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Abstract: Continuous glucose monitoring (CGM) sensors are a critical component of artificial pancreas 

(AP) systems that enable individuals with type 1 diabetes to achieve tighter blood glucose control. CGM 

sensor signals are often afflicted by a variety of anomalies, such as biases, drifts, random noises, and 

pressure-induced sensor attenuations. To improve the accuracy of CGM measurements, an on-line fault 

detection method is proposed based on sparse recursive kernel filtering algorithms to identify faults in 

glucose concentration values. The fault detection algorithm is designed to effectively handle the 

nonlinearity of the measurements and to differentiate the normal variability in the glycemic dynamics 

from sensor anomalies. The effectiveness of the proposed recursive kernel filtering algorithm for sensor 

error detection is demonstrated using simulation studies. 

Keywords: Kernel filtering algorithms, sparsification, faults detection, sensor errors, artificial pancreas. 



1. INTRODUCTION 

Continuous glucose monitoring (CGM) sensors are a critical 

component in the closed-loop control of blood glucose 

concentrations for people with type 1 diabetes (T1D). 

Although less accurate than conventional handheld glucose 

meters, real-time CGM sensors provide necessary feedback 

through frequent measurements (typically every 5 mins) for 

artificial pancreas (AP) systems while being minimally 

invasive, thus enabling individuals with T1D to regulate their 

glucose levels throughout their daily lives (Kirchsteiger, 

Jørgensen, Renard, & Del Re, 2015). The CGM sensors 

incorporate a disposable probe implanted under the skin and 

a transmitter placed above the skin. The implanted probe 

measures an electrical signal proportional to the 

concentration of glucose present in the interstitial fluid of the 

subcutis. Due to the constant interaction of the probe with the 

interstitial fluid, the sensitivity of the CGM sensor may vary 

over time (Andrea Facchinetti, Del Favero, Sparacino, & 

Cobelli, 2011). Therefore, CGM sensors occasionally require 

recalibration with finger-stick glucose measurements 

obtained using a handheld glucose meter (Deiss et al., 2006; 

Group, 2008; Klonoff, 2005). CGM sensors also routinely 

encounter faulty measurements due to incorrect sensor 

calibrations (bias and step faults) (K. Turksoy, Roy, & Cinar, 

2017), fouling (slow drift or gradual deterioration in sensor 

measurements), communication disruptions, subject 

movements, dislodging or displacement of the sensor from 

underneath the skin, and pressure-induced sensor attenuations 

(PISA) (Baysal et al., 2014; A. Facchinetti, Del Favero, 

Sparacino, & Cobelli, 2016). Such faults need to be 

appropriately detected and reconciled to avoid feedback 

control based on abnormal sensor readings (Feng, Turksoy, 

Samadi, Hajizadeh, & Cinar, 2016). 

A number of studies have addressed faults in AP systems in 

general, and CGM sensors in particular. Early efforts in 

handling faults in AP systems include an on-line failure 

detection method that employs state-space dynamic models 

and Kalman filters to improve overnight safety of people 

with T1D (Andrea Facchinetti et al., 2011; A. Facchinetti et 

al., 2016; Andrea Facchinetti, Favero, Sparacino, & Cobelli, 

2013). Overnight AP safety is of particular concern because 

sensor inaccuracy can lead to critical situations when the 

patient is asleep and cannot readily rectify the sensor errors. 

In recent work, a real-time fault detection method is proposed 

based on robust Kalman filter and latent variable regression 

models to distinguish between abnormal signal readings and 

normal transient variations in sensor measurements caused by 

changes in the underlying metabolism of individuals (Feng et 

al., 2016; K. Turksoy et al., 2017). The notions of robustness 

are also used to develop a model-based fault detection 

technique based on interval analysis to account for 

uncertainty in the model and detect disconnections of the 

insulin infusion set (Herrero et al., 2012). Various statistical 

monitoring charts and latent variable analysis techniques are 

also developed to detect erroneous CGM measurements 

(Zhao & Fu, 2015). In some previous CGM sensor fault 
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detection approaches, information of insulin delivery is used. 

