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Abstract: Prediction of physical properties of crude oil plays a key role in the petroleum refining 
industry, therefore, it is of great significance to establish the prediction model of physical properties of 
crude oil. In this paper, we propose an ensemble random weights neural network based prediction model 
whose inputs are nuclear magnetic resonance (NMR) spectra and outputs are carbon residual and 
asphaltene of crude oil. The model uses random vector functional link (RVFL) networks as the basic 
components and employs the regularized negative correlation learning strategy to build neural network 
ensemble and the online method to learn the new data. The experiment using the practical data collected 
from a refinery is carried out and compared with the decorrelated neural network ensembles with random 
weights (DNNE), least squares support vector machine (LS-SVM), partial least squares regression (PLS) 
and multiple linear regression (MLR). The results indicate the effectiveness of the proposed approach. 

Keywords: physical properties of crude oil, prediction model, ensemble random weights, neural network; online 
learning. 

 

1. INTRODUCTION 

With the rapid development of the world economy, oil 
refineries and petrochemical companies in China are 
confronted with increasingly competitive pressure from the 
international oil companies (Baruník and Malinská 2015). In 
order to reduce the production costs, online blending 
technology for crude oil is adopted by refineries to make 
reasonable mixing of various kinds of crude oil. Prediction of 
physical properties of crude oil is the precondition of online 
blending of crude oil, therefore fast evaluation of physical 
properties of crude oil before refining is important to 
refineries (Sriram et al. 2007). 

Carbon residual and asphaltene of crude oil are two 
significant physical properties in crude oil blending. The 
value of carbon residual is the percentage of the residue 
carbon formed in the oil after the evaporation and pyrolysis 
process at the especially high temperature condition. The 
value of carbon residual can be used to characterize the 
relative coke tendency of oil, which is regarded as one of the 
selection criteria of raw material and production process, and 
it is also one of the important control indexes in the 
production process. The value of carbon residual in the 
catalytic cracking material is an important parameter to 
evaluate the crude oil. The deposition of asphaltenes in the 
petroleum industry can result in a significant increase of 
production costs. Asphaltenes in crude oil contain higher acid 
functional groups and a large amount of condensed aromatic 
hydrocarbons that seriously affect the refining process and 
lead to the blockage of pipelines. Thus, prediction of the two 
physical properties of crude oil is extremely important. 

Most of the fast evaluation systems of physical properties of 
crude oil are based on near infrared (NIR) technology at 
present (He et al. 2015). Higher quality of crude oil and 
longer optical path are required by NIR, but its sensitivity is 
relatively low. With the development of computer technology, 
nuclear magnetic resonance (NMR) has become one of the 
most advanced and promising process analysis techniques. 
The efficiency of industrial production is improved 
significantly by applying NMR combined with the advanced 
control technology. In some international oil companies such 
as BP, BASF, Shell and AGIP, NMR is used for monitoring 
and control in the crude oil distillation and blending, gasoline 
and diesel blending, catalytic cracking, catalytic reforming 
and ethylene cracking processes (Lin et al. 2004). Online 
measured data are used to supervise the operation process 
which can improve the oil yield and quality that bring great 
economic benefits to the petrochemical industry. NMR 
requires simple sample pretreatment and the accuracy is not 
affected by viscosity, purity, color and water content of the 
sample. However, the prediction models of physical 
properties of crude oil based on NMR are inadequate at 
present as most are linear models such as partial least squares 
(PLS) regression (Behera et al. 2008) and multiple linear 
regression (MLR) (Barbosa et al. 2016) which are impossible 
to characterize the complicated relation between the NMR 
spectrum and the physical properties of crude oil accurately. 
Effective prediction model is the premise and basis of fast 
evaluation and analysis of crude oil and it is an urgent 
problem to be solved. 

