reagent and product are:

d [A]

dt
=−r ([A] , TR) (2)

d [B]

dt
=−r ([A] , TR) (3)

d [C]

dt
= +r ([A] , TR) (4)

r ([A] , TR) = k0 [A]
n

exp

(
− Ea

RTR

)
(5)

where [A], [B] and [C] are the concentrations of compo-
nents A, B and C, t is time, r is the reaction rate, TR is the
reactor temperature, k0 is the Arrhenius pre-exponential
constant, n is the order of reaction with respect to compo-
nent A, which is set to n = 2, Ea is the activation energy,
and R is the universal molar gas constant. The energy
balance for the reactor contents is given by:

d

dt
(VR ρCp TR) = r ([A] , TR) (−∆Hr) VR

−U A (TR − TC) (6)

where VR is the reactor volume, ρ is the reactor content
density, Cp is the heat capacity of the reactor contents,

∆Hr is the enthalpy of the reaction, U is the heat transfer
coefficient and A is the heat transfer area.

A liquid, homogeneous reaction medium is modelled,
which is why the physical properties and the volume of the
reaction mixture are assumed to be constant. This leads
to the following equation:

VR ρCp
d

dt
(TR) = r ([A] , TR) (−∆Hr) VR

−U A (TR − TC) (7)

The energy balance for the cooling jacket is given by:

VC ρC CpC
d

dt
(TC) = qC ρC CpC (TC,in − TC)

+U A (TR − TC) (8)

where VC is the cooling jacket volume, ρC is the coolant
density, CpC is the heat capacity of the coolant, TC,in and
TC are the coolant inlet and cooling jacket temperature
and qC is the volumetric coolant flow.

The physical properties of the reaction mixture and of the
reactor used in the simulations are shown in Table 1.

Table 1. Process parameters for batch reactor
simulations.

Parameter Value

VR 16 m3

Vc 1.2 m3

A 30.7 m2

TC, in 300 K

Ea/R 9525 K

k0 2.2 × 105 m3 kmol−1 s−1

qc,max 0.037 m3 s−1

ρ 1100 kg m−3

Cp 2330 J kg−1 K−1

ρC 1000 kg m−3

CpC 4180 J kg−1 K−1

U 600 W m−2 K−1

∆Hr -75 ×106J kmol−1

[A]0 13 kmol m−3

R 8.314 mol J−1 K−1

All simulations shown in this paper were carried out on a
Dell XPS 13 with an Intelr CoreTM i7-6560U processor,
with operating system Windows 10 Home. The system
dynamics were simulated using ode15s (Shampine et al.,

1999) within MATLABTM.

3. LYAPUNOV EXPONENTS

The Lyapunov exponents describe how state variables
“drift off” after a large amount of time for an initial small
perturbation, ε. The deviation of the state variables is
assumed to follow an exponential profile, which enables to
quantify if a stable system is present. A diagram showing
the evolution of this deviation is shown in Figure 2.
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Fig. 2. Deviation of an initially perturbed state variable.
In this case an unstable system is shown.

The following expression quantifies the deviation of an
initially perturbed state variable after time t:

ε exp (Λ (x0) t) =|x (t, x0)− x (t, x0 + ε) | (9)

Λ (x0) =
1

t
ln

(
|x (t, x0)− x (t, x0 + ε) |

ε

)
(10)

At the limit of a very small perturbation and infinite time:

Λ (x0) = lim
t→∞

1

t
ln

(∣∣∣∣δx (t, x0)

δx0

∣∣∣∣) (11)

This is known as the Lyapunov exponent (Strozzi and
Zaldvar, 1994). Numerically, Lyapunov exponents can be
evaluated by simulating several systems in parallel, for
which each state variable is perturbed initially by an
amount ε = δx0. Simulating the systems for an infinite
amount of time is of course infeasible. Therefore a large
time horizon is chosen instead, which is supposed to give
a good approximation of the final value, known as the
local Lyapunov exponent. This means that at each point
in time, a long simulation has to be carried out in order
to find the local Lyapunov exponent, given by:

Λl (x0) =
1

tf
ln

(∣∣∣∣δx (tf , x0)

δx0

∣∣∣∣) (12)

The time tf in (12) is set in order to give a large
time frame, which approximates the infinite horizon from
the original definition. Other methods for evaluating the
Lyapunov exponents are available (Melcher, 2003).