The insulin infusion information, however, may not be 

available when the CGM sensor is used in the conventional 

multiple daily insulin injection therapy. Furthermore, the 

insulin infusion information may also be faulty if the infusion 

pump experiences faults due to blockages or insulin leakage 

to the infusion site. Using the inaccurate insulin infusion 

information to detect faults in CGM measurements may lead 

to incorrect conclusions, especially if the infusion pump fails 

to deliver the instructed dose of insulin. Some methods also 

use off-line analysed blood samples for comparison to detect 

failures in the CGM signal, though off-line blood sampling 

may not always be practical for detecting sensor faults, 

especially overnight when the individual is asleep. To avoid 

confounding the possibly inaccurate insulin infusion 

information with sensor error detection, a method that can 

identify the abnormalities in CGM sensors based only on 

CGM data is of interest. Moreover, distinguishing the sensor 

errors from the normal fluctuations in the CGM 

measurements due to diurnal variability is important for 

reliable fault detection. 

Motivated by the above considerations, a method is proposed 

in this work to detect in real-time failures in CGM sensors 

that may be lead to misleading information and consequently 

compromise the effectiveness of insulin therapy. The 

proposed sensor fault detection approach relies solely on 

signals from the CGM sensor to avoid confounding 

information from other variables that may also experience 

faults. The proposed approach uses a sparse kernel filtering 

algorithm based on approximate linear dependency (ALD) to 

identify a model, and the analytical redundancy within the 

model is exploited to detect sensor faults. Appropriate 

thresholds are also specified to distinguish between the 

abnormal measurements and the typical glycemic variability. 

The reminder of the article is structured as follows. The 

sparse kernel filtering algorithm based on the ALD criterion 

is described in Section 2. Then, Section 3 provides a detailed 

description of the approach for online faults detection, 

followed by a discussion of the simulation results in Section 

4. Concluding remarks are provided in Section 5. 

2. KERNEL-BASED MODELING ALGORITHM 

The kernel-based adaptive filtering algorithms provide an 

elegant and efficient method for handling the nonlinearity in 

the data. Based on the framework of reproducing kernel 

Hilbert spaces (RKHS), the Mercer kernels are applied to 

yield the nonlinear versions of the kernel-based filtering 

algorithms. As such, the conventional linear algorithms are 

transformed to their respective nonlinear versions with 

efficient quadratic objectives that can easily be recursively 

updated as more data becomes available. To this end, the 

original input data 
i

u  from input space U  is mapped 

nonlinearly to a high-dimensional feature space H  as 

follows: 

 ,
i i

 u u

U H
                                      (1) 

The input space U  is a compact of ¡ , :  U U ¡  is a 

positive definite kernel and the high-dimensional feature 

space H is the RKHS. The inner products can be computed 

through a positive definite and symmetric kernel function 

(Vapnik, 2013) 

     , , , , ,    ,
i j i j i j

     u u u u u u
H

U         (2) 

In Mercer’s condition, different kinds of kernels, such as 

projective kernels and radial kernels, can be directly applied 

to compute the inner products involved in the RKHS. Among 

these kernels, the Gaussian kernel function given by 

 

2

2
, exp

2

i j

i j




 
  
 
 

u u
u u                  (3) 

is commonly applied. In such kernel-based regression 

techniques, a nonlinear mapping is evaluated as a linear 

combination of a given kernel :  U U ¡ and input 

dataset  1 2
, , ,

n
u u u U  (Schölkopf & Smola, 2002), 

which also can be seen as a growing RBF-like network (Liu, 

Park, & Principe, 2009)  

   
1

,

n

i i

i

  


   u                           (4) 

Note that the above function is still linear in the coefficients 

i
  stored in memory during training.  

To define the kernel-based learning algorithm, consider the 

problem of least squares regression in an off-line scenario 

with available input-output data  
1

,
n

i i i
d


u . Further, denoting 

the coefficient vector  1 2
, , ,

T

n
  ω , the kernel-based 

learning process can be defined as solving for the value of the 

weights n
ω ¡  that minimize the quadratic objective 

 
2

m in
n

T




 
ω

d Kω ω Kω
¡

                       (5) 

where  1 2
, , ,

T n

n
d d d d ¡  is the target vector of the 

training data, 
n n

K ¡  is the Gram matrix with elements 

 ,
ij i j

K  u u , and   is a regularization parameter. The 

problem in (5) can be explicitly evaluated in closed form, and 

the solution is 

 
1




 ω K I d                              (6) 

where I  denotes the identity matrix of appropriate 

dimension. 

