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∗ Eindhoven University of Technology, De Zaale, 5612AJ Eindhoven,
The Netherlands (e-mail: m.porru;l.ozkan@tue.nl).

Abstract: In this work, we consider the problem of controlling a two-stage cooling mixed
suspension mixed product removal (MSMPR) crystallizer. For this process, the temperature in
the first crystallizer is manipulated for controlling the average crystal dimension (d43), while it
is desired to maintain the temperature of the second crystallizer at the minimum allowed value
to guarantee maximum yield. Due to system nonlinearities and process delays, the performance
of traditional PID controllers are poor. A control scheme is proposed to improve the closed
loop performance and achieve desired control objectives. The control scheme is based on the
coupling of a PI controller and a model-based nonlinear prediction block that serves as delay
and disturbance compensator. The proposed scheme has been tested on the system in case
of disturbances in the feed concentration, with and without measurement errors. It is observed
that the proposed scheme outperforms the PI controller by reducing the output response settling
time and overshoot.
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1. INTRODUCTION

Crystallization is an important separation process for the
production of high-value added chemicals in crystalline
form. It has been widely used in pharmaceutical indus-
try and carried out traditionally in batch mode. How-
ever, batch operations suffer from disadvantages such as
lack of batch to batch reproducibility, long processing
times, scale-up issues, poor controllability, and observabil-
ity (Porru and Özkan (2016); Porru and Özkan (2017)).
On the other hand, continuous production offers many
advantages such as higher quality, product uniformity
and process controllability (Su et al. (2015); Yang and
Nagy (2015a)). Therefore, recent research efforts have been
directed towards developing continuous crystallisers (Su
et al. (2015)). A number of continuous crystallizer types
and configurations have been applied, such as single stage
or multistage of mixed suspension mixed product removal
(MSMPR) crystallisers (Alvarez et al. (2011); Wong et al.
(2012); Su et al. (2015); Vetter et al. (2014)), plug flow
crystallizers (PFC), with (Alvarez and Myerson (2010)),
or without (Ferguson et al. (2013)) static mixers, and more
recently, PFC with recycle (Cogoni et al. (2015)), slug
flow crystallizers (Rasche et al. (2016)), and periodic flow
crystallizers (Su et al. (2017)).

Multistage MSMPR crystallization is the most convenient
route of transition from batch to continuous operation,
since current crystallizers in industry are of the stirred
tank type (Power et al. (2015); Chen et al. (2011)). The
two-stage cascade system is the most common configu-
ration because it guarantees a good trade off between
operation complexity and performance (Yang and Nagy
(2015b)). Multistage MSMPR crystallization steady state
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and dynamic operation has been widely studied (Randolph
and Larson (1962); Shiau and Berglund (1987); Tavare
and Chivate (1978); Tavare et al. (1986); Alvarez et al.
(2011); Power et al. (2015)). However, only a few papers
deal with the control of these units. Su et al. (2015)
recommend the use of the concentration (C-)control for
operation and start-up control. Yang and Nagy (2015a) use
a nonlinear model predictive control (NMPC). Conversely,
more studies have been devoted to solve the control prob-
lem in single stage MSMPR crystallizers. Multiple papers
report the failure of traditional PID controllers due to the
system nonlinearities (Damour et al. (2010); Grosch et al.
(2008); Yang and Nagy (2015a)). Yang and Nagy (2015a)
discourage the use of PID-type controllers due to the low
capability of dealing with changing operating conditions.
Overall it emerges that the control problem can be suc-
cessfully solved only by means of advanced process con-
trollers (APC), able to incorporate kinetic crystallization
information from measurements (i.e. Process Analytical
Technologies (PAT)) (Ward et al. (2010); Randolph et al.
(1987); Grosch et al. (2008)) and/or a (first principle)
process model (Moldoványi et al. (2005); Damour et al.
(2010); Bravi and Chianese (2003); Abonyi et al. (2002)).

In this paper, an alternative scheme for average crystal
dimension control in an industrial-scale two-stage MSMPR
crystallizers is proposed and tested in simulations. We
have chosen a control scheme that combines feedback and
prediction elements. This is an effective and simple way
to upgrade low level PI controllers to APCs that should
not require highly skilled personnel for controller commis-
sioning and maintenance (Shinskey (1990); Porru et al.
(2014)). The core of the control scheme is a PI controller
which manipulates the temperature setpoint in the first
crystallizer jacket such that the average crystal dimension
is maintained at the desired specification. Because of the
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Table 1. Feed and operating conditions, and
cooling specifications

Cf Feed concentration 97.2 g/kg
Tf Feed temperature 40 ◦C
Ff Feed flow rate 100 kg/min

