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Abstract: Plant-model mismatch and estimation errors are critical issues in the practical implementation
of Nonlinear Model Predictive Control (NMPC). To address these challenges, we formulate a robust out-
put feedback NMPC scheme that is real-time implementable and provides robust constraint satisfaction
in the presence of parametric and additive uncertainties, and estimation errors. The robustness is achieved
by combining the tube-based and the multi-stage NMPC approaches. Two controllers are used in the
proposed framework: a primary controller with tightened constraints that optimizes a given objective
and an ancillary controller that tracks the trajectories provided by the primary controller. Unlike standard
tube-based NMPC, the primary controller predicts different state trajectories for different realizations of
the most important uncertainties using the multi-stage NMPC framework. The synergy between the
two approaches leads to a better trade-off between optimality and complexity. The advantages of the
proposed approach are demonstrated for an industrial-scale fed-batch polymerization reactor example.

Keywords: Model Predictive Control, Robust Control, Nonlinear Output Feedback, Process Control.

1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) schemes must
take into consideration the presence of uncertainties in the
model to achieve robust performance and constraint satisfac-
tion. The controller should provide good performance despite
the need for robustness. Min-max MPC is one of the earliest
robust approaches (Campo and Morari, 1987). It optimizes the
closed-loop behavior for the worst-case cost of the objective
and obtains a sequence of control inputs that satisfy the con-
straints for all realizations of the uncertainty. Open-loop min-
max MPC has been shown to be quite conservative because it
does not account for the presence of feedback in the predictions.

Tube-based NMPC uses two controllers, a nominal controller
and an ancillary controller (Mayne et al., 2011; Rawlings and
Mayne, 2009). The nominal controller solves the optimization
problem using the nominal model of the system with tightened
constraints and the ancillary controller tracks the trajectory of
the nominal controller. A key advantage of the approach is that
the problem size remains close to the nominal NMPC problem.
A major drawback of the approach is its conservativeness
because of the tightened constraints for large disturbances.

The multi-stage NMPC approach offers a promising alternative
to the approaches discussed above (Lucia et al., 2013, 2014).
It formulates the decision problem on a scenario tree. It is
assumed that the uncertainty takes one of the possible discrete
realizations at every step in the prediction horizon and accounts
for the fact that at the next time-step, measurement information
is available and the future control inputs can act as recourse
to counteract the effects of the uncertainty that has realized up
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to this point in time. This makes the approach less conservative
than open-loop min-max NMPC. The drawback of the approach
however is the exponential growth in problem size with respect
to the number of uncertainties.

In this paper, we combine the strengths of multi-stage NMPC
and tube-based NMPC and formulate a novel tube-based multi-
stage NMPC that is real-time implementable, robust to a wide
range of uncertainties and non-conservative. The idea behind
the approach is to counteract the large uncertainties using
multi-stage NMPC while counteracting small-magnitude dis-
turbances using the ideas of tube-based NMPC. This results in a
practically implementable scheme that is less conservative with
the following advantages when compared to multi-stage NMPC
and tube-based NMPC independently:

(1) The growth in problem complexity is limited because the
small uncertainties are not considered in the scenario tree.

(2) The recourse that is modeled in the prediction for the
realizations of the large uncertainties in the scenario tree
reduces the conservatism compared to tube-based NMPC.

Usually, not all states of the plant are measured but have to be
estimated from the measured outputs using a state estimator.
An output feedback MPC methodology therefore must take
into account the estimation errors at every time-step in addi-
tion to the model uncertainties to guarantee robust constraint
satisfaction. Lee and Ricker (1994) proposed an Extended
Kalman Filter (EKF) based approach that uses the measure-
ments that are available to predict the future states. Findeisen
et al. (2003) used high gain observers and proved stability of
the output feedback scheme but the resulting controller can
lead to a poor performance in the presence of measurement
errors. Copp and Hespanha (2014) proposed an output feedback
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MPC scheme that combines Moving Horizon Estimation and
MPC into a single min-max optimization problem. We have
proposed multi-stage output feedback NMPC approaches using
the EKF (Subramanian et al., 2014) and the Unscented Kalman
Filter (UKF) (Subramanian et al., 2015). The schemes were
shown to be robust to the estimation errors as well as to the
model uncertainties. The problem size however increases expo-
nentially with respect to the number of measurements.