In the kernel recursive least squares (KRLS) algorithm 

(Engel, Mannor, & Meir, 2004), the above least squares 

problem is formulated in the high-dimensional feature space 

H , and the inner products in RKHS can be calculated using 

various kernel functions. Then the weighted cost function of 
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KRLS can be defined as finding the weight vector ω  that 

minimizes the quadratic cost function 

2 2

1

m in
n

n

T

j j

j

d 




 
ω

u ω ω
¡

                   (7) 

The aim of the KRLS algorithm is to update this solution 

recursively as new data  1 1
,

n n
d

 
u  become available (Liu, 

Principe, & Haykin, 2011). 

In contrast to the conventional linear recursive least squares 

algorithm that is based on a covariance matrix of fixed 

dimension, the dimension of the kernel function in KRLS 

increases as the number of data samples increase. The 

incrementally augmented kernel matrix in (6) thus causes 

computational complexity to increase and memory 

requirements for information storage to intensify. Moreover, 

the higher dimension of vector ω  may also lead to 

overfitting of the training data. 

To overcome this drawback, sparsification methods based on 

the information theoretic approach are often used in the 

kernel-based on-line learning algorithms. The basic idea of 

the sparsification methods is to prevent the size of kernel 

functions K  from becoming prohibitively large. Over the 

past decade, several sparsification criteria for selecting a 

finite proper dictionary are employed in formulating KRLS 

algorithms. Employing the finite dimensional summary of the 

training data, the reduced-order model can be written as (Liu 

et al., 2011) 

   
1

,

m

i i

i

  


   u                             (8) 

In this expression, the sparse dataset  1 2
, , ,

m
u u u  is a 

subset of the original dataset  1 2
, , ,

n
u u u  with m n . As 

a result, the new finite proper dictionary 

      1 2
, , , , , ,

m
     u u uD =  is composed of a subset of 

samples of the original dictionary 

      1 2
, , , , , ,

n
     u u uD  such that the new finite 

dictionary is sufficient to characterize the relationships 

among the variables in the complete dataset. One approach 

for constructing on-line the compact dictionary is through 

recursive updating, which typically involves iteratively 

evaluating whether the new kernel function  ,
n

 u  is 

appropriate for including in the sparse subset. Therefore, for 

each new data sample, an admission criterion is required to 

determine whether the input vector should be admitted to the 

finite dictionary or omitted. One of the commonly used 

sparsification criteria is the approximate linear dependency 

(ALD) criterion (Engel et al., 2004), which is also considered 

in this work for modelling the CGM measurements. 

In the ALD criterion (Engel et al., 2004), the new kernel 

function  1
,

n



u  of a newly available data sample 

1n 
u  is 

admitted to the finite dictionary if the data sample cannot be 

written as an approximate linear combination of the kernel-

version of the previous data samples  1 2
, , ,

m
u u u . To test 

the new sample, the ALD criterion evaluates the cost function 

   

2

1 1

1

m in , ,
n

m

n n i i

i

 
 




  
ω

u ω uA
¡

                (9) 

which quantifies the distance in the RKHS of the new data 

1n 
u  to the linear span of the data already present in the 

dictionary. The solution to the ALD criterion problem in (9) 

is given in the closed form as 

      
1

1 1 1
, , ,

T

n n n n n n




  
   u u κ u K κ uA           (10) 

where  
,

,
n i j

i j
  

 
K u u , , 1, ,i j m , and 

       1 2
, , , , , , ,

n n n m n
    κ u κ u u κ u u κ u u . 

After computing the ALD criterion for the samples, the 

thresholds 
1

  and 
2

  are used to evaluate whether the new 

data sample 
1n 

u  should be added to the finite dictionary or 

omitted. The ALD criterion is evaluated according to the 

following cases: 

Case 1. 
1 1n



A : the new data sample 

1n 
u  is redundant, the 

dictionary is maintained unchanged; 

Case 2. 
1 1 2n

 


 A : the new data sample 
1n 

u  contains 

new information not present in the dictionary, thus add the 

new sample to dictionary and update the learning system; 

Case 3. 
1 2n



A : the new data sample 

1n 
u  is abnormal and 

should be further investigated, the dictionary is unchanged. 

3. ONLINE DETECTION USING SPARSE KRLS 

ALGORITHM 

Combining the KRLS algorithm with the ALD criterion, the 

online sparse variant of the KRLS algorithm is obtained and 

designated as ALD-KRLS. When applying the sparse kernel 

filtering algorithm for online fault detection, it is critical to 

specify proper threshold parameters to distinguish the faulty 

measurements from normal variability in the glycemic 

dynamics. 

