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Abstract: Sensor errors limit the performance of a supervision and control system. Sensor accuracy can 

be affected by many factors such as extreme working conditions, sensor deterioration and interferences 

from other devices. It may be difficult to distinguish sensor errors and real dynamic changes in a system. 

A hybrid online multi-sensor error detection and functional redundancy (HOMSED&FR) algorithm is 

developed to monitor the performance of multiple sensors and reconcile the erroneous sensor signals. The 

algorithm relies on two methods, outlier-robust Kalman filter (ORKF) and a locally-weighted partial least 

squares (LW-PLS) regression model. The two methods have different way of using data, ORKF is 

comparing current signal samples with the signal trace indicated by previous samples and LW-PLS is 

comparing samples in the past window with the samples from a database and uses the samples with the 

most similarity to build a model to predict the current signal values. The performance of this system is 

illustrated with a clinical case involving artificial pancreas experiments, which include data from a 

continuous glucose monitoring (CGM) sensor, and energy expenditure (EE) and Galvanic Skin Response 

(GSR) information based on wearable sensors that collect data from people with type 1 diabetes. The 

results indicate that the proposed method can successfully detect most of the erroneous signals and 

substitute them with reasonably estimated values computed by the functional redundancy system. 

Keywords: Functional Sensor Redundancy, Sensor Error Detection, Kalman Filter, Locally Weighted 

Partial Least Squares Regression, Multi-Sensor, Signal Reconciliation 



1. INTRODUCTION 

Reliable sensor data is one of the most critical factors that 

affect the performance of monitoring and control systems. 

Missing signals may disrupt system operation. Outliers and 

large signal bias may cause the controller to calculate 

inaccurate values for manipulated variables, which in turn 

may affect the controlled variables, product quality and 

system safety. Sensor errors can be divided into two main 

categories: complete hardware failures and soft failures such 

as bias, drift, and outliers. (McIntosh, 2000) The solution for 

complete failures include fault detection, sensor replacement 

and/or recalibration in parallel with data reconciliation to 

provide “good enough” estimates for the missing data. For 

soft errors, the objective is to detect the error and replace the 

erroneous data with estimated values automatically. Many 

approaches have been proposed for sensor fault detection and 

diagnosis (FDD) and data reconciliation. Model-based 

methods (with first principles or data-driven models), such as 

Kalman estimators (Foo et al., 2013, Kobayashi and Simon, 

2003, Agamennoni et al., 2011, Kobayashi and Simon, 2007), 

partial least squares (PLS) (Chiang et al., 2000, Kourti et al., 

1995, Kim et al., 2013, Cinar and Undey, 1999, Ündey et al., 

2003) and artificial neural networks (Talebi et al., 2009, 

Romessis and Mathioudakis, 2002) are able to detect errors 

by defining thresholds for measured values or their residuals 

and replace the erroneous signal with estimated values. 

Cluster-based methods such as principal component analysis 

based discrimination (Dunia and Joe Qin, 1998, Wang and 

Cui, 2005, Wang and Romagnoli, 2005, Raich and Çinar, 

1997, Cinar et al., 2007) and support vector machines 

(Banerjee and Das, 2012, Widodo et al., 2009) aim to detect 

sensor errors by using a large database that includes normal 

and abnormal signal samples and determine the most likely 

cluster for the current signal. Other methods such as robust 

control or fault-tolerant control (Salapaka et al., 2002, 
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McFarlane and Glover, 1990, Kendra et al., 1994) can 

tolerate sensor errors. A limitation of robust control is the 

need for prior knowledge of sensor error and its effects on the 

system model. 

Artificial pancreas (AP) systems provide an advanced 

treatment for people with type 1 diabetes (T1D) by 

automatically regulating their blood glucose concentration 

(BGC). With continuous glucose monitoring (CGM), 

information related to BGC can be measured at a high 

frequency. In addition to CGM measurements, physiological 

information such as energy expenditure (EE) and Galvanic 

Skin Response (GSR) data can be used to account for the 

effects of physical activity that strongly affects BGC.  

