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Abstract: This paper proposes a parallelizable real-time algorithm for integrated experiment-
design model predictive control (MPC). Integrated experiment design MPC is needed if a system
is not observable at a tracking reference and needs to be excited on purpose in order to be able
to estimate the system’s states and parameters. The contribution of this paper is a real-time
MPC algorithm using two processors. On the first processor an extended Kalman filter (EKF)
as well as a parametric certainty-equivalent MPC controller are implemented, which can provide
immediate feedback at high sampling rates. On the second processor, optimal experiment design
(OED) problems are solved in parallel in order to perturb the certainty-equivalent MPC control
loop improving the accuracy of the state estimator at a lower sampling rate. We show that this
framework can achieve optimal tradeoffs between OED and control objectives. The approach is
applied to a biochemical process in order to illustrate that the proposed controller can achieve
superior control performance when compared to certainty-equivalent MPC.
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1. INTRODUCTION

Model predictive control (MPC) is an advanced control
technique, which is capable of dealing with inequality
state- and control constraints (Mayne et.al. (2000); Rawl-
ings and Mayne (2009)). Certainty-equivalent MPC con-
trollers work well in practice if a reasonably accurate
model is available (Zhu (2009)). Here, a basic requirement
is that the controlled system is observable such that state
and parameter estimates can be determined online, e.g., by
using an extended Kalman filter (EKF) or moving horizon
estimator (Diehl et.al. (2009); Rao et.al. (2001)).

For some systems this observability requirement fails to
hold if no further precaution is taken. In such scenarios,
for example, if the system is not observable at steady-state
or if significant control excitations are needed to improve
the accuracy of the online state and parameter estimates,
it is advisable to augment the MPC objective function
with an additional optimal experiment design (OED) ob-
jective (Fisher (1935); Pukelsheim (1993)). During the last
decade there have been numerous suggestions on how to
integrate OED criteria in MPC (see Yan et.al. (2005)). For
example, Hovd and Bitmead (2005) suggest to augment
the system dynamics by a Riccati differential equation
implementing an EKF. The matrix valued state of this
Kalman filter can be used to predict the variance of future
state estimates, which, in turn, can be penalized in the
MPC objective. Similar strategies to integrate OED crite-
ria in MPC can be found in (Heirung et.al. (2012, 2015)).
Notice that there is also a number of articles on per-
sistently exciting MPC (Hernandez and Trodden (2015);
Marafioti et.al. (2014); Mesbah et.al. (2015); Zacekova
et.al. (2013)), which have appeared recently and which all
propose variants to perturb the nominally optimal control

input in order to increase the accuracy of future state and
parameter estimates. Houska et.al. (2017) suggested a self-
reflective MPC controller, which proceeds by minimizing
the sum of a nominal control performance term as well as
an additional term measuring the expected inherent loss
of optimality of the controller (Stengel (1994)).

The above reviewed approaches have in common that they
introduce additional hyperstates for predicting the accu-
racy of future state estimates. In particular, if the variance
of future state estimates is penalized by augmenting the
system dynamics with an EKF, matrix valued hyperstates
have to be included in the MPC optimization problem,
increasing the difficulty to solve it (Telen et.al. (2016)).
Recently, in (Feng and Houska (2016)) a tailored real-
time optimization algorithm has been suggested, which
attempts to exploit the particular structure of MPC with
integrated experiment design objectives. This approach
improves the computation time of self-reflective MPC.

Therefore, the current paper proposes an algorithm, which
splits the augmented MPC problem into a nominal and
an experiment design part. Section 2 starts with a review
of existing formulations of integrated experiment design
MPC. The main contribution of this paper is presented
in Section 3, where we propose to use two processors,
which communicate with each other and which provide
feedback at different sampling rates. On the first processor
a parameterized standard MPC controller is running with
high-sampling rate, while, on the other processor OED
problems are solved. An associated communication scheme
uses ideas from the field of augmented Lagrangian based
alternating direction inexact Newton (ALADIN) meth-
ods (Houska et.al. (2016)), which ensures that both pro-
cessors can find a compromise between control excitation
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for the purpose of improving future state estimates and
nominal control performance. Section 4 compares the run-
time and control performance of the algorithm for nomi-
nal and integrated-experiment design MPC by studying a
challenging biochemical process that is not observable at
its steady-state. Section 5 concludes the paper.

