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Abstract: A methodology is proposed for parameter ranking and parameter subset selection for nonlinear 

ordinary differential equation (ODE) models with time delay, in which delay is treated as an unknown 

model parameter.  The methodology builds on earlier algorithms for ranking model parameters in 

systems without time delay (Yao et al., 2003; Thompson et al., 2009) and for finding the optimum 

number of parameters for estimation (Wu et al., 2011; McLean and McAuley, 2012a). A polymerization 

reactor system for producing bio-source polyether is used to illustrate the effectiveness of the proposed 

method in comparison with prior results obtained by Cui et al. (2015) who neglected the time delay.  
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1. INTRODUCTION 

Fundamental models are used for scale-up, control, and 

optimization of chemical processes. Obtaining accurate 

model predictions requires estimation of model parameters 

and often making decisions about which parameters should 

be estimated from available data and which should be fixed at 

reasonable values or removed via model simplification 

(Walter and Pronzato, 1997; Chu et al., 2009; McLean and 

McAuley, 2012a; Kravaris et al., 2013). Several algorithms 

have been developed to determine which parameters can 

and/or should be estimated.  The most popular methods rely 

on forward-selection to rank the parameters from most 

estimable to least estimable (Yao et al., 2003; Lund and Foss, 

2008; Thompson et al., 2009). A mean-squared-error 

selection criterion is then used to find an appropriate number 

of parameters to estimate to obtain reliable predictions (Wu et 

al., 2011; McLean et al., 2012b; Eghtesadi and McAuley, 

2016). For example, Table 1 shows an orthogonalization-

based parameter-ranking algorithm and Table 2 shows an 

algorithm for selecting parameters to obtain low mean-

squared prediction errors.  

Algorithms in Tables 1 and 2 and other related subset 

selection methods were developed for parameter selection in 

dynamic models without time delay (e.g., Chu et al., 2009). 

Sometimes, however, modelers need to account for 

significant delay.  In situations, where delays are associated 

with measurements or with piping that is not part of a recycle 

stream, deadtime can be handled during parameter estimation 

either by shifting the experimental data backward in time or 

shifting the predictions forward.  If the delay arises in an 

internal recycle stream, deadtime must be considered within 

the model (e.g., using delay differential equations).   

The objective of this article is to show how algorithms in 

Tables 1 and 2 can be extended to rank parameters and select 

appropriate subsets for estimation when deadtime appears as 

an unknown model parameter.  We use a polymerization 

system with unknown time delay and unknown mass hold-up 

due to an overhead condenser to illustrate the proposed 

methodology.   

2. PROPOSED METHODOLOGY 

Consider an ordinary differential equation (ODE) model with 

time delay of the form: 

),,()( mθuxfx t                                         (1a) 

0xx )( 0t                                                     (1b) 

εθuxgy md  ),,,()( t,θt d                         (1c) 

where x is a vector of state variables, t is time, f is a vector of 

non-linear functions, u is a vector of input variables, θm is the 

vector of unknown model parameters that appear in the 

ODEs, x0 is a vector of initial conditions for the state 

variables, y is a vector of measured output variables (some of 

which are affected by an unknown time delay θd), gd is a 

vector of model predictions that accounts for this time delay 

in the affected responses and ε is a vector of zero-mean 

random variables. For simplicity, the time delay θd does not 

influence any of the state variables within the ODEs in (1a), 

but the proposed methodology could be readily used for more 

complex systems with time delay in the state variables rather 

than simple additive delay.   

In (1c) the delay influences some but not all of the outputs. 

For example, a prediction of the ith delayed response is 

),,,(),,,,( dd θttθ  mimdi θuxgθuxg where gi is the 
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nonlinear mapping that would apply for the ith response if 

there were no delay in the system.  

Table 1. Orthogonalization algorithm for ranking model 

parameters (Yao et al., 2003; Thompson et al., 2009) 

1 Calculate the magnitude (i.e., the Euclidean norm) of 

each column in the scaled sensitivity matrix Z. The most 

estimable parameter corresponds to the column in Z with 

the largest magnitude. Set k = 1. 