When a system has multiple sensors measuring different 

variables, the sensor signals provide the opportunity to 

develop functional redundancy by using models and data to 

detect sensor errors and reconcile erroneous signals. In 

previous work (Feng et al., 2017), a single sensor (CGM) 

version of the sensor error detection and functional 

redundancy (SED&FR) algorithm was reported and the AP 

system was used to illustrate its performance in CGM error 

detection and reconciliation. SED&FR uses two methods to 

build the prediction models, the outlier-robust Kalman filter 

(Ting et al., 2007, Agamennoni et al., 2011, Feng et al., 

2017) (ORKF) and the locally-weighted partial least squares 

(Kim et al., 2013, Feng et al., 2017) (LW-PLS). This method 

is extended to hybrid online multi-sensor error detection and 

functional redundancy (HOMSED&FR) for systems with 

many variables. A multivariable AP which uses CGM, EE, 

and GSR data is used to illustrate its performance. The 

HOMSED&FR algorithm is integrated with an error and 

danger warning system (E&DWS) as a solution for hard and 

soft sensor errors and danger situations to improve AP safety.  

2. METHODS 

2.1 Model identification for multi-variable AP system 

ORKF is capable to detect an outlier when the sensor signal 

deviation is larger than the expected sensor noise estimated 

by using past signal samples. The erroneous signals detected 

will be assigned smaller weights for updating the Kalman 

estimator model. LW-PLS builds a PLS model by using the 

signals in the historical signal database that are most similar 

to current signals. The fault reported by ORKF indicates that 

the current signal is different from the signal trace indicated 

by recent past values of signals, but there may not be a fault 

if LW-PLS find samples with similar signal behavior in the 

database. Conversely, if a new signal pattern does not match 

any type of true signal trace in the database, LW-PLS may 

not be able to provide the correct detection. Hence, the use of 

both algorithms simultaneously provides a more robust fault 

detection and diagnosis effort. The single sensor version of 

ORKF and LW-PLS described in previous work (Feng et al., 

2017) has been modified to conduct FDD of MIMO systems. 

In ORKF, sensor data 𝒚𝑘 ∈ ℜ
𝑑1  can be described by Kalman 

filter system equations with hidden states 𝒙𝑘 ∈ ℜ
𝑑2  where d1 

and d2 are the dimensions of outputs (number of sensors) and 

state variables: 

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘   (1) 

𝒙𝑘 = 𝑨𝒙𝑘−1 + 𝒔𝑘   (2) 

where 𝑪 ∈ ℜ𝑑1×𝑑2  is the observation matrix, 𝑨 ∈ ℜ𝑑2×𝑑2  is 

the state transition matrix, 𝒗𝑘 ∈ ℜ
𝑑1×1  is the observation 

noise, and 𝒔𝑘 ∈ ℜ
𝑑2×1 is the state variable noise at time step 

k. We assume that 𝒗𝑘  and 𝒔𝑘  are uncorrelated zero-mean 

Gaussian noise:𝒗𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑹), 𝒔𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑸). For 

the multivariable AP, the output 𝒚𝑘  includes three 

measurements:  

𝒚𝑘 = [SCGM,𝑘      SEE,𝑘    SGSR,𝑘]
T   (3) 

where SCGM,𝑘 ,  SEE,𝑘 , and SGSR,𝑘  indicate signal readings of 

CGM, EE, and GSR at step k, respectively. The recursive 

model calculation procedure is described elsewhere (Feng et 

al., 2017). Each time a variable is updated, the ORKF will 

calculate an estimated value (�̂�𝑘
ORKF)  that will be used in 

sensor error detection and data reconciliation.  