The threshold parameters are important for the effective 

implementation of the sparse filtering algorithms. However, 

the thresholds are problem-dependent parameters, and the 

choice of the thresholds is typically defined by the 

characteristics of the system. In the context of online glucose 

prediction, the following steps are provided to select 

appropriate thresholds for the ALD-KRLS algorithm: 

 Step 1. Use a large 
1

  to disable the detection of 

abnormal samples; 

 Step 2. Use a small 
2

  to disable the detection of 

redundant samples;  

 Step 3. Train the model off-line to obtain an original data 

set and ALD index for the samples; 
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 Step 4. According to the characteristics of the CGM data, 

set the reasonable thresholds for the subsequent off-line 

training procedure. For instance, if the training dataset 

has 10% abnormal data and 50% redundant data, then 
1

  

can be chosen as the median value of the informatics 

index vector, and 
2

  can be set as the value larger than 

90% of the informatics index. 

 Step 5. Use the new thresholds to retrain the detection 

model and obtain the sparse model for on-line fault 

detection. 

 Step 6. After every 
hyp

N  instances, re-estimate the 

thresholds of learning models.  
 

The on-line fault detection method is as follows. The 

algorithm is initialized using training data, yielding an initial 

estimate of the model and the maximum capacity of 

dictionary is specified. Then, for online fault detection using 

the ALD-KRLS algorithm, the following steps are iterated 

for each new observation. 

 Step 1. Compute the ALD criterion 
i

A  for the new data 

sample  ,
i i

du . For a one-step-ahead prediction horizon, 

the output 
i

d  is the current CGM measurement sample 

1n
u


, and the input vector is the past sample  

i n
u u . 

Therefore, the new data pattern is  +1
,

n n
uu . 

 Step 2. Evaluate the ALD criterion 
i

A : 

o Step 2.1. If 
1 1n



A : the new pair  1

,
n H i

u
 

u  is 

redundant for the current learning system, which means 

the current CGM measurement is reliable. 

o Step 2.2. If 
1 1 2n

 


 A , the new pair  1
,

n H i
u

 
u  is 

learnable for current learning system, which means the 

current CGM measurement new information resulting 

from dynamic variability, not faults. The learning system 

can be updated and the new pair should be added in the 

dictionary; 

o Step 2.3. If 
1 2n



A : the new pair  1

,
n H i

u
 

u  is 

abnormal, thus use the pseudo input 
1

ˆ
n 

u  instead of 

1n 
u for online prediction and generate a failure alert. 

 Step 3. If the AP system has meal, exercise, sleep 

announcement, the thresholds 
1

  and 
2

  may be reset as 

needed; 

 Step 4. After every 
hyp

N  sampling instances, re-estimate 

the parameters and thresholds 
1

  and 
2

 ; 

 Step 5. Proceed to the next data sample. 

4. RESULTS AND DISCUSSION 

In this work, the proposed ALD-KRLS based sensor fault 

detection method is evaluated using the US Food and Drug 

Administration approved University of Virginia/Padova 

(UVa/Padova) metabolic simulator (Kovatchev, Breton, 

Dalla Man, & Cobelli, 2009). The simulations consist of 30 

in silico subjects with T1D (ten adults, ten adolescents, and 

ten children). Each subject is operated in closed-loop with a 

general predictive controller for glucose regulation (Kamuran 

Turksoy, Quinn, Littlejohn, & Cinar, 2014) and with a 

duration of six days. The same meal plan is used for adults 

and adolescents, and the amount of carbohydrates in meals is 

reduced for children. The sampling time of the CGM sensor 

is five minutes. The initial period of the collected CGM data 

is used for off-line training. Subsequently, the one-step-ahead 

prediction model is incorporated for real-time model adaption 

and online glucose prediction. For online model adaption, the 

desired response is unknown in real-time, though the current 

measurement can be used as a desired target for the last 

iteration to update the model. 

For offline training, a glucose measurement from three days 

(864 samples) is used to estimate the algorithm parameters 

and identify an initial prediction model. The model order 

(length of input vector), represented by L, is specified as 6, 

and deemed to yield the best accuracy.  

In order to demonstrate the effectiveness of the proposed 

approach, several types of sensor errors are considered in this 

work: biased signal, random noise, continuous drifts, step 

changes, and PISA.  