In this work, we show that the proposed tube-based multi-stage
NMPC scheme can be extended to an output feedback strategy
for small estimation errors. In addition, the output feedback
formulation that we propose is independent of the estimation
method employed and keeps the complexity of the problem
equal to that of a full-state information problem making the
approach practical. The advantages of the proposed approach
is demonstrated for an industrial fed-batch polymerization re-
actor.

2. INVESTIGATED SYSTEM

A nonlinear system is assumed to be given by

xk+1 = f (xk,uk,dk)+wk, (1a)

yk = h(xk,uk)+ rk, (1b)

where xk ∈ R
nx denotes the state vector, uk ∈ R

nu represents
the input vector, dk ∈ D ⊆ R

nd denotes the parametric uncer-
tainty and wk ⊆ W ∈ R

nx denotes additive disturbances. The
parametric uncertainties dk and the additive disturbances wk are
assumed to be bounded by the sets D and W. For simplicity,
we assume that the parametric uncertainties are of large mag-
nitude and the additive disturbances are of small magnitude
throughout this paper. f : Rnx ×R

nu ×R
nd → R

nx is the model
of the system dynamics. In the equation (1b), yk represents the
output vector with dimension ny, h : Rnx ×R

nu → R
ny is the

measurement model and rk ∈ R
ny represents the measurement

noise. An estimation scheme must be employed to estimate
the states to initialize the controller. Because of the presence
of parametric uncertainties, additive disturbances and measure-
ment noise, estimation errors ek := xk− x̂k are unavoidable in re-
ality. Here x̂k denotes the state estimates. Hence the estimation
errors must be accounted for in addition to model uncertainties
in the robust output feedback NMPC framework. We discuss
the proposed tube-based multi-stage NMPC for the case of
full-state information problem and later extend it to the case
of output feedback problem that accounts for the presence of
estimation errors.

3. TUBE-BASED MULTI-STAGE NMPC SCHEME WITH
FULL-STATE INFORMATION

To handle plant-model mismatch, we propose two controllers:
a primary controller and an ancillary controller.

3.1 Primary controller

The primary controller is designed such that it is robust to
the large uncertainties dk ∈ D. The system considered by the
primary controller can then be given by

zk+1 = f (zk,vk,dk), (2)

where zk ∈R
nx denotes the state and vk ∈R

nu denotes the input
of the model (2). The primary controller does not consider the
small disturbances wk ∈W. Hence the predictions using (2) will

Fig. 1. Scenario tree representation of the uncertainty evolution
for multi-stage NMPC.

in general be different from the plant (1). The robustness against
the large uncertainties are obtained using multi-stage NMPC as
a primary controller. In multi-stage NMPC, the future evolution
of the plant for different realizations of the uncertainty is
modeled by a scenario tree as shown in Fig. 1. Nodes in Fig. 1
denote the states of the system at discrete time instants. The
root node represents the initial condition of the tree. From the
root node, the system can reach different states at the next
time-step depending on the realization of the uncertainty. The
branches of the tree denote the different possible realizations
of the uncertainty in the future. The tree grows until the end
of the prediction horizon Np. A path from the root node to
a leaf node of the tree is called a scenario. For a nonlinear
system if an uncertainty is given as a continuous interval,
theoretically we need infinitely many branches at every stage to
guarantee satisfaction of constraints. Often, the satisfaction of
the constraints can be achieved by considering only the extreme
realizations of the uncertainty as branches in practice (Lucia
et al., 2014). But even for a small number of branches, the
problem size grows exponentially with respect to the number of
prediction steps. The increase in the growth of the tree can be
limited by branching the tree until a certain stage called robust
horizon Nr beyond which the uncertainty can be assumed to be
constant. The general formulation of the optimization problem
that is solved at each sampling time can be written as:

min
z

j
k+1,v

j
k
,∀( j,k)∈I

N

∑
i=1

ωi

Np−1

∑
k=0

Li(z
j
k+1,v

j
k) (3a)

subject to:

z
j
k+1 = f (z

p( j)
k ,v

j
k,d

r( j)
k ), ∀( j,k+ 1) ∈ I, (3b)

z
j
k+1 ∈ Z, v

j
k ∈ V, ∀( j,k) ∈ I, (3c)

v
j
k = vl

k if z
p( j)
k = z

p(l)
k , ∀( j,k),(l,k) ∈ I, (3d)