2 Put the k columns from Z that correspond to parameters 

that have been ranked into matrix Xk. 

3 Use Xk to predict columns in Z using ordinary least-

squares 

ZXXXXZ T
kk

T
kkk

1)(ˆ   (1.1) 

and calculate the residual matrix 

kk ZZR ˆ  (1.2) 

4 Calculate the magnitude of each column in Rk. The 

(k+1)th-most estimable parameter corresponds to the 

column in Rk with the largest magnitude. 

5 Increase k by 1, and put the columns corresponding to 

the k + 1 parameters that have been ranked in matrix Xk. 

6 Advance the iteration counter k and repeat Steps 3 to 5, 

until all parameters are ranked or it is impossible to 

perform the least-squares prediction of Z in Step 3 due 

to matrix singularity.  

 

The parameter ranking algorithm in Table 1, which was 

developed for systems without time delay, relies on a scaled 

sensitivity matrix Z with p columns and N rows, where p is 

the number of model parameters and N is the number of data 

values available for parameter estimation. For example, 

consider a chemical reactor system where d different types of 

responses variables (e.g., d different composition variables) 

are measured n times each during r different dynamic 

experimental runs, then N = dnr. The element in the ith row 

and jth column of Z is: 
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where gi is the prediction of the ith data value, i = 1…N, sθm,j 

is a scaling factor accounting for the  uncertainty in the initial 

guess for parameter θm,j and syi  is a weighting factor that 

accounts for uncertainties in measurements associated with 

the ith measured value (Thompson et al., 2009). The elements 

of Z are computed numerically by solving sensitivity 

equations or by using difference approximations involving 

perturbations in parameter values from their initial guesses. 

The prescribed scaling makes the elements of Z 

dimensionless so that ZTZ is a Fisher information matrix. 

Each row in Z corresponds to a measured value that is 

available to estimate the parameters. 

Table 2. Algorithm to find the Optimum Number of 

Parameters for Estimation (Wu et al., 2011; McLean and 

McAuley, 2012a) 

1 Rank model parameters from most to least estimable 

using the orthogonalization algorithm in Table 1. 

2 Use weighted least-squares regression to estimate the 

first parameter from the list, with all others fixed at 

initial guesses. Next, estimate the top two parameters, 

followed by the top three parameters and so on, until all 

the ranked parameters have been estimated. Denote the 

value of the objective function with the top k parameters 

estimated and the remaining (p–k) parameters held fixed 

as Jk. Weighting factors used in the objective function for 

parameter estimation should be consistent with 

measurement uncertainties 
iys used for scaling during 

parameter ranking.                     

3 Compute the critical ratio 

)/()(, kpJJr pkkC                (2.1)                                       

for k = 1... p – 1. 

where Jk is the objective function when the top k 

parameters have been estimated.: 

4 For each value of k, compute the corrected critical ratio 
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5 Select the value of k corresponding to the lowest value 

of rCC,k as the appropriate number of parameters to 

estimate. 

 

In the parameter ranking algorithm in Table 1, the first step is 

to calculate the magnitude of each column in Z. Columns 

with large magnitudes correspond to parameters that have 

large influence on the response variables, relative to their 

corresponding initial uncertainty. The parameter with the 

largest overall influence, which is ranked first by the 

algorithm, is the most estimable parameter. Steps 2 to 4 are 

used to account for and remove the effects of correlation 

among the parameters. Using this algorithm, influential 

parameters that are initially poorly known appear near the top 

of the ranked list, whereas unimportant parameters and 

parameters whose values are already well-known rank near 

the bottom. 
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In the proposed methodology, the un-delayed predictions are 

replaced by the corresponding delayed predictions in the Z 

matrix; As a result, the scaled sensitivity coefficients become: 
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where θ is the vector of model parameters augmented by the 

time delay parameters.  