A prediction model of carbon residue and asphaltene of crude 
oil based on ensemble random weights neural network is put 
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Fig.1. Structure chart of fast evaluation system of crude oil 

based on NMR. 
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Fig.2. Schematic diagram of NMR. 

forward in this paper to solve the problem that it is difficult to 
establish the mechanism model between NMR spectrum and 
the physical properties of crude oil. The model can be used to 
obtain evaluation data of crude oil which can provide fast, 
simple, effective and available information for the 
determination of crude oil processing scheme and the 
optimization of production decision. The proposed model 
also lays foundation for the application of NMR technology 
in petrochemical industry. The algorithm proposed in this 
paper can be extended to the prediction and analysis of other 
physical properties of crude oil which has extraordinary 
broad application prospects. 

The organization of the rest of this paper is as follows. In 
section II, the evaluation system of physical properties of 
crude oil based on NMR is presented. The prediction model 
is given in section III, where the ensemble random weights 
neural network is discussed in detail. In section IV, the 
experiment is carried out and the results are discussed. At last, 
our conclusion is given in section V. 

2. EVALUATION SYSTEM OF PHYSICAL PROPERTIES 
OF CRUDE OIL BASED ON NUCLEAR MAGNETIC 

RESONANCE 

The fast evaluation system of crude oil based on nuclear 
magnetic resonance mainly consists of filter, heater, nuclear 
magnetic resonance and host computer. First, the crude oil 
sample is sent to the sample tank after filtration and heating. 
Then the sample is taken to the NMR by nitrogen power and 
the results are uploaded to the host computer by the 
communication system. Finally, physical properties of crude 
oil are obtained by the NMR spectrum and the prediction 
model. Fig.1 is the structure chart of fast evaluation system of 
crude oil based on NMR. 
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Fig.3. Typical NMR spectrum. 

When the NMR is used to measure the sample, the sample 
passes through a precisely controlled magnetic field and all 
the protons in the sample are aligning in the direction of the 
magnetic field. NMR emits the pulse electromagnetic energy 
to the sample and then the directions of the alignment of 
protons will shift. When the radio frequency signal is 
removed, the protons release energy and eventually return to 
their original positions. During this process, the protons will 
produce the free induction decay (FID) signals, then the 
analog signals are handled by fast Fourier transform (FFT) 
and converted to a NMR spectrum. All the steps mentioned 
above could be completed automatically. Fig.2 is the 
schematic diagram of NMR. 

The data used in this paper are collected from a refinery in 
south China. The spectrum is analysed by Aspect Imaging 
AI-60 online NMR. Fig.3 is the spectrum obtained at the 
conditions that the operating frequency is 60MHz and the 
chemical shift reference is tetramethylsilane (TMS). 

3. PREDICTION MODEL OF PHYSICAL PROPERTIES 
OF CRUDE OIL BASED ON ENSEMBLE RANDOM 

WEIGHTS NEURAL NETWORK 

From the analysis above, we know that there is a complex 
relation between the NMR spectrum and the physical 
properties of crude oil. While most of the prediction models 
are linear models such as PLS and MLR at present, which are 
impossible to characterize the complex relation between the 
NMR spectrum and the physical properties of crude oil. Thus, 
the complicated data-based models should be selected 
because of their abilities to characterize complex 
relationships. 

3.1 Selection of Model Input and Output 

According to the evaluation system of physical properties of 
crude oil based on NMR and the modelling objectives, the 
input vector of the prediction model is selected as the NMR 
spectrum data 700x R∈ . The output of the prediction model is 
the physical property of crude oil 1y R∈ . In this paper, the 
prediction models of carbon residual content and asphaltene 
content which are two important physical properties for 
evaluating the quality of crude oil are built. 
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Fig.4. Structure chart of prediction model. 

3.2 Structure of the Prediction Model 

Artificial neural network based on back-propagation (BP) 
algorithm has been used to predict the properties of crude oil 
using NMR (Shea and SeldaGunsel. 2003). But the BP 
algorithm is easy to suffer from local optimum. To address 
this issue, neural network which has random input weights 
and biases of hidden nodes is presented (Igelnik and Pao. 
1995). But there is no unified theory to guide the selection of 
the structure and parameter of neural network, so researchers’ 
experience may determine its performance. In order to solve 
the problem, neural networks ensemble is proposed (Hansen 
and Salamon. 1990). While the ensemble model may result in 
over fitting. To solve the issue, a regularized negative 
correlation learning (RNCL) is proposed (Chen and Yao. 
2009). In this paper, the ensemble random weights neural 
network based on regularized negative correlation learning is 
adopted to establish the prediction model. The structure chart 
of the proposed model is illustrated in Fig.4 and the details 
are discussed in the following. 