2. INTEGRATED OED BASED MPC

This section reviews methods for including OED criteria
in the objective of an MPC controller. The focus is on
discrete-time control systems of the form

xk+1 = f(xk, uk) + wk

ηk = h(xk) + vk ,
(1)

where xk ∈ Rnx denotes the state, uk ∈ Rnu the control
input, and ηk ∈ Rnh the measurement at time k. The
functions f : Rnx × Rnu → Rnx and h : Rnx → Rnh are
assumed to be nonlinear and at least three times contin-
uously differentiable. We are interested in analyzing OED
criteria since the process noise wk and the measurement
error vk are random variables. The system states have to
be estimated frequently from the most recent measure-
ments. As the control uk enters f nonlinearly, the control
input might influence the observability properties of the
system. In the following, it is assumed that the vks and wks
are uncorrelated in time with mean 0 and given variances
V ∈ Snh

++ and W ∈ Snx
+ , respectively 1 .

Remark 1. Notice that in the above framework uncertain
parameters can be included by introducing auxiliary state
variables that are invariant with respect to k, i.e., by
stacking equations of the form pk+1 = pk to the discrete
time recursion and regarding these parameters as states.

2.1 Model Predictive Control

Certainty-equivalent MPC proceeds by solving online op-
timization problems of the form

L(u, x̂) = min
x

N−1∑
k=0

l(xk, uk) +m(xN )

s.t.


∀k ∈ {0, . . . , N − 1},
xk+1 = f(xk, uk), x0 = x̂,

c(xk, uk) ≤ 0 .

(2)

Here, l : Rnx × Rnu → R denotes the stage cost and
c : Rnx × Rnu → R the mixed control- and state con-
straints. The prediction is computed under a certainty-
equivalence paradigm, i.e., as if the current state estimate
x̂ was known exactly and as if there was no process noise,
wk = 0. Of course, in practice, the certainty-equivalent
controller only achieves reasonable control performance if
the state estimates, e.g., found by an EKF, are reasonably
accurate and if the controller is run in a receding horizon
way; that is, the above problem is re-solved whenever a
new state measurement x̂ is available and the correspond-
ing first element of the control sequence, denoted by u∗0, is
sent to the real process.

1 The set of real symmetric and positive semidefinite n×nmatrices is
denoted by Sn+. Similarly, Sn++ denotes the set of symmetric positive
definite matrices.

Remark 2. Notice that there exist many articles on how to
formulate MPC problems of the above form such that suit-
able closed-loop stability or other closed-loop performance
criteria are met (Rawlings and Mayne (2009)).

2.2 Integrated Optimal Experiment Design

For many processes the above certainty equivalent MPC
in combination with an EKF works reasonably well in
practice and, of course, in this case, no further modifica-
tions are needed. However, in some situations, e.g., if the
MPC controller attempts to track a steady state at which
the system states are not observable, EKF-MPC cascades
may fail to perform well (Houska et.al. (2017); Telen et.al.
(2016)). In this case, the predicted variance of future
state estimates can be penalized in the objective of the
MPC controller. This leads to an augmented optimization
problem of the form

min
x,u,Σ

N−1∑
k=0

l(xk, uk) +m(xN ) +

N∑
k=0

Φ(xk, uk,Σk)

s.t.


∀k ∈ {0, . . . , N − 1},
xk+1 = f(xk, uk), x0 = x̂

Σk+1 = F (xk, uk,Σk), Σ0 = Σ̂

c(xk, uk) ≤ 0 ,

(3)

where Σ denotes the matrix-valued state of the EKF with

F (x, u,Σ) := A(x, u)G(x, u,Σ)A(x, u)T +W

G(x, u,Σ) :=

Σ− ΣC(x)T
(
C(x)ΣC(x)T + V

)−1
C(x)Σ .