Due to the heat generation and removal of the reaction the
variables of interest are [A], TR and TC . Hence, the local
Lyapunov exponents for these variables are evaluated by:

Λl,1 =
1

tf
ln

(∣∣∣∣ [A] (tf , [A]0)− [A] (tf , [A]0 + ε)

ε

∣∣∣∣) (13)

Λl,2 =
1

tf
ln

(∣∣∣∣TR (tf , TR,0)− TR (tf , TR,0 + ε)

ε

∣∣∣∣) (14)

Λl,3 =
1

tf
ln

(∣∣∣∣TC (tf , TC,0)− TC (tf , TC,0 + ε)

ε

∣∣∣∣) (15)

The deviation of each variable is calculated at a final
time of tf = 500 s, with an initial perturbation of
ε = 10−3. Values for ε in the range of 10−1 − 10−4% of
the variable analysed gave a good compromise between

accuracy and numerical stability. If ε was made smaller,
the deviation inside the logarithm can get close to zero,
therefore resulting in large negative numbers. The control
variable is given by the governing equation (16) for PI-
controlled systems, and by 95% cooling for MPC controlled
systems.

4. CONTROL SCHEMES

4.1 PI Control structure

The batch reactor temperature is controlled by varying
the cooling water flow rate qC with a PI controller. The
equation of the used PI controller is given by:

u (t) =Kp (TR (t)− Tsp (t))

+
1

τI

t̂

t0

(TR (t′)− Tsp (t′)) dt′ (16)

where Kp is the proportional parameter, τI is the integral
parameter, Tsp (t) is the set point temperature at time t,
u (t) is the control value and t′ is a dummy variable. The
parameters of the PI controller are given in Table 2. The PI
controller regulates the coolant flow, therefore controlling
the reactor temperature.

Table 2. Parameters for PI controller used in
case studies.

Parameter Value

Proportional (P), Kp 10 m3 s−1 K−1

Integral (I), τI 1000 K s2 m−3

The current PI control is solely used to show how a stable
system can become unstable due to a thermal runaway.
The resulting system can be used to judge how well
the Lyapunov exponents predict the system stability. No
attempt was made to tune perfectly the PI controller since
this is not the purpose of the following case study.

4.2 Model Predictive Control structure

The analysis of stability for batch processes is incorporated
into the classical MPC structure as shown in Figure 3.

Optimal

algorithm
Process Output

Process
inputs

Set-
point Controlscontrol

Stability
analysis

Predefined
set-point

Fig. 3. Model Predictive Control scheme with integrated
stability analysis.

Model Predictive Control (MPC) is an advanced control
scheme, in which an Optimal Control Problem is solved
iteratively (Chuong La et al., 2017). The mathematical
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formulation for MPC used in this work (Charitopoulos and
Dua, 2016; Rawlings and Mayne, 2015) is given by:

min
u(·)

Φ (x (t) , u (t)) (17)

subject to the system described in (2)− (8) and:

Φ =

tf̂

t0

(TR (t)− Tsp (t))
2
dt (18)

Λl,i (tf ) ≤ 0 i = 1, 2, 3 (19)

TR ≤Tchem (20)

0 ≤ qC ≤ qC,max (21)

t0 ≤ t ≤ tf (22)

where t0 and tf are the initial time and final time of the
simulation, and the chemical stability temperature is set
to Tchem = 445 K. In the above problem formulation the
coolant flow rate qC is equal to the control variable u (t),
i.e. qC = u (t). The constraint in (19) ensures that the
process does not enter an unstable region at the end of
the horizon considered, i.e. at t = tf . This structure is
different from that found in literature (Christofides et al.,
2011), where Lyapunov functions are used.

The problem given in (17) - (22) is solved using the SQP
optimisation (Nocedal and Wright, 2006) algorithm within

fmincon in MATLABTM.