3.3 Ensemble Random Weights Neural Network Based 
Prediction Model 

The existing ensemble techniques are simple combinations of 
all the individual models and only minimize the empirical 
error, hardly take the diversity and complexity of the model 
into account (Brown et al. 2005; Chong et al. 2009; Wang 
and Yao. 2012). To solve this problem, an ensemble neural 
network with random weights (ERNN) based prediction 
model is adopted in this paper. 

Neural Network Ensemble based on Negative Correlation 
Learning: Considering a given sample { }( ), ( )x k y k ,where 

700( )x k R∈  is NMR spectrum and ( )y k  is the physical 
property of crude oil. The RVFL whose input weights and 
hidden layer biases are generated randomly (Igelnik and Pao. 
1995) can be written as: 

                 
1 1

( ( )) ( ( ) )
L L

T
i i i i i

i i
f x k G w x k b Hβ β

= =

= ⋅ + =∑ ∑         (1) 

where iβ  denotes the output weight of ith node, iH  is the 
output of ith hidden node, L  represents the number of hidden 

nodes, iw  and ib  are input weights and hidden layer bias of 
ith hidden node and ( )G ⋅  is the activation function. 

The output of ensemble neural network (Chen and Yao. 2009) 
based prediction model is the linear combinations of RVFLs: 

                           
1

( ( )) ( ( ))
M

ens m m
m

f x k f x kω
=

= ∑            (2) 

where ( ( ))mf x k  is the output of the mth basic RVFL, mω  is 
the weight of the mth basic RVFL and in this paper,  mω is set 
as1 M . 

However, the correlations between the basic models are not 
taken into account in the ensemble learning above. To 
address this issue, negative correlation learning (NCL) is 
proposed (Liu and Yao. 1999). In the NCL ensemble neural 
network model, the cost function me  of each basic model 

( ( ))mf x k  is defined as follows: 

                    2

1

1 ( ( ( )) ( ))
2

N

m m m
k

e f x k y k pλ
=

= − +∑         (3) 

where mp  is the correlation penalty function, λ is penalty 
function parameter and [0,1]λ ∈ . 

                      2

1

( ( ( )) ( ( )))
N

m m ens
k

p f x k f x k
=

= − −∑                  (4) 

Regularized NCL based Neural Network Ensemble: By 
introducing a regularization function, the RNCL neural 
network is established. The cost function of each individual 
network in RNCL (Chen and Yao. 2009) can be shown as: 

       

22
2

1

2
2

2
1 2

1 ( ( ( )) ( ))
2

1 1   
2

N

m m m m m
k

M

m m m m m m j j
j

e f x k y k p

H T H H
M

λ α β

β α β λ β β

=

=

= − + +

= − + − −

∑

∑
      (5) 

where mH  is the hidden layer output matrix of the basic 
model m , [ (1), (2), , ( )]TT y y y N=   is the target matrix, 

1 2 L[ , , , ]T
m m m mβ β β β=   is the output weights of the basic 

model m  and [0,1]mα ∈  is the regularization parameter. 

When the gradient of me  vanishes with respect to the output 
weight mβ , the RNCL neural network ensemble can get a best 
generalization performance. It can be given as: 

          1 2
1

( 2 )
M

T T T
m m m m m j j m

j
j m

C H H I C H H H Tα β β
=
≠

+ + =∑           (6) 

where 1C  and 2C  are two constant parameters which can be 
expressed as follows: 

                  1
1 11 2 (1 ) 2 (1 )C
M M M

λλ= − × − + × −                (7) 
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Fig.5. Structure chart of online learning ERNN. 