(4)

Here,

A(x, u) =
∂f

∂x
(x, u) and C(x) =

∂h

∂x
(x)

denote the first order derivatives of f and h with respect
to the states.

Notice that there are many ways to choose the functions
Φ : Rnx × Rnu × Snx

+ → R. For example, in Hovd and
Bitmead (2005) it is suggested to use a weighted trace

Φ(xk, uk,Σk) := Tr (αkΣk) ,

where αk ∈ Snx
+ can be any scaling matrices that the user

can choose. In principle, one could also use other standard
OED criteria replacing the trace with the maximum eigen-
value (E-criterion) or a determinant (D-criterion) (Ljung
(1999)). In general, the function Φ could even depend
on xk and uk. This is for example, the case if a self-
reflective MPC controller is used (Houska et.al. (2017)),
which chooses Φ in such a way that the additional term in
the objective of (3) can be interpreted as the controller’s
own expected loss of optimality in the presence of the
random process noise wk and the random measurement
errors vk. For an overview of different choices of Φ in the
context of MPC we refer to Telen et.al. (2016). Notice
that all these problem formulations can be written in the
form (3) by defining the function Φ appropriately.

In order to avoid misunderstanding, given the large
amount of articles about integrated experiment design
based MPC, problem formulation (3) is not an original
contribution of this paper. Rather, the contribution of this
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paper is the development of an algorithm that can solve
problems of the form (3) efficiently and in real-time. Notice
that such algorithms are of practical relevance, since the
additional matrix-valued state Σ makes (3) much more
difficult to solve than the original MPC problem (2). Thus,
in order to make MPC with additional OED objectives
useful for practical applications, tailored algorithms and
software are needed. The goal of the following section is to
propose such an algorithm that exploits the structure by
alternating between MPC and OED objectives.

3. ALTERNATING EXPERIMENT DESIGN AND
CONTROL OBJECTIVES

This section proposes a real-time algorithm for solving (3).
Here, the main idea is to split the overall problem into two
interconnected optimization problem that can be solved in
parallel and on two processors. The first processor solves
certainty-equivalent MPC problems at a high sampling
rate while the second processor solves OED problems at a
lower sampling rate, in order to support the decisions of
the other processor. In order to explain how this works,
we introduce the shorthand notation

E(u, x̂, Σ̂) := min
x

N∑
k=0

Φ(xk, uk,Σk)

s.t.


∀k ∈ {0, . . . , N − 1},
xk+1 = f(xk, uk), x0 = x̂

Σk+1 = F (xk, uk,Σk), Σ0 = Σ̂

c(xk, uk) ≤ 0 .

(5)

Notice that the function E is more expensive to evaluate
than L, as the additional matrix-valued state Σ needs to
be propagated forward in time. Next, the original OED
based MPC problem (3) can be written in the equivalent
consensus form

min
uL,uE

{
L(uL, x̂) + E(uE , x̂, Σ̂)

}
s.t. uL = uE . (6)

The above formulation reveals a parallelizable structure,
which suggests to use parallelizable control algorithms.
Notice that there exists mature MPC software (see Houska
et.al. (2011)), as well as OED algorithms and softwares,
see, e.g., Bauer et.al. (2000). Thus, it is desirable to
make use of these existing software packages by develop-
ing a splitting scheme that exploits the structure of (6).
However, OED problems are (at least without further
reformulation) typically non-convex (Pukelsheim (1993)).
Consequently, convex splitting methods such as the alter-
nating direction method of multipliers (ADMM) cannot be
applied. Therefore, the following algorithmic developments
are based on the ALADIN method (Houska et.al. (2016)),
as outlined next.