where N denotes the number of scenarios. The set of indices
( j,k) in the scenario tree is defined as I. z

j

k and v
j

k denote the
predicted states and inputs of the primary controller for all

( j,k) ∈ I. Each state vector z
j

k+1 at stage k+ 1 and position j

in the scenario tree depends on the parent state z
p( j)
k at stage

k, the control inputs v
j
k and the corresponding realization r of

the uncertainty d
r( j)
k . Equation (3b) denotes the model of the

plant and (3c) represents the state and input constraints of the
primary controller. The tightened state and input constraints
of the primary controller must satisfy the property Z ⊆ (X⊖
W) and V ⊆ U, where X and U are the true state and input
constraints. Here ⊖ denotes the Pontryagin difference.

Since the measurement information is available at every time-
step, the future control inputs can be adapted depending on
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the realization of the uncertainty. However, the control inputs
for the branches with the same parent node need to be the
same because the realization of the uncertainty at the future is
not known. This is enforced by the so-called non-anticipativity
constraints as shown in (3d). Each scenario is assigned a certain
weight ωi that can be updated online to improve the perfor-
mance of the controller. If the weights are not known, they
can be assumed to be uniform. The uncertain parameters are

assumed to take discrete values dk ∈ D. Li(z
j
k+1,v

j
k) represents

the stage cost of the ith scenario and can be chosen according
the control objective. The scenario tree of the primary controller
is initialized using the initial conditions at the first time-step
and using one of the predicted states of the primary controller

zk ∈ {z
j∗
1 },∀( j,1) ∈ I in the following time steps.

3.2 Ancillary controller

The ancillary controller is used to counteract the effects of all
the uncertainties that are not part of the primary controller. The
ancillary controller keeps the trajectory of the system close to
one of the predicted trajectories of the primary controller. This
is achieved by tracking all the trajectories of the primary con-
troller for all dk ∈ D. The general formulation of the optimiza-
tion problem to be solved at each sampling instance together
with the primary controller can be written as:

min
x

j
k+1,u

j
k
,∀( j,k)∈I

N

∑
i=1

ωi

Np−1

∑
k=0

Ji(x
j
k+1 − z

j∗
k+1,u

j
k − v

j∗
k ) (4a)

subject to:

x
j
k+1 = f (x

p( j)
k ,u

j
k,d

r( j)
k ), ∀( j,k+ 1) ∈ I, (4b)

x
j

k+1 ∈ X⊖W, u
j

k ∈U, ∀( j,k) ∈ I, (4c)

u
j

k = ul
k if x

p( j)
k = x

p(l)
k , ∀( j,k),(l,k) ∈ I, (4d)

where z
j∗
k and v

j∗
k are the predicted optimal state and input

trajectories of the primary controller for all ( j,k) ∈ I. The pre-
diction horizon, the robust horizon and the tree structure remain
the same as that of the primary controller with a different initial-
ization. The current state of the system xk forms the root node
of the scenario tree of the ancillary controller. The objective
function is chosen such that the distance between the predicted
state and input trajectories of the primary controller and the
true system are minimized. A possible choice for the stage cost

is Ji = (x
j

k+1 − z
j∗
k+1)

T Q(x
j

k+1 − z
j∗
k+1)+ (u

j

k − v
j∗
k )R(u

j

k − v
j∗
k ),

where Q ∈ R
nx×nx and R ∈ R

nu×nu are the weighting matrices
whose values can be tuned. There is no back-off necessary
for the input constraints of the ancillary controller (see (4c)).
However the constraints of the states are tightened to account
for the presence of additive disturbances wk ∈W. This is neces-
sary to achieve robust constraint satisfaction because the pres-
ence of additive disturbances is not explicitly considered in the
predictions. Note that the state constraints do not apply to the
initial state of the system which is always initialized using the
feedback xk from the plant. The non-anticipativity constraints
are also enforced using (4d) for the ancillary controller. The
control input u1∗

0 is applied to the plant.

A schematic representation of the proposed approach compared
to a standard tube-based NMPC is shown in Figure 2. In con-
trast to a single nominal path predicted in tube-based NMPC,
we predict different scenarios for different realizations of the
large uncertainties. The predicted trajectories are tracked using
the ancillary controller.

State

State Constraint 
Constraint on ancillary controller 

Standard Tube-based NMPC Proposed approach

Predictions of primary controller

Predictions of ancillary controller

State

Constraint on primary controller 

Fig. 2. Schematic representation of the proposed approach in
comparison with a standard tube-based NMPC.