T1 Temperature in the 1st stage 14 ◦C
T2 Temperature in the 2nd stage 5 ◦C
τ1 Residence time in the 1st stage 67.2 min
τ2 Residence time in the 2nd stage 50.13 min

TJ0 Coolant inlet temperature -30 ◦C
TJF Coolant outlet temperature -15 ◦C
U Overall heat transfer coefficient 450 W/m2 K
Cpj Specific heat of the coolant 3263.52 J/kg K

large volumes involved, a large time delay between ma-
nipulated and controlled variables exists resulting in limi-
tations in the performance of this standard PI controller.
Hence, a delay compensator is also used. In this work, the
delay compensation block for average crystal dimension
prediction consists of the nonlinear dynamic crystallization
model with simulation horizon equal to the time delay.
Measured disturbances, if available, can be provided to this
model-based block. This allows further performance im-
provements due to the prediction capability of the model.

The paper is organized as follows. Section 2 describes
the case study, and presents the dynamic model of the
process. In section 3 the control problem is formulated.
Section 4 describes the proposed control scheme. Closed
loop performance of the proposed scheme is reported in
section 5. Conclusions are given in section 6.

2. MODEL OF THE TWO-STAGE MSMPR COOLING
CRYSTALLIZATION OF PARACETAMOL

We consider the cooling crystallization of paracetamol
from an aqueous isopropanol mixture as case study (Power
et al. (2015)). The dominant crystallization kinetics are
nucleation and growth. The crystallization is carried out
in a series of two MSMPR crystallizers (Fig. 1), with feed
condition, operating condition, and specification of the
cooling system as in Table 1. The 50% ethylene glycol is
a suitable coolant for this system. Physical properties and
kinetic parameters are listed in Table 2.

The model of the system consists of material and energy
balances for the liquid and solid phase. Under the assump-
tions of constant volume, no agglomeration and breakage,
small variations between the inlet and outlet flow rates,
the solid phase dynamics are modelled by means of the
moment model (Randolph and Larson (1971)) according
to

dmj,i

dt
= 0jBi + jGimj−1,i +

1

τi
(mj,i−1 −mj,i);

j = 0, ..,mm; i = 1, ..., Nc

(1)

In eq.(1) the subscript j identifies the j-th moment. In this
work it is sufficient to model up to the fourth moment (i.e.,
mm = 4). The subscript i identifies the i-th crystallizer.
Nc is the number of crystallizers in the series. mj,i−1 =
0 for i = 1, because crystal-free feed is considered. Gi, and
Bi are the crystal growth and birth rate in the crystallizer
i respectively, according to the kinetics laws (eqs. 2)

Gi = kg0 exp
(−Ea

R Ti

)(Ci − Csat,i(Ti)

Csat,i(Ti)

)g
(2a)

Table 2. Physical properties, and kinetic pa-
rameters

Cp Specific heat of the liquid 4564 J/kg K
ρ Liquid density 970 kg/m3

kv Shape factor 0.866 -
ρc Crystal density 1332e+3 g/m3

kg0 Growth rate constant 3.34e−4 m/s
Ea Activation energy 1.44e+4 J/mol
kb Nucleation rate constant 295 #/kg s
g Growth order 1.08 -
b1 Nucleation order 2.14 -
b2 Secondary nucleation order 1.6 -

Bi = kb

(Ci − Csat,i(Ti)

Csat,i(Ti)

)b1
(kv ρc m3,i)

b2 (2b)

The solubility Csat,i [g-solute/kg-solution] in the stage i
as function of the temperature Ti [◦C] is

Csat,i = 0.0379 T 2
i + 0.377 Ti + 20.7 (3)

The material balance in the liquid phase describes the
dynamics of the solute concentration Ci according to

dCi

dt
=

1

τi

(
Ci−1 − Ci

)
− 3ρc kv Gim2,i, i = 1, ..., Nc (4)

Ci−1 = Cf for i = 1

In case of negligible heat of crystallization, constant den-
sity ρ and specific heat Cp, the temperature dynamics are

dTi
dt

=
1

τi
(Ti−1 − Ti)−

Qi

ρViCp
, Qi = mc,i Cpj (TJF − TJ0)

where Qi is the power absorbed by the jackets for the
cooling. We assume that we are able to supply instanta-
neously the exact amount of energy required to put the
crystallizer temperature at the desired temperature TSP

i .
Then, the following energy balance holds

dTi
dt

= 0 (5)

The average crystal dimension of the solid product is given
in terms of d43

d43 =
m4,2

m3,2
(6)

whose dynamics can be obtained with the product rule

d d43
dt

=
d

dt

(m4,2

m3,2

)
=

1

m3,2

d(m4,2)

dt
+m4,2

d(m3,2)−1

dt

d d43
dt

= =
1

m3,2

dm4,2

dt
− m4,2

(m3,2)2
dm3,2

dt

(7)

The system has initial conditions:
mj,i(0) = mSS

j,i ; d43(0) = dSS
43 ; Ti(0) = TSS

i ; Ci(0) = CSS
i .