                                  2
12 (1 )C

M M
λ

= × −                           (8) 

The relationship between the hidden layer and the output 
layer can be denoted in a matrix form as follows: 

                                      corr ens hH Tβ =                 (9) 

                          1 2 1[ , , , ]T T T T
h M MLT H T H T H T ×=                   (10) 

where corrH  is the hidden correlation matrix, hT is hidden 
layer target matrix and ensβ  is the global output matrix. 
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The global output matrix can be derived from (9): 

                                      †
ens corr hH Tβ =                (12) 

Online Ensemble Random Weights Neural Network: In order 
to make the ensemble neural network learn the sequential 
data stream one-by-one or chunk-by-chunk, the online 
learning method (Ding et al. 2016) is adopted in this paper. 

For the existing sample { }( ), ( )x k y k  and new 

sample { }( 1), ( 1)x k y k+ + , according to (11), the new hidden 
correlation matrix can be denoted as: 
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  (13) 

That is: 

                                   1k k
corr corr corrH H H += +             (14) 

In the similar way, we can derive: 

                                       1k k
h h hT T T += +               (15) 

Thus, the model can be updated by hidden layer correlation 
matrix and target matrix according to (14) and (15), and the 
output weights are obtained by (12). Fig.5 is the structure 
chart of online learning ERNN. The algorithm of online 
learning ERNN is outlined as follows. 

Algorithm of online learning ERNN 
Inputs: data sets (carbon residual and asphaltene) 
Parameters: ensemble size M, number of hidden node L, 
penalty coefficient λ, regularization parameter αm. 
1: Initialize the input weights and hidden node basis; 
2: Calculate the parameters C1 and C2;  
3: Calculate the hidden output matrix of each basic 

network; 
4: Calculate the hidden correlation matrix, hidden target 

matrix; 
if the data are new data, go to step 8; 

5: Get the global output matrix by (12); 
6: Return the ensemble model and calculate outputs and 

error; 
7: If new data, go to step 3; else, go to step 10  
8: Update the hidden correlation matrix, hidden target 

matrix; 
9: Go back to step 5; 
10: End. 

4. EXPERIMENTAL RESULT 

4.1 Experimental Setup 

In this paper, 595 groups of NMR spectra and the 
corresponding carbon residual and asphaltene data were 
collected from the refinery in south China between May 2016 
and December 2016, of which 495 groups collected from 
May 2016 to November 2016 were used as the training data, 
and the remaining 100 groups collected in December 2016 
were used for the model validation. 

The sigmoid function is chosen as the activation function in 
ERNN: 

                                      1( )
1 xG x

e−
=

+
               (16) 

The optimal parameters of ERNN are determined by 
exhaustive linear search. The number of hidden nodes L was 
searched between 100 and 300 with step 10, the ensemble 
size M was searched between 3 and 10 with step 1. Similarly, 
the penalty term coefficient λ and the regularization 
coefficient αm were searched in range [0, 0.5] with step 0.01 
and in range [0, 1] with step 0.05, respectively. Finally, the 
optimal parameters are L*=200, M*=6, λ*=0.09 and αm*=0.55. 
In order to show the effectiveness of the proposed ERNN, 
experiments are carried out to compare ERNN with DNNE 
(Alhamdoosh and Wang. 2014), LS-SVM, PLS and MLR. 
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Fig.6. Prediction results and errors of carbon residual of 

ERNN, DNNE and LS-SVM. 
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Fig.8. Prediction results and errors of asphaltene of ERNN, 
DNNE and LS-SVM. 