4. OUTPUT FEEDBACK CONTROLLER

An estimation scheme must be employed to estimate the states
of the system if the full-state information is not available. To
keep the scheme general, we do not assume a specific type of es-
timation method employed but only that an estimation scheme
is available and that the estimation error is bounded. The es-
timation error bounds are denoted by Ek, ∀k. The bounds on
the estimation error can be obtained by assuming a confidence
interval on the covariance matrices of the estimation schemes or
can be rigorously obtained using set-based estimation schemes.
An output feedback NMPC scheme was proposed using tube-
based NMPC framework in Rawlings and Mayne (2009) for
systems with additive uncertainties assuming invariant estima-
tion error bounds. In this paper, we propose an output feedback
scheme using the proposed new tube-based multi-stage NMPC
framework. Key differences in the proposed formulation com-
pared to Rawlings and Mayne (2009) include the consideration
of parametric uncertainties and a new formulation of an output
feedback framework for time-varying estimation error bounds.

If the current state xk of the system is not known, the estimate
x̂k can be used to initialize the ancillary controller. If the
ancillary controller is initialized using x̂k, the effect of the
estimation error must be considered in addition to the plant-
model mismatch for the method to be robust. The predicted

states x
j
k+1 at the next time-step k+ 1 are

x
j

k+1 = f (x̂k, uk, d
r( j)
k ), (5)

where d
r( j)
k ∈ D denotes one of the realizations of the uncer-

tainty considered in the tree. The state of the plant evolves from
the not precisely known state xk for the applied input uk and
the realization of the parametric uncertainty dk and the additive
disturbance wk as in (1a). The difference between the predicted

state x
j
k+1 that corresponds to the actual realization of the large

uncertainty d
r( j)
k = dk and the true state xk+1 of the plant is

realized as follows:

γk+1 = ( f (xk, uk, dk)− f (x̂k, uk, dk))+wk. (6)

The prediction error γk+1 depends on the realization of the esti-
mation error ek ∈ Ek and the additive disturbance wk ∈W. We
know that the estimator satisfies the relation xk ∈ x̂k⊕Ek, where
⊕ denotes the Minkowski-sum. The bounds on γk+1 can then be
given by Γk+1 = {γk+1 : γk+1 = ( f (xk, uk, dk)− f (x̂k, uk, dk))+
wk, ∀xk ∈ x̂k ⊕Ek, ∀wk ∈W}. From (1a) and (6), the state xk+1

at the next time-step can be given by

xk+1 = f (x̂k, uk, dk)+ γk+1, (7)
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for a realization of γk+1 ∈ Γk+1. Since the estimation error
satisfies the relations ek+1 = xk+1 − x̂k+1 and ek+1 ∈ Ek+1, the
following relation holds for the estimate x̂k+1 at the next time-
step:

x̂k+1 = f (x̂k, uk, dk)+ γk+1 − ek+1, (8)

for realizations of γk+1 ∈ Γk+1 and of ek+1 ∈ Ek+1. If the
estimation error is sufficiently small for all k, the influence of
the estimation error on the predictions of the ancillary controller
can be considered along with the set of small disturbances wk ∈
W and the constraints of the primary controller can be tightened
for the enlarged additive bound −Ek+1 ⊕Γk+1, ∀k. Hence the
optimization problem for the primary controller remains the
same as that of the full-state information problem (3) with
more stringent state and input constraints (Z and V). Z must
satisfy the property Z⊆X⊖(−Ek+1 ⊕Γk+1), ∀k to account for
the estimation errors in addition to the additive disturbances.
The constraints of the ancillary controller must be tightened to
accommodate the presence of estimation errors ek ∈ Ek and the
error propagation γk ∈ Γk.

The optimization problem of the ancillary controller for the
output feedback problem is given by

min
x

j
k+1,u

j
k
,∀( j,k)∈I

N

∑
i=1

ωi

Np−1

∑
k=0

Ji(x̂
j

k+1 − z
j∗
k+1,u

j

k
− v

j∗
k
) (9a)

subject to:

x̂
j
k+1 = f (x̂

p( j)
k ,u

j
k,d

r( j)
k ), ∀( j,k+ 1) ∈ I, (9b)

x̂
j
k+1 ∈ X⊖ (−Ek+1 ⊕Γk+1), u

j
k ∈ U, ∀( j,k) ∈ I, (9c)

u
j
k = ul

k if x̂
p( j)
k = x̂

p(l)
k , ∀( j,k),(l,k) ∈ I, (9d)

where (9b) denotes the prediction of the estimates for the
large uncertainties. The state constraints (9c) are tightened to
accommodate the presence of estimation errors.