The system (eqs. 1-7) is nonlinear and coupled. If the
input-output (T1 − d43) response is approximated with a
first order model plus delay (Ogunnaike and Ray (1994))
one can obtain the following: characteristic time τP = 235
min, process gain KP = 8µ m/◦C, and time delay td = 50
min. This response is slow with a large time delay. This
poses severe limitation on the performance of traditional
PI for the control of the crystallization.
The model (eqs. 1-7) will be used for control synthesis, and
performance testing.

3. CONTROL PROBLEM

The crystal size distribution (CSD) is an important prop-
erty of a crystallization process. It can determine the
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Fig. 1. The two stages MSMPR crystallizer and its control scheme.

efficiency of the downstream operations, as well as the
end-use properties (such as bioavailability). The control
of the full CSD is not possible in practice. However some
of its attributes (average size, coefficient of variation, fines
fraction, etc.) can be controlled. The scope of this work
is to achieve the control of the average dimension (mean
diameter) of the crystals d43 (eq.6) which is also known
the De Brucker mean.

Figure 1 shows a suitable control scheme for the two stage
MSMPR crystallization. Assuming that the d43 can be
measured (Mesbah et al. (2011); Nagy and Braatz (2003);
Jager et al. (1992)) or estimated (Afsi et al. (2016); Ghadi-
pasha et al. (2015); Zhang et al. (2014)), we propose to
control it by varying the temperature of the first crystal-
lizer (T1) with a cascade controller. The master controller
establishes the temperature set-point TSP

1 based on the
deviation of the d43 from the desired value and a prediction
of the future values of the d43 obtained with the model
(eqs. 1-7). This predictor functions as a nonlinear delay
compensator. The slave controller manipulates the coolant
flow rate to maintain the temperature at the desired value.
The temperature of the second crystallizer T2 is main-
tained at the minimum allowed value (5◦C, see Table 1)
to guarantee the maximum yield.
For simplification, we assume perfect slave temperatures
control (TC) by manipulating the coolant flow rates, and
perfect levels control (LC) by manipulating the product
flows. We finally assume perfect control of the feed tem-
perature and flow rate (FC). These loops are depicted in
grey in Fig. 1. We also assume no model-plant mismatch.
Similar assumptions are adopted also in the paper of Yang
and Nagy (2015a).

In the following, we focus on the design of the master d43
controller (black loop in Fig. 1, and Fig. 2).

4. CONTROL OF THE d43

For the control of the average crystal dimension d43 we
propose the use of a PI controller (d43C) together with a
nonlinear delay compensator (NDC). The block diagram
of this scheme is summarized in Fig. 2. The control law is

TSP
1 = TNOM

1 +M1KC

(
εS +

M2

τC

∫ t

0

εS(τ)dτ
)

(8)

In eq.(8) KC =
τP
KP td

, and τC = 3.33td are the controller

tuning parameters according to Ziegler and Nichols (1942)
and Smith and Corripio (1985). M1 and M2 are multipliers

d43C Processu = T1
SP

δ=d̂43(t+td)-d̂43(t) 

δ 
- d43+

-

d43
SP εs

NDC

d

Fig. 2. Block diagram of the advanced master d43 con-
troller. The block d43C is the linear PI controller
with modified error signal εS ; the block NDC is the
nonlinear delay compensator, which can incorporate,
if available, exogenous disturbance measurements d.

for tuning refinement that are adjusted by means of
an optimization procedure that minimizes the ITAE =∫∞
0
t |dSP

43 − d43(t)| dt.

The feedback controller (eq.8) sees the error signal εS (see
Fig. 2)

εS(t) = dSP
43 − (d43(t) + δ(t)) (9)

where d43 is the measurement signal, and the signal δ(t) is
calculated by the NDC block by means of average crystal
dimension predictions:

δ(t) = d̂43(t+ td)− d̂43(t) (10)

Practically speaking the NDC block consists of the process
dynamic model (eqs. 1-7), and uses the actual control
action (eq.8). Based on this information, the process model
is run to estimate the actual value of the average crystal

size d̂43(t), and the value of average dimension of the

crystals d̂43(t+ td) after the time delay td. In other words,
the model runs with a time horizon (t + td), and the

prediction d̂43(t + td) is compared with the estimation at

the current time d̂43(t) to generate the differential signal
δ(t). It must be pointed out that the moment model is not
computationally expensive due to the relative low system
dimension (13 dynamic states), and the short time horizon.
Hence, the proposed dynamic model can be used online.
If available, the compensator can incorporate exogenous
disturbance measurements, such as variations in the feed
concentration. In this way, the delay compensator acts
as a feedforward controller without the need to calculate
the inverse of the process model. The incorporation of the
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model in the control scheme also allows the monitoring of
the control input constrains (T1| Gi > 0 always) to avoid
crystal dissolution.