The algorithm proceeds with a “moving horizon”: At time
t the optimal control action is evaluated for a control and
prediction horizon of tcontrol and tprediction, respectively.
This scheme is shown diagrammatically in Figure 4.

t=s

tcontrol

tprediction

Reference trajectory

Measured process output

Predicted model response

Predicted control action

Past control action

Fig. 4. Diagram of Model Predictive Control with control
and prediction horizons tcontrol and tprediction.

The control action found by the optimisation algorithm is
implemented only for the first step. After every iteration
the algorithm is fed with new process data which, together
with the included process model, lead to new predictions
of the system behaviour. With this information the opti-
misation is carried out to find the optimal control values.

5. CASE STUDIES OF BATCH REACTIONS

5.1 PI Control

An initially stable system is controlled using the PI control
for the cooling jacket. At t = 150 s a step increase in
the set point temperature of the reactor is implemented.
This increase in the reactor temperature leads to an

uncontrolled rise in temperature, which accelerates the
rate of reaction. Since an exothermic reaction is present,
this leads to a thermal runaway. The temperature profile
of this process is shown in Figure 5.

Fig. 5. Temperature profile of an exothermic batch reactor
system. A step change in the set point temperature
at t = 150 s leads to an unstable process.

It can be seen clearly from Figure 5 that at time t ≥ 200
s the process turns unstable. A reliable stability criterion
is required to identify this point of instability.

For each 10 s interval the Lyapunov exponent values are
evaluated. For a time frame of 500 s this gives 50 evalua-
tions per simulation. The reliability to detect instability,
as well as the computational time required to calculate
each respective criterion are tested.

The profiles for each Lyapunov exponent for the tempera-
ture profile given in Figure 5 are shown in Figure 6.

Fig. 6. Lyapunov exponent profiles for a batch process
going out of control.

As can be seen in Figure 6 only the Lyapunov exponents
predict the instability correctly. Before the new set point of
405 K is reached instability of the process is predicted. This
instability is predicted at approximately 100 s. Therefore,
the Lyapunov exponents are a reliable way of predicting
instability of the batch process considered.

One issue with Lyapunov exponents is the computational
cost: per iteration the system model has to be simulated
with initial perturbations in order to quantify stability. As
the problem size increases, this can become an issue for
online control applications. For this system, which evalu-
ates the stability for three state variables, approximately
140 ms were required per iteration.
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5.2 Model Predictive Control

Process intensification, which can be achieved by using
a stability constraint with MPC, is demonstrated in this
section. As a comparison a process controlled by MPC
with Lyapunov exponents and MPC with a constant set
point temperature are shown. The target conversion of the
batch process is set to 85%. The maximum temperature
allowed is set to Tchem = 445 K, which is the chemical
stability of the process. The temperature profiles for each
process are shown in Figure 7.

Fig. 7. Temperature profiles of batch processes controlled
with MPC. For the process with constant set point of
405 K the temeprature increases beyond 550 K due
to a thermal runaway.

The conversion profiles for each process are shown in
Figure 8.

Fig. 8. Conversion profiles of batch processes controlled
with MPC.

From Figure 8 it can be seen that the process including
Lyapunov exponents as a stability constraint reaches the
target conversion of 85% after 5,000 s in a controlled
manner. The process with a constant temperature of
400 K needs 25,000 s. An increase of 5 K of the initial
temperature already leads to an uncontrollable process.
Therefore a significant decrease in reaction time (five-
fold), whilst maintaining stability, was achieved with the
inclusion of Lyapunov exponents as a measure of stability.
This reduction of processing time results in earlier release
of process units to be used for carrying out other tasks.

On average, each iteration for the MPC scheme with
Lyapunov exponents required 1.48 s. A control horizon of
tcontrol = 20 s was used for both processes. The complete
nonlinear process model was used for the control scheme,
as the linearisation of this system can potentially lead to
wrong predictions of the system behaviour.

To further illustrate the advantages of using Lyapunov
exponents implemented with MPC, two different MPC
strategies are presented below:

• MPC with Lyapunov exponents, prediction horizon
of tcontrol = 20 s, 1 step prediction

• MPC without stability constraints, prediction horizon
of tcontrol = 160 s, 8 step prediction with 20 s per step

The performance for computational cost and stability
are tested for the same batch reactor system, subject to
an increase in set point temperature. The temperature
profiles are shown in Figure 9.