The time varying uncertainties can be simplified to an invariant
bound if the estimation error converges to a constant error
bound E∞ or by assuming outer bounds for all k for both Ek

and Γk. This results in some conservatism but simplifies the
implementation.

5. ALGORITHM AND IMPLEMENTATION DETAILS

The algorithm that implements the proposed approach is given
in Algorithm 1. In Algorithm 1, only the primary controller is
run at the first time-step. This is because the initial conditions
for both the primary and the ancillary controllers are the same
(i.e. x̂0). The optimal solution for the ancillary controller there-

fore is u
j∗
k = v

j∗
k ,∀( j,k) ∈ I.

5.1 Cost functions and initialization

The cost function of the primary controller can be an economic
or a tracking objective. The cost function of the ancillary
controller is chosen to track of the predictions of the primary
controller. The primary controller is always initialized using
one of the states that is predicted by it in the previous time-
step (except at k = 0 where it is initialized using the estimate).
The set of all states predicted one-step ahead by solving (3) is

given by {z
j∗
1 }, ∀( j,1) ∈ I. The nearest point to the estimate x̂k

in the set {z
j∗
1 }, ∀( j,1) ∈ I is then used to initialize the primary

controller. The ancillary controller is always initialized using
the state estimate x̂k.

Algorithm 1 Proposed Tube-based multi-stage NMPC

Require: Z, V, x̂k, Ek, Γk.
If (k = 0): Initialize primary controller with x̂0.

Solve (3), apply v1∗
0 to the plant and store

{z
j∗
1 }, ∀( j,1) ∈ I.

If (k > 0):
Step 1 Estimate the states x̂k.

Step 2 Find the nearest point to x̂k in {z
j∗
1 },∀( j,1) ∈ I

solved at previous time-step (k− 1) and store
it as z0.

Step 3 Initialize the primary controller with z0 and
solve (3).

Step 4 Store {z
j∗
k } and {v

j∗
k }, ∀( j,k) ∈ I.

Step 5 Initialize the ancillary controller with x̂k, pass

the stored values {z
j∗
k } and {v

j∗
k }, ∀( j,k) ∈ I

and solve (9).

Step 6 Apply u1∗
0 as input to the plant and go to step

1 at the next sampling time.

5.2 Constraint tightening

As noted in (3), the constraints of the primary controller must
be tighter than the true constraints of the system. An easy way
to tighten the constraints using simulation studies was proposed
in Mayne et al. (2011). It is achieved with the help of the
parameters α and β such that Z= αX and V= βU with α ≤ 1
and β ≤ 1. If the constraints are violated in the simulations,
α and β must be reduced. Similarly if the states/estimates of
the plant are far away from the constraints but the primary
controller predictions are at the tightened constraints, α and β
can be made larger.

6. CASE STUDY

An industrial polymerization process proposed in Lucia et al.
(2014) is used as the case study. In Lucia et al. (2014), the
authors studied the effect of plant-model mismatch using the
multi-stage NMPC approach assuming full-state information.
In this paper, we test the proposed approach using this case
study that includes additive disturbances and estimation errors
in addition to parametric uncertainties. There are three mass
balances and five energy balances that models the process.
The reaction is highly exothermic and the jacket and the heat
exchanger are used to regulate the temperature inside the reac-
tor. Full details of the model along with the parameter values
can be found in Lucia et al. (2014). There are two important
state constraints. The constraints on the reactor temperature
TR helps in achieving the desired quality of the end product
and the safety constraint on Tad assures safe operation of the
plant. There are three manipulated variables: Monomer feed
ṁF, jacket inlet temperature T IN

M and the inlet temperature of the

heat exchanger T IN
AWT. The bounds on the states and the inputs

are given in Table 1. The tightened bounds for the primary and
the ancillary controllers of the proposed scheme are also given.