3.1 ALADIN as an OED-MPC splitting algorithm

By applying ALADIN to (6), a distributed algorithm is
obtained that solves decoupled OED and MPC problems
in parallel. Algorithm 1 presents the main algorithmic
steps for a real-time variant of ALADIN, which, in con-
trast to the standard ALADIN algorithm, solves multi-
ple instances of the MPC problem at a higher frequency

Algorithm 1: Alternating OED-MPC

Initialization:

Initial guesses for z and λ, positive definite scaling
matrices HL and HE , and a tuning parameter ρ > 0.

Schedule of Processor 1:

Step 1a (W):

Wait for x̂ and Σ̂ as sent by Processor 2.

Step 1b (OED):

Solve the augmented OED problem

min
uE

E(uE , x̂, Σ̂) + λTuE +
ρ

2
‖uE − z‖22 . (7)

and set gE = ρ(z − uE)− λ.

Step 1c (W):

Wait for the next update of uL as sent by Processor 2
and set gL = ρ(z − uL) + λ.

Step 1d (c-QP):

Solve the consensus QP

min
∆uE ,∆uL

1

2
∆u>LHL∆uL +

1

2
∆u>EHE∆uE + g>L ∆uL

+g>E∆uE + λ>∆uL

s.t. uL + ∆uL = uE −∆uE | λQP ,

(8)

set z = uL + ∆uL and λ = λQP, send (z, λ) to
Processor 2, and go back to Step 1a.

Schedule of Processor 2:

Step 2a (EKF):

Wait for the measurement η and update the EKF
in order to compute a new state estimate x̂ and an
associated variance Σ̂.

Step 2b (MPC):

If an update for z and λ (from Processor 1) is
available, update these variable. Next, solve

min
uL

L(uL, x̂)− λTuL +
ρ

2
‖uL − z‖22 , (9)

send the first element of the optimal control
u0 = (uL)0 to the real process, send uL to
Processor 1, and continue with Step 2a.

in order to give fast feedback. The schedule of the two
processors from Algorithm 1 is additionally visualized in
Figure 1 highlighting that Processor 1 and Processor 2
are running their main steps in parallel. Problem (9) re-
mains an MPC optimization problem in standard form,
but augmented albeit with the state and terminal cost.
Thus, it can be solved with standard MPC solvers, where
the additional linear terms as well as the additional least
squares term hardly introduce any additional numerical
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Fig. 1. Schedule for the main steps of Algorithm 1. Processor 1 and Processor 2 run in parallel.

difficulties. Consequently, Processor 2 can run with the
same sampling time as a standard MPC controller for
the same system, which should be considered as one of
the main advantages of Algorithm 1 compared to other
methods, which solve problem (3) directly.

Algorithm 1 can be interpreted as a tailored variant of
the generic ALADIN algorithm that has been proposed
in (Houska et.al. (2016)). Consequently, the local contrac-
tion proof of the ALADIN iterates from Houska et.al.
(2016) can be applied one-to-one, thus the iterates of
Algorithm 1 contract in a local neighborhood of a pri-
mal dual solution (u∗, λ∗) solution of (6), i.e., as long as
(z, λ) ≈ (u∗, λ∗), and under the assumption that there is
no noise present (see also Feng and Houska (2016)). In
this paper, the matrices HL and HE are considered as
scaling matrices, which can in practice be pre-computed
by using a pre-conditioner, and ρ is kept constant. More
details regarding how to choose the scaling and tuning
factors of ALADIN can be found in Houska et.al. (2016).
Of course, in practice, Algorithm 1 has to be run in the
presence of process noise, but an empirical observation
is that Algorithm 1 still controls the system reasonably
well in this case, although a more detailed stability and
robustness analysis of this empirical observation is beyond
the scope of this paper.