For LW-PLS, the query sample (𝒙𝑞 ) and samples in the 

database as input ( 𝒙𝑛 ) contains multiple sensor signals 

including CGM, EE, GSR, and the insulin infusion rate. One 

step prediction of EE, GSR, and CGM is set as output (𝒚𝑛): 

𝒙𝑛 = [𝑆
′
CGM,𝑘′−α, 𝑆

′
CGM,𝑘′−α+1, … , 𝑆

′
CGM,𝑘′−1, 𝑆

′
EE,𝑘′−α,

S′EE,𝑘′−α+1, … , S
′
EE,𝑘′−1, S

′
GSR,𝑘′−α, S

′
GSR,𝑘′−α+1, … ,

𝑆′GSR,𝑘′−1, 𝐼
′
𝑘′−α, 𝐼

′
𝑘′−α+1, … , 𝐼

′
𝑘′−1]

T        (4) 

𝒚𝑛 = [𝑆′CGM,𝑘′ , 𝑆′EE,𝑘′ , 𝑆′GSR,𝑘′]
T  (5) 

𝒙𝑞 = [𝑆CGM,𝑘−α, 𝑆CGM,𝑘−α+1, … , 𝑆CGM,𝑘−1, 𝑆EE,𝑘−α,

𝑆EE,𝑘−α+1, … , SEE,k−1, 𝑆GSR,𝑘−α, 𝑆GSR,𝑘−α+1, … , 𝑆GSR,𝑘−1,

𝐼𝑘−α, 𝐼𝑘−α+1, … , 𝐼𝑘−1]
T         (6) 

where the prime (′) indicates signals from historical data in 

the database. The data used to build the LW-PLS database 

needs to be noise free, and thus a 7
th

 order Savitzky-Golay 

filter (SGF) was used to filter the original CGM, EE, and 

GSR signals to eliminate unknown sensor noise. 𝐼 denotes the 

insulin infusion rate. The insulin infused one hour earlier may 

still have an effect on BGC and CGM (Hovorka, 2006). 

Considering the CGM sampling time of 5 minutes,  α  is 

selected to be 12. Each time new sensor signals are provided, 

they will be compared with the samples in the database to 

find those similar samples to identify a PLS model and 

calculate the model prediction �̂�𝑘
LP for sensor error detection 

and data reconciliation (Feng et al., 2017). 

Threshold vectors 𝑻LW−PLS  and 𝑻ORKF  are set to determine 

sensor errors: 

𝑬𝒓𝒓ORKF,𝑘 = ‖�̂�𝑘
ORKF − 𝒚𝑘‖ > 𝑻ORKF (7) 

 𝑬𝒓𝒓LW−PLS,𝑘 = ‖�̂�𝑘
LP − 𝒚𝑘‖ > 𝑻LW−PLS     (8) 

 𝑬𝒓𝒓ORKF,𝑘 and 𝑬𝒓𝒓LW−PLS,𝑘are 3-component binary vectors, 

with each row equal to 1 if the condition is true and 0 if it is 

false. The threshold vectors are set based on the mean and 

standard deviation of the model prediction error (MPR) of 

ORKF and LW-PLS: 
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𝑻LW−PLS = 𝑀𝑃𝑅𝑚
LW−PLS +𝑀𝑃𝑅𝑑

LW−PLS (9) 

𝑻ORKF = 𝑀𝑃𝑅𝑚
ORKF +𝑀𝑃𝑅𝑑

ORKF (10) 

2.2 Error and danger report and signal reconciliation 

The objective of a HOMSED&FR is not only to detect the 

sensor error, but also reconcile the erroneous sensor signals 

with better-estimated values. It must be sensitive to abnormal 

sensor readings and be able to provide accurate 

reconciliations. For short-duration errors such as outliers, 

ORKF has the advantage of fast detection and online auto-

smoothing ability. For long-duration errors that require 

longer prediction periods, LW-PLS based on historical data is 

more advantageous for better prediction accuracy since no 

accurate prior samples are available. There are three concerns 

about the error reporting and signal reconciliation procedure: 

1) Not all the sensor errors are automatically reconcilable. 