The goal is to maximize the production of polymer mP. The
economic objective function of the primary controller is defined
as follows:

Jeco(x
j
k+1,u

j
k) =

N

∑
i=1

ωi

Np−1

∑
k=0

−m
j
P,k+1

+ r1(∆ṁ
j

F,k)
2 + r2(∆T

IN, j

M,k )2 + r3(∆T
IN, j

AWT,k)
2
,
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Table 1. Important state and input constraints

State/

Input

Min. Max. Primary

controller bounds

Ancillary

controller bounds

Unit

TR 88.0 92.0 [88.7, 91.3] [88.35, 91.65] ◦C

Tad 0 109 [0, 106] [0, 107.5] ◦C

ṁF 0 30000 [0, 29800] [0, 30000]
kg
h

T IN
M 60 100 [61, 99] [60, 100] ◦C

T IN
AWT 60 100 [61, 99] [60, 100] ◦C

where r1, r2 and r3 are tuning parameters that penalize the
change in the control moves. For this case study, the values
of the tuning parameters are chosen as r1 = 0.125, r2 = 4 and
r3 = 0.25. The ancillary controller is designed to track the
critical states of the system mP and TR and the inputs. The Q
matrix of (9a) is chosen as diag(0,0,0.01,100,0,0,0,0) and the

R matrix is chosen as an identity matrix I
3×3. The tightened

constraints of the primary and the ancillary controllers were
obtained by conducting simulation studies and are given in
Table 1. The reaction rate k0 is uncertain by ±30% and the
enthalpy of the reaction ∆HR is uncertain by ±10% relative to
the nominal value. The nominal value of k0 is 7 and the bounds
are given by k0 ∈ [4.9, 9.1]. The nominal value of ∆HR is 950 kJ

kg−1 and the bounds are given by ∆HR ∈ [855, 1045] kJ kg−1.
Only two states, TR and TM are measured. The measurement
noise was assumed to be zero-mean Gaussian with standard
deviation of 0.3◦C. The bounds on the additive disturbances for
the mass balances at every discrete time instants is given by ±2
kg/h and for the energy balances is given by ±0.1◦C.

We consider the extreme values and the nominal value of the
parametric uncertainty in the scenario tree and assume the
weights of the branches to be the same. A prediction horizon
Np = 20 and a robust horizon Nr = 1 are used. This results in
9 scenarios for both the primary and ancillary controllers. The
sampling time of the controller is 50 s. The state constraints
are formulated as soft constraints for the standard certainty-
equivalence multi-stage MPC to avoid infeasible optimization
problems. The proposed tube-based multi-stage NMPC is im-
plemented with hard constraints. We use orthogonal collocation
on finite elements for the discretization of the nonlinear dy-
namics and CasADi (Andersson et al., 2012) for the automatic
generation of first and second order exact derivatives of the
resulting nonlinear programming problem which are solved us-
ing IPOPT (Wächter and Biegler, 2006). An Extended Kalman
Filter is used to estimate the states. The uncertain parameters
are also estimated along with the states. The initial value of the
parameters for the EKF algorithm are chosen as their nominal
values. The batch is considered finished if the mass of the
polymer reaches the desired quantity.

7. RESULTS

We compare the proposed new output feedback scheme with
three alternatives: standard multi-stage NMPC assuming cer-
tainty equivalence with given constraints (CE-MS), standard
multi-stage NMPC assuming certainty equivalence with tight-
ened constraints (CE-MSTC) and the tube-based NMPC. Stan-
dard multi-stage NMPC assuming certainty equivalence ig-
nores estimation errors and additive disturbances. The tube-
based NMPC (Mayne et al., 2011) was proposed for additive
disturbances and for tracking objectives. Since the application
considered here is a batch process with parametric uncertain-
ties and the objective is economic, the formulation proposed
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Fig. 3. Reactor temperature TR, adiabatic safety temperature
Tad, Monomer Feed ṁF , jacket inlet temperature T IN

M tra-
jectories of the polymerization reactor obtained for 100
batch runs controlled using CE-MS NMPC.

in Mayne et al. (2011) cannot be directly applied. To facilitate
a comparison, we have replaced the robust multi-stage NMPC
controller with the nominal NMPC controller in the proposed
scheme and refer to it as tube-based NMPC. The bounds of
the reactor temperature of the nominal controller of the tube-
based NMPC were chosen as [89.9,90.1] and of the adiabatic
safety temperature were chosen as [0,104.5]. To quantify the
differences, 100 simulation runs were performed. The initial
conditions for the estimates and the additive disturbances are
randomly chosen and the uncertain parameter is also randomly
chosen but assumed to be constant for a given simulation run.