dθ

mθ
θ      (2) 

In (2), only one time-delay parameter θd is shown for 

simplicity, but multiple time-delay parameters could be 

added to the parameter vector for systems with multiple 

unknown delays. The Z matrix corresponding to (2) contains 

an additional column, which contains scaled sensitivity 

coefficients with respect to with respect to θd. The 

corresponding column of sensitivities can be calculated using 

difference approximations: 
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3. EXAMPLE 

The system for polyether production from 1,3-propanediol 

shown in Fig. 1 is used to illustrate the proposed 

methodology. In this process, an initial amount of liquid 

monomer is added to the batch reactor and then catalyst is 

added to start the polymerization. As polymerization 

proceeds, water and oligomers are produced. Nitrogen gas is 

sparged into the reactor to assist with water removal so that 

high-molecular weight polyether can be produced. Water 

diffuses from the reaction mixture into the nitrogen bubbles, 

which carry water vapour (and also some volatile oligomers) 

into the reactor headspace. The overhead vapour flows to a 

condenser and the resulting liquid is collected and analysed.  

Time delay arises because of time spent by vapour and liquid 

in the piping that leads to and from the condenser. 

Experimental data are available from liquid samples of the 

reactor contents (un-delayed responses for 12 state variables) 

and for the liquid sampled at the entrance to the condensate 

collector (delayed responses for 8 state variables). Cui et al. 

(2015) developed an ODE model for the reactor system, 

neglecting the time delay and the dynamics associated with 

accumulation of liquid species in the condenser.  They used 

the available data to select and estimate 15 of the 18 kinetic 

and mass-transfer parameters that appear in the ODEs. 

Unfortunately, poor fits were obtained for some of the data, 

presumably because the time delay and condenser hold-up 

had been neglected.  

Table 3 shows additional model equations that we developed 

to describe the operation of the condenser system. ODEs 

(3.1) to (3.3) and (3.5) describe time-varying concentrations 

of water [W]c, propanal [AD]c, monomer [L(1)]c and volatile 

linear oligomers [L(q)]c, q=2..5 (i.e., dimer to pentamer) in 

the condenser liquid that would correspond to the condensate 

concentration measurements if there were no delay.  The first 

term on the right-hand side of (3.1) is the flow rate of water 

into the condenser liquid, where Fgtot is the total molar 

flowrate of overhead vapour from the reactor, Lf is the 

fraction of this vapour that condenses (determined from an 

instantaneous flash calculation) and xW is the mole fraction of 

water in this liquid inflow stream. 

 

Fig. 1. PO3G reactor and condenser system (Cui et al., 2015) 

Table 3. Differential equations for condenser and 

condensate collector 

 
c

cLfgtotWfgtot
m

1
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dt
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(3.3) 
where q = 1, 2, 3, 4, 5 

)θ(t[X](t)[X] dccd                                     (3.4) 

where X is W, AD, L(q) with q = 1, 2, 3, 4, 5 

fLfgtot
cc MLF

dt

dm
                                          (3.5) 

)()( dcccc tmtm
d

                                         (3.6) 

 

The second term on the right-hand side of (3.1) accounts for 

water that leaves the condenser, assuming that the condenser 

liquid is well mixed.  Note that MLf is the average molar mass 

of the liquid in the condenser, which is computed from the 

liquid composition. The unknown mass hold-up in the 

condenser, mc, is an additional model parameter that requires 

estimation.  ODEs (3.2) and (3.3) are similar in structure to 

ODE (3.1) and do not contain any additional parameters. 

ODE (3.5) is a mass balance that predicts mcc, the total mass 

of liquid that would have accumulated in the condensate 

collector if there were no time delay in the system. Equations 
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(3.4) and (3.6) account for the time delay θd in the 

concentrations of the condensate entering the condensate 

collector and in the mass of liquid in the condensate collector. 