The model estimation error grows when the duration of 

sensor error increase. When the model is not accurate enough 

to give reconciled estimates of erroneous signals over an 

extended period, the error detection should switch from soft 

error to hard error and initiate an alarm, requiring for sensor 

calibration or sensor replacement. 

2) A danger alarm should be given to guarantee the safety of 

the system. If either sensor signal or estimated signal 

indicates a safety issue of for the system (hypoglycemia or 

hyperglycemia for the AP) a danger alarm should be issued.  

3) For a short duration error such as outliers, the erroneous 

sensor signals should be replaced with the estimated value 

with the highest performance score (model accuracy, 

smoothness, etc.). For a continuous sensor error, a weighted 

estimation could be used for erroneous signals replacement in 

the sense that more weight is given for the model with better-

expected prediction accuracy. 

There may be a large number of false positive (FP) due to 

variations in model accuracy, especially when a system has 

time-varying parameters. Nominal angle analysis (NAA) 

(Feng et al., 2017) is developed as a pre-check procedure to 

reduce the number of FP. First, sensor signals go through 

NAA to determine if the sensor signals are could be abnormal 

or the variation is due to a disturbance to the system. If NAA 

indicates that sensor signals are abnormal, ORKF and LW-

PLS will check if the sensor signals are erroneous. If one or 

both of the methods report sensor error (there is a value in 

𝑬𝒓𝒓ORKF,𝑘 and 𝑬𝒓𝒓LW−PLS,𝑘 equal to 1) or there is a missing 

signal, and data reconciliation is needed. 

For data reconciliation, different performance scores are used 

for candidate selection. For CGM sensors the smoothness is 

the most important characteristic since glucose dynamics is 

relatively slow. For EE and GSR signals, large signal change 

is possible. For example, the human body can switch from 

sedentary to exercise mode such as running in few seconds 

and in consequence EE and GSR may increase significantly 

in a few sampling times.  

When the first time the sensor error is detected, if the error 

comes from the CGM, the model estimate that has the 

smallest nominal angle (Feng et al., 2017) will be used to 

replace the erroneous sensor signal. Otherwise, the model 

estimate with the best accuracy at the previous sampling time 

will be used for the signal replacement. If there is a 

continuous sensor error, and initially the erroneous value is 

replaced by ORKF estimate, more weight should be given to 

LW-PLS estimate as it has better prediction accuracy for 

longer lasting errors: 

Se,k = 0.25𝐷𝑢𝑟ŷ𝑒,𝑘
LP + (1 − 0.25𝐷𝑢𝑟)ŷ𝑒,𝑘

ORKF if 𝐷𝑢𝑟 ≤ 𝐷𝑢𝑟max  (11) 

where 𝐷𝑢𝑟  is the signal error duration, with a maximum, 

𝐷𝑢𝑟max. If error duration is more than 𝐷𝑢𝑟max, a hard error 

will be reported for sensor recalibration or replacement. If at 

the first time erroneous values are replaced by LW-PLS 

estimates, the subsequent signals of a sustained error will be 

replaced by �̂�𝑒,𝑘
LP  until 𝐷𝑢𝑟 > 𝐷𝑢𝑟max. The value of 𝐷𝑢𝑟max is 

selected according to the prediction accuracy of LW-PLS and 

ORKF. For 5-steps prediction, if the average MPR is larger 

than 20% of the sensor signal, which is not suitable for signal 

reconciliation, 𝐷𝑢𝑟max is set to 4.  

The error report has four different kinds of alarms: signal 

missing, stuck signal, signal bias and longtime error (hard 

failure). An example of sensor signal reconciliation and error 

report including error report is illustrated in Fig. 1.  

 

Fig. 1. Example of sensor signal reconciliation and error 

report 

For an AP system, insulin infusion rate is calculated at every 

sampling time using recent values of the CGM, EE, and GSR 

signals. Too much insulin may cause future hypoglycemia 

and too little insulin may cause hyperglycemia. 