In Figure 3, the results of 100 simulations are provided for
CE-MS NMPC. For many cases both the constraints on the
reactor temperature TR and the adiabatic safety temperature Tad

are violated. The control inputs are oscillatory because of the
presence of unanticipated errors in the form of estimation errors
and additive disturbances. The results of 100 simulation runs
using the tube-based NMPC is given in Figure 4. The tube-
based NMPC scheme does not result in constraint satisfaction
despite stringent tightening of the constraints. The constraints
of the reactor temperature TR in some cases are violated by as
much as 5◦C. This makes the tube-based NMPC impractical
to apply for this case study. Figure 5 shows the results of the
proposed output feedback scheme for 100 simulation runs. The
constraints are satisfied for all cases by imposing suitable back-
off from the constraints to account for estimation errors and
additive disturbances in addition to parametric uncertainties.
This is because in the proposed scheme, the effects of the
most important uncertainties are predicted explicitly using the
primary controller and the small disturbances are rejected using
the ancillary controller.

The critical state constraints are satisfied for CE-MSTC NMPC
because of the tightened constraints. However, the inputs are
oscillatory similar to Fig. 3 (the figure of state and input trajec-
tories of CE-MSTC NMPC is not shown here because of lack
of space). The oscillatory inputs result in an increased batch
time. Since the controller always tries to maximize the product
in CE-MS NMPC with tightened constraints, the control inputs
are chosen such that the state trajectories are always at the
constraints. The unaccounted disturbances, despite being small,
lead to violation of soft constraints and result in a suboptimal
input sequence. The proposed new scheme performs better than
the certainty equivalence multi-stage NMPC with tightened
constraints because the ancillary controller does not maximize
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Fig. 4. Reactor temperature TR, adiabatic safety temperature
Tad, Monomer Feed ṁF , jacket inlet temperature T IN

M tra-
jectories of the polymerization reactor obtained for 100
batch runs controlled by the tube-based NMPC scheme.
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Fig. 5. Reactor temperature TR, adiabatic safety temperature
Tad, Monomer Feed ṁF , jacket inlet temperature T IN

M tra-
jectories of the polymerization reactor obtained for 100
batch runs controlled by the proposed scheme.

Table 2. Performance comparison between multi-
stage NMPC that assumes certainty equivalence
(CE-MS), CE-MS NMPC with tightened con-
straints (CE-MSTC), the tube-based MPC (Tube)
and the proposed new robust output feedback

NMPC scheme (proposed)

NMPC Controller
CE-

MS

CE-

MSTC

Tube Proposed

Batch time [h] 1.76 1.91 1.73 1 1.81

Max. violation of TR 0.3◦C 0 5.55◦C 0

Max. violation of Tad 1◦C 0 3◦C 0

Avg. comp. time per iter. [s] 0.48 0.48 0.07 0.98

the product yield but aims to track the trajectories of the primary
controller. The primary controller maximizes the yield but is not
influenced directly by unaccounted disturbances. This results in
a robust strategy that is neither conservative nor computation-
ally expensive and thus suitable for industrial applications.

Table 2 presents a summary of the results. It can be seen that
the maximum violation of the reactor temperature TR is 0.3◦C
for CE-MS NMPC and 5.55◦C for the tube-based NMPC. The
maximum violation of the adiabatic safety constraint is 1◦C for
CE-MS NMPC and 3◦C for the tube-based NMPC. The pro-

1 Not all batches were finished with the required amount of polymer.

posed scheme satisfied the constraints at all times. Compared
to the advantage of no constraint violations, a slightly higher
average batch and computation times are reasonable. CE-MS
NMPC with tightened constraints also satisfies the original
constraints, but the batch time is approx. 5% larger than the
proposed new approach on the average. The longest batch is
approx. 10% larger than the proposed new approach.

8. CONCLUSION

We proposed a new robust NMPC scheme by combining two-
well known approaches to robust NMPC and showed that they
complement each other in handling uncertainties of different
magnitudes. The resulting scheme has a better trade-off be-
tween problem complexity and performance when compared
to the two schemes independently. We showed that robust con-
straint satisfaction can be achieved for different kinds of uncer-
tainties that are present in a real nonlinear system.
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