The subscript d indicates that these predictions account for 

the delay.  The equations in Table 3 were used to augment the 

model of Cui et al., increasing the total number of unknown 

parameters from 18 to 20 due to the additional parameters mc 

and θd. Time delay arises from two sections of piping, but 

Laplace transforms can be used to confirm that only a single 

total-delay parameter θd is warranted in the model. 

The following objective function was used for parameter 

estimation and for computation of the MSE-based criterion 

rcc using the algorithm in Table 2: 

   
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The first six terms on the right-hand side involve measured 

concentrations (denoted by the subscript m) of species in the 

reactor including monomer [L(1)]m, linear oligomers [L(q)]m, 

q = 2 to 7, water [W]m, propanal [AD]m, hydroxyl ends [O]m, 

and unsaturated ends [U]m. The next three terms involve 

measurements of species concentrations leaving the 

condenser, which were influenced by time delay. The final 

term involves measurements of the mass of liquid in the 

condensate collector, which are also influenced by the time 

delay. Altogether, 727 data values were available to fit the 20 

model parameters.  These data arose from four dynamic 

experiments conducted using four different catalyst levels 

(Cui et al., 2015).  Note that concentration measurements 

were available for oligomeric species with lengths up to 7; 

however, hexamer and heptamer are sufficiently non-volatile 

that their concentrations in the condenser liquid are 

negligible. Measurement uncertainty weighting factors sX that 

appear in the denominators of the various terms in the 

objective function were set based on measurement 

uncertainty information provided by the industrial sponsor 

who performed the experiments (Cui et al., 2015).  These 

same uncertainties were used as the corresponding syi values 

in the ranking algorithm (see Table 1).  

All of the sensitivity coefficients required to rank the 

parameters were obtained using difference approximations 

wherein each parameter was adjusted one-at-a-time by 5 % of 

its initial guess. It is important to use reasonably large 

perturbations in the parameters so that the predicted changes 

∆gd in the responses are large compared to numerical errors 

associated with solving the ODEs. Cui et al. (2015) provide 

values of the initial guesses and uncertainty scaling factors 

for the 18 kinetic and mass-transfer parameters that appear in 

the original delay-free model.  Initial guesses for mc and θd 

were set at 0.15 kg and 0.15 h, respectively, based on our 

knowledge of the size and typical flow rates in the condenser 

system. The lower bounds for these additional parameters 

were set at 0.1 kg and 0.05 h, respectively, and the 

corresponding upper bounds were set at 0.5 kg and 0.5 h. The 

corresponding uncertainties smc and sθd required for the 

parameter ranking algorithm in Table 1 were set at half the 

distance between the respective upper and lower bounds.  No 

adjustments to the ranking algorithm in Table 1 were required 

to accommodate the time delay beyond including the 

corresponding time-delay column in the scaled sensitivity 

matrix and formulating the model equations so that the delay 

parameter θd appears explicitly in (3.4) and (3.6). No changes 

to the algorithm in Table 2 were required to accommodate the 

unknown time-delay parameter.  

4. RESULTS 

The complete set of model parameters (including mc and θd) 

was ranked from most estimable to least estimable, with mc 

appearing 10th and θd appearing 11th. Use of the selection 

algorithm in Table 2 indicated that 18 parameters should be 

estimated using the available data. Note that one of the 

parameters (the equilibrium constant for polycondensation) 

that Cui et al. could not estimate using the delay-free model 

became estimable (with its rank improving to 13th) using the 

extended model that accounts for delay. Using the resulting 

estimates for the 18 parameters resulted in an objective 

function value of J = 3.6 × 105 compared with 7.6 × 106 

obtained from (4) using the parameter estimates and model of 

Cui et al., which did not account for delay and condensate 

hold-up.   

Selected model predictions for several of the state variables 

obtained using the proposed methodology are shown in Fig. 2 

and Fig. 3. Fig. 2 compares predictions of the model with 

time delay (solid curve) and Cui’s predictions without time 

delay (dashed curve) with experimental data for mcc, the mass 

of liquid accumulated in the condensate collector during one 

of the runs (see Fig. 1).  As expected, the model (and 

associated parameter estimates) that accounts for time delay 

and condensate hold-up provides a much better fit to the data.  