Remark 3. As mentioned above, the run-time complexity
of most solvers that can deal with problem (9) is of order
O(Nn3

x), as this problem has the same size as standard
MPC problems. On the other hand, solving problem (7)
with a generic solver usually leads to an algorithm with
run-time complexity O(Nn6

x) as the Kalman filter states
are matrix-valued. However, it turns out that one can
develop tailored algorithm that can solve this problem
with run-time complexity O(Nn3

x), too, by exploiting the
particular structure of the algebraic Riccati recursion (Bit-
tanti et.al. (1991)), as for example discussed by Telen et.al.
(2013) or also, in another variant, in Feng and Houska
(2016). If such advanced OED solvers are used, the OED
solver takes in practice still longer than the MPC solver,
but the run-time ratio between the two solvers does not
depend on the number of states.

Remark 4. One could also imagine real-time variants of
Algorithm 1. E.g., instead of solving the decoupled aug-
mented OED and MPC problems to optimality one could
apply one SQP step per iteration following the classical
real-time scheme as pioneered by Diehl et.al. (2002) in
order to solve the decoupled NLPs only approximately.

Remark 5. Notice that the EKF may be inaccurate for
nonlinear system in the presence of large noise, but the

proposed parallelizable algorithm can also be in combina-
tion with the sigma-point approach (see Kawohl (2007)),
which approximates Σ more accurately.

4. NUMERICAL RESULTS

4.1 Dynamic system model

We consider a controlled chemical reactor with given
dynamics

∀t ∈ [0, T ], χ̇(t) = g(χ(t), ν(t)), χ(0) = x , (10)

where its right-hand expression is given by

g(χ, ν) =

 −(D + k1)χ1 + k2χ2χ3 + ν1

−Dχ2 − k2χ2χ3 + k1χ1 + ν2

−Dχ3 − k2χ2χ3 + ν3

 .

Here, χ [ g
L ] denotes concentrations of three substances, ν

[ g
L·s ] the feeding rates, k1 and k2 [ 1

s ] the reaction rates, and

D [ 1
s ] the dilution rate. In the following, f(x, u) = χ(τ)

denotes the solution of the associated ODE for a small
step-size τ > 0 and a piecewise constant control input. In
this case study, a Runge-Kutta integrator of order 4 is used
to evaluate the function f with high numerical accuracy.
Moreover, the stage cost l, the Mayer term m and the
constraint c are given by

l(xk, uk) =
1

2
‖xk − xref‖2Q +

1

2
‖uk − uref‖2R ,

m(xN ) =
1

2
‖xN − xref‖2QN

,

as well as c(xk, uk) = u − uk. Here, we assume that only
the first state can be measured, h(x) = x1. The numerical
values for the MPC horizon length, references, and other
parameters can be found in Table 1.

4.2 Implementation details

Algorithm 1 for this particular case study has been im-
plemented by using the algorithmic differentiation soft-
ware CasADi (Andersson et.al. (2012)) in combination
with automatic C-code generation. Moreover, we use the
software qpOASES as a QP solver (Ferreau et.al. (2008)).
All the results below are obtained on a macOS Sierra
operating system with two 3.3 GHz Intel Core i7 processors
and 16 GB, 2133 MHz LPDDR3.

4.3 Control performance

Figure 2 shows a comparison of the closed-loop trajectories
that are obtained by running Algorithm 1 and certainty-
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Fig. 2. [Discrete-time system] Closed-loop state trajectories x with random noise as well as the associated closed-
loop input profile u obtained by running the alternating OED-MPC Algorithm 1 (red, dotted), by running the
certainty-equivalent MPC (blue, dotted), and the reference states xref and controls uref (black, solid).