 

Fig.1. Fault detection results for random noise in the CGM 

measurements. The magnitude of random noise is 10%. 

 

Fig.2. Fault detection results for a drift change in the CGM 

measurements. The rate of the drift change is 20%. 
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Fig.3. Fault detection results for a step change in the CGM 

measurements. The size of the step change is 30%. 

As shown in Fig. 1, a single random noise is added to the 

testing data, and the values of ALD index typically fluctuate 

around the -2.3 level, except when the fault occurs. As the 

measurements from CGM sensors are disturbed with random 

noise, the value of the ALD index increases above the 

average value. An alarm may be issued when the value of 

ALD index is larger than the threshold 
2

 .  

In Fig. 2, a single drift change is added to the CGM data. The 

fault detection results show that the ALD index increases 

when the sensor readings become abnormal. Because the 

ALD criterion can quantify the distance in the RKHS of the 

new input sample 
1n 

u  to the linear span of the data already 

present in the dictionary, the ALD index increases when the 

input data becomes abnormal. If the threshold value is 

specified appropriately, the fault alarm can be generated 

when the ALD index is larger than the threshold. 

Next, a single step change is used to simulate sensor failures. 

For the step disturbances imposed onto the CGM sensor data, 

the fault detection results are shown in Fig. 3. Similarly, the 

fault detection method is sensitive to the erroneous sensor 

readings caused by the the step change. As all of these three 

simulations use data across multiple days, the glycemic 

trends include large variations in the glycemic dynamics 

caused by meals. Therefore, the simulation results indicate 

that the online fault detection method can accurately 

distinguish the abnormal data from the normal variability in 

the glycemic dynamics.  

For the fault diagnosis procedure, the duration of the change 

in the ALD index can be indicative of the type of fault. If the 

change in the ALD index is short, lasting only one or two 

sampling instances, the sensor failure is due to random noise. 

If the increase in the ALD index persists for several 

consecutive sampling instances, the sensor failure is likely 

due to a drift or step change. With regards to the problem of 

loss of sensitivity, the values of the ALD index will be 

directly proportional with the degree of the sensititvity loss. 

Thus threshold 
2

  is very important for the accurate detection 

while the duration of change in the ALD index can be used 

for diagnosing the faults. 

 

Fig.4. Fault detection results for PISA (10%) at night-time. 

 
Fig.5. Fault detection results for PISA (5%) at night-time. 

 

Figs. 4 and 5 show the results for a high PISA (10%) and low 

PISA (5%), respectively. It is readily observed that the values 

of ALD index increase when PISA occurs. The comparison 

reveals that when less pressure is applied to the CGM sensors, 

the fault detection sensitivity decreases and the change in the 

ALD index is less pronounced. Therefore, the performance of 

fault detection approach is directly affected by the magnitude 

of the pressure applied on the CGM sensor. Overall, the 

simulation results demonstrate the capability of the proposed 

fault detection approach to identify the faulty CGM 

measurements from the normal variations in the glycemic 

dynamics. 

Table 1. Summary of the performance for different faults. 

Type of Faults 

Fault Detection Rate 

(%) 

False Alarm Rate 

(%) 

Random Noise 81.3 29.7 

Drift Change 78.9 33.5 

Step Change 89.2 21.1 

PISA (10%) 72.1 37.9 

PISA (5%) 65.8 40.9 
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Table 1 summarizes of the fault detection performance of the 

method for various types of faults (biased signal, random 

noise, continuous drifts, step changes, and PISA). The 

performance of the proposed approach is quantitatively 

evaluated using the fault detection and false alarm rates. 

The fault detection rate represents the percentage of faulty 

samples that are correctly identified as faulty, while the false 

alarm rate represents the percentage of normal samples that 

are incorrectly identified as faulty. Overall, despite the 

presence of significant disturbances such as meals and 

variations in glycemic dynamics, the proposed approach can 

detect various types of faults in the CGM sensors with 

reasonable accuracy. 

5. CONCLUSION 

In this work, an on-line fault detection method is proposed to 

improve the accuracy of CGM measurements. The fault 

detection algorithm, based on sparse kernel filtering 

algorithms to identify erroneous sensor readings of the CGM 

measurements, is designed to effectively handle the 

nonlinearity of the data and to differentiate the normal 

variability in the glycemic dynamics from sensor anomalies. 

Simulation case studies demonstrate the effectiveness of the 

proposed recursive kernel filtering algorithm for sensor error 

detection. 
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