Hypoglycemia may cause some immediate safety issue such 

as coma or even death, and hyperglycemia may cause many 

long-term cardiovascular diseases. The normal range of 

glucose variations (CGM) is 70 to 180 mg/dl. A 

hypoglycemia alarm will be issued to consume carbohydrate 

if the reconciled signal is below 70 mg/dl. A hyperglycemia 
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alarm will be issued to give a correction insulin if the glucose 

value is larger than 180 mg/dl. And the danger alarm system 

is illustrated in Fig. 2. 

 

Fig. 2. Example of hypoglycemia and hyperglycemia alarm 

The danger alarm is triggered (Fig. 2) even if the erroneous 

signal is below 180 (time 118 and 119) and signal missing 

(step 148). In this case, people can get immediate treatment 

when their BGC is in the dangerous area. The overall 

procedure of HOMSED&FR is illustrated in Figure 3. 

 

Fig. 3. Flow diagram of error report and signal reconciliation 

procedural of HOMSED&FR 

3. RESULTS 

In this case study, sensor signals collected from 16 clinical 

experiments with subjects with T1D who used a 

multivariable AP are used to illustrate the performance of the 

HOMSED&FR algorithm. Each experiment lasts for three 

days. The data include CGM sensor signals from a Dexcom 

G4 Platinum (Peyser et al., 2015), and EE and GSR signals 

from Sensewear armband (Andre et al., 2006). The sampling 

time for all three sensor signals is 5 minutes. In total 10,400 

sets of signals were analyzed for errors. The mean and 

standard deviation of the three variables are listed in Table 1. 

Table 1.  Mean and standard deviation for the three sensors 

used in AP system 

 CGM (mg/dl) EE (kcal) GSR(μS) 

Mean value 141 6.74 0.485 

Standard deviation 48 3.73 0.248 

Since the raw sensor signal may have unknown noise, raw 

data are filtered by SGF to generate the noise-free data. And 

a sensor error generator introduces known errors to the noise-

free data sets with a specified error appearance percentage 

(EAP) and error magnitude (Me). EAP means the possibility 

of the sensor error generator adding an error to the data for 

each sample. Sensor errors of CGM sensor include missing 

signal (Eq.12), stuck signal (Eq.13), spike (Eq.14), drifts 

(Eq.15), step change (Eq.16), and pressure-induced sensor 

attenuations (PISA) (Facchinetti et al., 2016) (Eq.17). Sensor 

errors of EE and GSR include missing signal, stuck signal, 

and, spike which are the common types of error. The duration 

and direction of errors are noted as 𝐷𝑢𝑒 and 𝐷𝑖𝑒  respectively. 

The following relations are used for error generation: 

[𝐺𝑒(𝑘), 𝐺𝑒(𝑘 + 1)…𝐺𝑒(𝑘 + 𝐷𝑢𝑒 − 1)] 

= [NaN, NaN,… , NaN]           s. t. Due ∈ [1, 2, 3, 4]          (12) 

[𝐺𝑒(𝑘), 𝐺𝑒(𝑘 + 1)…𝐺𝑒(𝑘 + 𝐷𝑢𝑒 − 1)] 

= [𝐺(𝑘), 𝐺(𝑘), … , 𝐺(𝑘)]    s. t. 𝐷𝑢𝑒 ∈ [1, 2, 3, 4]       (13) 

𝐺𝑒(𝑘) = 𝐺(𝑘) + 𝐷𝑖𝑒𝑀𝑒𝐺(𝑘) (14) 

[𝐺𝑒(𝑘), 𝐺𝑒(𝑘 + 1)…𝐺𝑒(𝑘 + 𝐷𝑢𝑒 − 1)] = [𝐺(𝑘), 𝐺(𝑘 + 1),

… , 𝐺(𝑘 + 𝐷𝑢𝑒 − 1)] + 𝐷𝑖𝑒𝑀𝑒[1, 2, … , 𝐷𝑢𝑒]/𝐷𝑢𝑒 

s. t.   𝐷𝑢𝑒 ∈ [2, 3, 4, 5] (15) 