This NDC can be seen as a nonlinear realization of the
Smith Predictor (Smith (1959)). Overall, the APC can be
classified as an observer-based controller for delay systems
(Richard (2003)).

5. RESULTS

The control performance is tested under disturbances in
feed concentration, and systematic d43 measurements error
for
(i) the PI control strategy (eq.8 and signal δ(t) = 0),
(ii) the PI plus the NDC control strategy (eqs. 8-10),
(iii) and the PI, NDC control strategy (eqs. 8-10) and
disturbance measurements.
In each configuration the controller parameters M1, M2

minimize the ITAE.

Closed loop responses for the system subjected to a feed
concentration disturbance

Cf =

{
Cf at t < 200 min

Cf − 2 at t ≥ 200 min
(11)

are depicted in Fig. 3 in the case of d43 measurements free
of errors, and in Fig. 4 in case of systematic error in the
d43 measurements (+5µm).

In Fig. 3 it can be observed that the PI controller alone
(—–) has poor closed loop performance, with slow settling
time (≈ 4.2τp, more than 1000 min). This is in agreement
with the findings of Ward et al. (2010). Furthermore, the
realization of the controller with delay compensation (—–)
outperforms the PI alone (—–) by immediately varying the
manipulated variable (Fig. 3b). This control scheme allows
to reduce the time to the steady state more than 50%
(≈ 1.7τp). This is because the PI plus NDC accepts a much
more aggressive tuning without the destabilization of the
closed loop response. If feed concentration measurements
are incorporated in the delay compensator, the advanced
controller guarantees almost no perturbation of the d43 (—
–). In this latter case, the predictor is in fact a feedforward
element able to fully and very quickly suppress the effect
of the disturbance without the need of the inverse of the
model.

Also in the case of systematic errors (Fig. 4) the delay com-
pensation, with or without concentration measurements,
has a beneficial effect of the closed loop settling time.
Optimal tuning of the schemes leads to an ITAE=0.193
for the PI alone, ITAE=0.173 for the PI plus NDC, and
ITAE=0.142 for the PI, NDC and disturbance measure-
ments. It could be interesting to exploit the prediction
model for measurement bias detection, to further improve
the control performance. However, this research question
is left for future work, in the understanding that Jager
et al. (1992) report that d43 measurements are accurate
and reproducible, hence systematic errors can be avoided
by using the appropriate PAT.

Finally, we have tested the performance of the controllers
with their optimal tuning, without measurement errors,
for feed concentration disturbances up to 10% the nominal
value:
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Fig. 3. (a) d43 closed loop response after disturbance
in the feed concentration (eq.11). (b) Manipulated
variable (T1) load. PI controller without NDC (—).
PI controller with NDC (eq.10), without (—) and
with (—) feed concentration measurements. Free of
measurements error.

Cf =



Cf at t < 200 min

Cf − 2 at t ≥ 200 min

Cf − 5 at t ≥ 1200 min

Cf − 10 at t ≥ 2200 min

Cf − 5 at t ≥ 3200 min

(12)

The closed loop performance is presented in Fig. 5a, while
the manipulated variable load is depicted in Fig. 5b.
One can notice that the designed controllers are able
to reject the severe feed concentration disturbances. We
observe that the PI alone is very slow in achieving the
task leadingto long operating time with off-specification
crystal production. The use of the NDC allows to reduce
the settling time, and guarantees a lower deviation of
the d43 from the desired value. Finally, if disturbance
measurements are available, they can be incorporated in
the prediction model to reject the disturbance before it
causes deviations in d43.
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Fig. 4. (a) d43 closed loop response after disturbance
in the feed concentration (eq.11). (b) Manipulated
variable (T1) load. PI controller without NDC (—). PI
controller with NDC (eq.10), without (—) and with
(—) feed concentration measurements. Systematic
error (+5 µm) in the d43 measurements.

6. CONCLUSIONS

In this work, we have designed a controller to maintain
the d43 at the desired value under feed concentration
disturbances in a two stage MSMPR crystallizer. The con-
troller consists of a PI controller with control action based
on a modified error signal. This error signal compares
the setpoint with both the d43 measurements and d43
model prediction in order to compensate for dead time
and disturbances. The controller achieves decreasing the
settling time and the overshoot of the output compared
to a traditional PI controller. The work has considered an
ideal case of no plant-model mismatch. Further anaylysis
is needed for closed loop stability and performance.
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