Fig. 9. Temperature profiles of batch processes controlled
by Model Predictive Control with and without Lya-
punov exponent constraints.

It can be seen from Figure 9 that the temperature profile
for the MPC structure without stability constraints, but a
larger control horizon, does not achieve the new set point
temperature of 405 K in a stable manner. The resulting
control profiles for the processes are shown in Figure 10.

Fig. 10. Temperature profiles of batch processes controlled
with MPC.

In Figure 10 it can be seen that the coolant flow for
the process controlled by MPC with Lyapunov exponents
increases rapidly just before t = 200 s as the boundary of
instability has been reached.

The Model Predictive Control structure including Lya-
punov exponents as a constraint achieves a stable process,
even though the control horizon is only 1/8th of the stan-
dard MPC formulation.

The average computational cost for each MPC structure
without the use of stability constraints and a control
horizon of tcontrol = 160 s was 2.3 CPU seconds, whereas
the MPC implementation using Lyapunov exponent con-
straints and a control horizon of tcontrol = 20 s required
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an average of 2.0 CPU seconds. An MPC scheme with
a control horizon of 500 s could be used, but with a
larger horizon and more control intervals the optimisation
problem increases, as well as the computational cost.

Hence, the MPC structure using Lyapunov exponents as
stability constraints not only improves the stability of the
system, but also reduces the prediction horizon necessary
and hence the computational cost of the optimisation
algorithm. These are clear advantages to standard MPC
strategies. This can lead to improved safety of operation
for systems controlled by MPC in industry, which reduces
financial loss due to interruptions of normal operation.

Problems still arise when using Lyapunov exponents as a
stability criterion for nonlinear systems. The horizon over
which the Lyapunov exponents are evaluated needs tuning,
leading to varying results depending on the system. For
exothermic batch reactions considered in this work Lya-
punov exponents predicted the system stability reliably.

6. CONCLUSIONS AND FURTHER WORK

A short review of common stability criteria for dynamic
systems was presented. Key features of the Routh-Hurwitz
criterion, Lyapunov exponents and the divergence criterion
were given. The underlying theory of Lyapunov exponents
was introduced and derived for the exothermic batch
reactor system analysed. Additionally, the control systems
used were explained and the implementation of Lyapunov
exponents with Model Predictive Control (MPC), which
is a novel control structure, was outlined.

Advantages of using Lyapunov exponents as a measure of
stability are the simple implementation and the reliability
of the results obtained, once tuned correctly.

Disadvantages include the need to tune the simulation
horizon for Lyapunov exponents, as well as the compu-
tational cost as the problem size increases.

From the MPC case studies it was shown that for unstable
systems of small size, the MPC implementation using Lya-
punov exponents resulted in a computationally cheaper
and more stable process than the standard MPC imple-
mentation using a larger control horizon. More case studies
of larger systems are required to prove this property.

Furthermore, the use of Lyapunov exponents for a highly
nonlinear system needs to be tested individually: there
is no guarantee that Lyapunov exponents will give a
correct prediction of system stability for every process. For
batch reaction systems considered in this work Lyapunov
exponents gave very reliable results.

The use of Lyapunov exponents with MPC for an exother-
mic batch reaction lead to a profound decrease in reaction
time. This is due to the capability of predicting the system
stability along the process trajectory. Hence an intensifica-
tion of the process was enabled while keeping the process
under control at all times.

This work has presented a totally new way of stabilising
thermal runaway systems with an online MPC algorithm,
while enhancing safety and performance of processes that
can become unstable with detrimental effects leading to
economic loss. The case studies presented demonstrate the

benefits over traditional control approaches, as well as the
enhanced ability to intensify the underlying processes so
as to achieve greater productivity. The implementation
of such MPC schemes requires the direct use of highly
nonlinear mechanistic process models for dynamic, i.e. non
steady-state, systems because linearisation is not represen-
tative for fast dynamic regions. Hence many control steps
are necessary for equivalent standard MPC schemes.

Future work will continue by considering other, more com-
plex reaction systems, as well as the impact of parametric
uncertainty in the underlying process models used within
the MPC scheme.
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