[𝐺𝑒(𝑘), 𝐺𝑒(𝑘 + 1)…𝐺𝑒(𝑘 + 𝐷𝑢𝑒 − 1)] = [𝐺(𝑘)+, 𝐺(𝑘 + 1),
… , 𝐺(𝑘 + 𝐷𝑢𝑒 − 1)] + 𝐷𝑖𝑒𝑀𝑒𝐺(𝑘)  𝑠. 𝑡. 𝐷𝑢𝑒 ∈ [2, 3, 4, 5]        (16) 

𝐺𝑒(𝑘 + 𝑡) =

{
 
 

 
 𝐺(𝑘 + 𝑡) − 𝑃 (1 − exp (

−5𝑡

𝜏
)) 𝑖𝑓 𝑡 ≤ 𝐷/5    

𝐺(𝑘 + 𝑡) + 𝑃 (exp (
−5𝑡

𝜏
) − exp (

−5𝑡 + 𝐷

𝜏
))

𝑖𝑓 
𝐷

5
< 𝑡 < 𝐷𝑢𝑒 

   

 

s. t.   𝐷𝑢𝑒 = 𝐷 + 3𝜏,    𝑡 ∈ [1, 𝐷𝑢𝑒], 𝑃 ∈ [10.9   48.4], 𝐷 ∈
[3.9   21.7]                  (17) 

where 𝐺𝑒(𝑘) is the faulty sensor data generated by the sensor 

error generator using the original signal value 𝐺(𝑘). All types 

of sensor errors are added to data randomly except PISA that 

is only added when the subject is at resting period since PISA 

is usually caused by a mechanical pressure made on the 

sensor by the subject (e.g., sleeping position causing pressure 

on body region where sensor is located) inducing a temporary 

loss of sensitivity with consequent distortion of the CGM 

trace. (Bequette, 2010) All 𝐷𝑢𝑒, 𝐷𝑖𝑒 , 𝑃, and D are randomly 

selected within their range (Facchinetti et al., 2016). Different 

magnitudes of 𝑀𝑒  are [10% 20% 30% 40%] and the error 

frequency is selected as [0.1% 0.5% 1% 5%] of the total 

samples to illustrate the performance of the proposed system. 

For each combination of 𝑀𝑒  and EPA, 10 simulations are 

implemented to test the HOMSED&FR algorithm. The 

summary of results for different 𝑀𝑒  and EPA of different 

sensors are described in Tables 2 and 3, respectively. 

Table 2.  Summary of results for different error magnitudes  
Me(%) Sensor EDRS EDRF FN FP S SRR FDR 
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10 

CGM 2,790 360 1,550 1,575 0.67 0.89 0.33 

EE 2,360 530 1,800 3,015 0.62 0.82 0.51 

GSR 2,470 600 1,595 1,565 0.66 0.8 0.34 

20 

CGM 2,980 275 1,135 1,500 0.74 0.92 0.32 

EE 2,640 545 1,630 2,935 0.66 0.83 0.48 

GSR 2,465 560 1,545 1,645 0.66 0.81 0.35 

30 

CGM 3,405 265 990 1,540 0.79 0.93 0.3 

EE 2,645 365 1,380 2,920 0.69 0.88 0.49 

GSR 2,430 530 1,490 1,800 0.67 0.82 0.38 

40 

CGM 3,450 235 945 1,435 0.8 0.94 0.28 

EE 2,955 365 1,200 2,890 0.73 0.89 0.47 

GSR 2,735 520 1,500 1,855 0.68 0.84 0.36 

 