Name Symbol Value

dilution rate D 0.1 [ 1
s
]

reaction rates k1, k2 0.1, 0.5 [ 1
s
]

discrete-time step-size τ 0.5 [s]

MPC horizon length N 10

initial state estimate ŷ [1.0, 5.0, 0.0]T [ g
L

]

initial state variance Σ̂ diag (0, 0, 0) [ g
2

L2 ]

state reference xref [1.0, 5.0, 0.0]T [ g
L

]

control reference uref [0.6, 0.0, 0.0]T [ g
L·s ]

lower control bound u [0, −1, −1]T [ g
L·s ]

measurement error variance V 2.5 · 10−4 [ g
2

L2 ]

process noise variance W diag (0, 2.56, 0) [ g
2

L2 ]

state weighting matrix Q, QN diag (1, 1, 1)

control weighting matrix R diag (1, 1, 5) [s2]

penalty term ρ 103

Table 1. Parameter values.

equivalent MPC (solely running the control solver without
any assistance from the OED solver) on the above case
study, respectively. Here, the function Φ is a weighted
trace term using the self-reflective weighted A-criterion as
proposed in Houska et.al. (2017).

Notice that for this particular case study the system is
not observable at its steady states xref , since only the
first state component of the system can be measured.
Consequently, the controller finds an optimal tradeoff
between estimation accuracy and tracking performance by
steering the system to a steady-state that is observable,
but not exactly equal to xref , as one would expect from
an integrated OED based MPC controller. Their average
control performance illustrates the difference between two
controllers. By performing the closed-loop simulation for
a sufficiently long time M , the average performance of the
certainty-equivalent MPC controller is

1

M

M∑
k=1

l(xMPC
i , uMPC

i ) ≈ 1.62

[
g2

L2

]
and the corresponding value of performing Algorithm 1 is

1

M

M∑
k=1

l(xOED-MPC
i , uOED-MPC

i ) ≈ 0.53

[
g2

L2

]
for randomly generated uniformly distributed uncertainty.
Consequently, the proposed integrated OED-MPC con-
troller achieves over three times better performance than
certainty-equivalent MPC.

4.4 Run-time performance

Although the weighted A-criterion comprises 18 states and
3 controls in total for this particular case, the runtime is in
the microsecond range by combining the proposed paral-
lelizable algorithm with the acceleration scheme from Feng
and Houska (2016), which exploits the particular structure
of integrated experiment design problem.

Processor 1 (OED processor) CPU time [µs] %

Step 1a (W) − −

Step 1b (OED) 40 42

Step 1c (W) − −

Step 1d (c-QP) 55 58

Total time 95 100

Processor 2 (control processor) CPU time [µs] %

Step 2a (EKF) ≤ 1 ≈ 4

Step 2b (MPC) 24 96

Total time 25 100

Table 2. Run-time associated with the different
steps of Algorithm 1 for both processors.

Table 2 summarizes the run-time of different steps of Al-
gorithm 1. The decoupled problems (7) and (9) are solved
by using real-time iterations as discussed in Remark 4.
The time for solving both the OED and the coupled QP
is about 95µs, which corresponds to around four times of
the sampling time of the certainty-equivalent MPC loop.
The waiting times in Step 1a and 1c were set to 0.

5. CONCLUSION

This paper has presented the alternating MPC-OED Al-
gorithm 1, which finds optimal tradeoffs between OED
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criteria and MPC control performance objectives. The
main contribution of this tailored algorithm is that it uses
two processors: Processor 2 runs at the same sampling
rate as standard MPC without additional OED objectives
would do. Processor 1 is used to support the decisions
of Processor 2 at a lower sampling rate by perturbing
the gradient of the MPC controller in order to improve
the accuracy of the state estimates in the presence of
random process and measurement noise. A case study has
illustrated the practical advantages of this algorithm in
terms of both run-time as well as control performance. A
more detailed robustness and stability analysis supporting
the algorithmic developments will be part of future work.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support
by the National Science Foundation China (NSFC), Nr.
61473185, as well as ShanghaiTech University, Grant-Nr.
F-0203-14-012.

REFERENCES

Andersson, J., Akesson, J., and Diehl, M. (2012). CasADi:
A Symbolic Package for Automatic Differentiation and
Optimal Control. Recent Advances in Algorithmic Dif-
ferentiation, 297–307, Springer, 2012.

Bauer, I., Bock, H.G., Körkel, S., and Schlöder, J.P.
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