Fig. 3 shows comparisons between the model predictions 

with experimental data for the concentration of dimer and 

tetramer in the polymerization reactor.  These data were 

obtained during the same experimental run as the data in Fig. 

2.  As shown by the dashed curves, one of the problems with 

the previous delay-free model and parameter estimates of Cui 

et al. (2015) is that they predict maxima in the concentrations 

of these (and the other oligomers) that are earlier in time than 

the corresponding maxima in the measured data. The 

extended model (and parameter estimates obtained using the 

proposed methodology) predicts locations for maxima that 

are close to those for the experimental maxima.  

We note, however, that there is considerable mismatch 

between the predicted and measured oligomer concentrations 
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at long reaction times, suggesting that estimates for the 

equilibrium constant for polycondensation and/or the mass-

transfer coefficient for removal of water may be too small.  

As a result, we suspect that the optimizer (lsqnonlin in 

MATLAB) may have converged to a local optimum. Users of 

the proposed methodology should be aware of the possibility 

of finding local minima, especially when using models with 

numerous parameters that have a nonlinear influence on the 

model predictions (McLean et al., 2012b).  To deal with this 

issue, we recommend re-starting the parameter ranking, 

selection and estimation procedure at a variety of different 

initial guesses from within the set of possible parameter 

values.  These initial guesses can either be selected randomly 

or based on the engineering judgment of the modeler 

(Woloszyn and McAuley, 2011).  The proposed extension 

that readily accounts for time-delay as one of the parameters 

will enable our ongoing study of the parameter space in order 

to find a better minimum for J and a corresponding better fit 

to the polymerization data.  

 

Fig. 2. Model prediction for mass accumulated in the 

condensate collector (× measured data, -- prediction without 

time delay, − prediction with time delay) 

 

Fig. 3. Model prediction for concentration of dimer and 

tetramer in the reactor (dimer: × measured data, -- prediction 

without time delay, ─ prediction with time delay; tetramer: * 

measured data, - - prediction without time delay, − prediction 

with time delay) 

4. CONCLUSIONS 

A proposed extension is developed for a methodology that 

ranks parameters according to their estimability and selects 

an appropriate subset for estimation.  This methodology uses 

difference approximations for sensitivity coefficients making 

it straightforward to consider unknown time delay as a 

parameter that may require estimation. The proposed 

methodology relies on earlier algorithms for ranking model 

parameters (Yao et al., 2003; Thompson et al., 2009) and for 

finding the optimal number of parameters for estimation (Wu 

et al., 2011; McLean and McAuley, 2012a). However, a 

similar approach could also be used for handling time delay 

in other sensitivity-based selection techniques. (Weijers and 

Vanrolleghem, 1997; Sun and Hahn, 2006; Chu and Hahn, 

2007; Chu et al., 2009; Eghtesadi and McAuley, 2016).  

A polymerization batch reactor model is used to illustrate the 

effectiveness of the proposed method.  An improved fit to the 

data is obtained compared with prior model fits obtained by 

Cui et al. (2015) using a delay-free model. Although, the 

resulting estimates lead to better predictions on average, it is 

apparent that a more rigorous estimation procedure should be 

attempted, starting from a variety of initial parameter guesses 

to explore whether the optimum with J = 3.6 × 105 is only a 

local optimum.  If a better optimum cannot be found, we may 

need to extend the model to account for formation of cyclic 

oligomers, which have been ignored in the current reactor 

model (Cui, 2014). Incorporating additional reactions and 

species will lead to additional ODEs and model parameters, 

making it even more important to have available an easy-to-

use parameter ranking and selection tool that accounts for 

time delay and will prevent over-fitting while determining an 

appropriate subset of parameters to estimate. 
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