Table 3.  Summary of results for different error appearance 

percentages 
EAP(%) Sensor EDRS EDRF FN FP S SRR FDR 

0.1 

CGM 380 25 90 470 0.82 0.94 0.54 

EE 320 30 130 2,405 0.73 0.91 0.87 

GSR 175 30 80 1,950 0.72 0.85 0.9 

0.5 

CGM 1,325 100 460 850 0.76 0.93 0.37 

EE 1,130 160 515 2,720 0.71 0.88 0.68 

GSR 1,100 210 595 1,890 0.69 0.84 0.59 

1 

CGM 2,410 220 870 1,380 0.75 0.92 0.34 

EE 2,030 360 1,150 3,210 0.68 0.85 0.57 

GSR 1,970 415 1,085 1,500 0.69 0.83 0.39 

5 

CGM 8,510 790 3,200 3,350 0.74 0.92 0.26 

EE 7,120 1,255 4,215 3,425 0.67 0.85 0.29 

GSR 6,855 1,555 4,370 1,525 0.66 0.82 0.15 

The formula for computing sensitivity (S), successful 

reconciliation rate (SRR), false detection ratio (FDR) are 

S =
EDRS+EDRF

EDRS+EDRF+FN
  (18) 

SSR =
EDRS

EDRS+EDRF
  (19) 

FDR =
FP

EDRS+EDRF+FP
  (20) 

where EDRS denotes the errors detected and reconciled 

successfully and EDRF denotes the errors detected but 

reconciliation failed. EDRS include cases during one 

continuous sensor error episode where the error is detected 

and the reconciled (estimated) value is closer to the noise-free 

data for sensor bias or stuck signal, and the absolute 

difference between the estimated value and the noise-free 

signal is smaller than 10% of the noise-free signal for the 

signal missing error. If the estimated value does not satisfy 

these criteria, the error is classified as EDRF. If no error is 

reported while there is a sensor error, it is classified as a 

missed error (false negative - FN), and if a sensor error is 

reported when no error was added to data, it is classified as 

error reported erroneously (false positive - FP).  

4. DISCUSSION  

Overall, most of the errors introduced have been detected and 

reconciled with better estimated values with relatively small 

FDR. The sensitivity and SSR increase when sensor error 

magnitude increases (Table 2). But FDR may not increase 

with the growth of sensor error magnitude since the larger 

magnitude of sensor error, if not detected, will affect model 

prediction accuracy more significantly. And when a sensor 

error such as step change ends and the reading returns back to 

real signal value, there may exist significant signal variation 

and the real signal may be treated as a sensor error (Fig. 2). 

As EAP increases, the sensitivity and FDR may increase 

because two or more errors may be generated close to each 

other. The interaction between errors will make the errors 

more difficult to detect. And the model based on past samples 

may reduce its accuracy since the models in the SED&FR 

system do not have enough noise-free prior data to train the 

model.  

The sensor signal with higher variability is more difficult for 

error detection and signal reconciliation since there will be 

more FP and the model accuracy decreases when current 

signal values are not strongly related to previous signal 

values. CGM sensor signals have less variability compared 

with EE and GSR sensor signals (Table 1), hence have higher 

sensitivity and SSR and lower FDR. 

At each sampling time (5 minutes) the AP system calculates 

an insulin infusion rate to be infused to patients. Considering 

the time for signal transmission, controller computation, and 

insulin pump execution, the computation time for 

HOMSED&FR need to be much smaller than 5 minutes. The 

computation time for this HOMSED&FR algorithm is 1.2 

seconds (CPU: Intel i5-3470, RAM: 8GB, Matlab 2015a) 

which will not add too much computation burden to the 

whole AP system. 

5. CONCLUSIONS 

The proposed HOMSED&FR algorithm combines two 

methods, ORKF and LW-PLS, that together successfully 

detected most of the sensor errors and reconciled sensor 

readings for most of the detected errors with values close to 

the real value. The number of false alarms is relatively low.  

Such models improve the operation of a control system by 

providing reliable estimates of erroneous sensor readings. By 

integrating the error and danger report system, both hard and 

soft sensor errors are taken into consideration and improve 

the safety of the AP system. 
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