Table 1.  Efficiency comparison of ERNN, LS-SVM, 
DNNE, PLS and MLR 

Method 
Testing time(s) 

Average STD 
PLS 
MLR 

LS-SVM 
DNNE 
ERNN 

0.1766 
1.9861 
0.0915 
0.4153 
0.5733 

0.0062 
0.0241 
0.0027 
0.0076 
0.0053 

4.2 Comparison and Discussion 

All experiments are conducted ten times. Results of the 
ERNN based model and the comparative models based on 
DNNE, LS-SVM, PLS and MLR of carbon residual and 

0 10 20 30 40 50 60 70 80 90 100
3.5

4

4.5

5

5.5

6

6.5

C
ar

bo
n 

R
es

id
ue

Actual

0 10 20 30 40 50 60 70 80 90 100

Sample Number

-1

-0.5

0

0.5

1

Er
ro

r

ERNN
PLS
MLR

 

Fig.7. Prediction results and errors of carbon residual of 
ERNN, PLS and MLR. 
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Fig.9. Prediction results and errors of asphaltene of ERNN, 
PLS and MLR. 

asphaltene are shown in Figs.6-10. Fig.6 is the prediction 
results and prediction errors of carbon residual of ERNN, 
DNNE and LS-SVM. Fig.7 is the prediction results and 
prediction errors of carbon residual of ERNN, PLS and MLR. 
From Figs.6 and 7, it can be seen that the prediction errors of 
carbon residual of ERNN are almost smaller than that of 
DNEE, LS-SVM PLS and MLR. Thus, comparing with the 
data-based nonlinear models (DNNE, LS-SVM) and the data-
based linear model (PLS, MLR), ERNN fits the data better 
and has the higher prediction accuracy. Figs.8 and 9 show the 
results of asphaltene of ERNN and the four comparative 
algorithms. From Figs.8 and9, it can be observed that except 
the beginning and the end of the testing data, the prediction 
errors of ERNN are smaller than that of other involved data-
based models on the whole. In addition, we report the testing 
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Table 2.  Performance comparison of ERNN, LS-SVM, 
DNNE PLS and MLR 

Modelling 
objective Method 

Result 

RMSE MAPE 

Carbon  
residual 

PLS 
MLR 

LS-SVM 
DNNE 
ERNN 

0.2461±- 
0.2272±- 

0.2053±0.0023 
0.1833±0.0025 
0.1613±0.0018 

3.903±- 
3.749±- 

3.364±0.020 
2.868±0.028 
2.604±0.022 

Asphaltene 

PLS 
MLR 

LS-SVM 
DNNE 
ERNN 

0.1213±- 
0.1195±- 

0.1129±0.0006 
0.1095±0.0012 
0.0986±0.0010 

9.031±- 
8.526±- 

8.223±0.009 
7.727±0.014 
7.025±0.011 

time of ERNN, DNNE, PLS and MLR in the Table 1, and 
also calculate the averages and the standard deviations (STD) 
of root mean square error (RMSE) and mean absolute 
percentage error (MAPE) of ten experiments to qualify the 
performance of the involved models in Table 2. The missing 
values (marked as ‘-’) in the table are the algorithms which 
the standard deviations are zeroes. Table 1 indicates that the 
testing time of ERNN is smaller than that of MLR, but it is a 
little larger than that of DNNE, PLS and LS-SVM. However, 
the testing time of ERNN is still acceptable. From table 2, we 
can find that both the RMSEs and MAPEs of the carbon 
residual and asphaltene of ERNN are smaller than that of 
DNNE, LS-SVM, PLS and MLR. From the comparisons 
above, it can be observed that the proposed ERNN 
outperforms the other algorithms involved in this paper due 
to the nonlinear approximation ability of ERNN and the 
introduced regularization term in the ensemble. 

5. CONCLUSIONS 

Fast evaluation of physical properties of crude oil is an 
important part in the oil refining industry, while the effective 
prediction model of physical properties of crude oil is the key 
to the fast evaluation of crude oil. Carbon residual and 
asphaltene are considered as two significant indices in crude 
oil blending, production planning and scheduling and process 
control of oil refinery. The prediction model of carbon 
residual and asphaltene based on regularized negative 
correlation ensemble random weights neural network is 
presented in this paper, and we use online learning to update 
the hidden correlation matrix and hidden target matrix by 
using new data. Furthermore, experiments are carried out 
using the data collected from a refinery and compared with 
DNNE, LS-SVM, PLS and MLR. The results demonstrate 
the effectiveness of the proposed model and its significance 
of practical application. 
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