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Abstract: This paper deals with the control of simple process models with state-delays. A
pre-compensator is used to cancel the delay. Due to the cancellation of some terms, the process
as well as its undelayed part should be stable. Although the approach is general, in order
to simplify the notation, second order systems are considered to describe the procedure. The
proposed methodology is applied to compensate the delay in a recycled reactor as well as to
control a pure state-delayed academic example.
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1. INTRODUCTION

Most practical processes involve the presence of time-
delays at the input (if the control variable is a flow), at
the output (if the sensor device has some time delay or
the measurement is taken with delay) or internal, due
to some kind of recirculation. State delays appear when
some internal material is recycled to the process input.
For instance, in continuous time chemical reactors or in
distillations columns, when the product obtained in a
single round is not good enough requiring to be treated
once more to better extract its properties. Usually, a
fraction of the outlet is fed back and mixed to the raw
material to go again into the chemical process. In this
way, at the process entrance, the raw material is mixed
with already treated material, with the properties reached
time ago during the initial treatment.

In general, the control system is designed to achieve
some given controlled plant performance. As the delay
is unavoidable, the purpose of the control should be to
modify the dynamic behavior of the rest of the plant. In-
put/output delays have been extensively studied and there
are many approaches to extract the undelayed part of the
process and leave the delay out of the process to be studied.
These subsystems are called as dead-time compensators.
The seminal work of Smith, the so-called Smith Predictor
(SP), Smith [1959], fully simplifies the problem if the plant
model is linear, open-loop stable and its transfer function
can be split into a fast part (undelayed) and a delay. Many
extensions have been presented to deal with more general
cases, including unstable and multi-delay plants (see, for
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instance Normey-Rico and Camacho [2007], Albertos and
Garćıa [2009]).

For state-delay plants most efforts have been devoted to
study the stability properties of the plant and the influence
of the delay in these properties. When dealing with linear
systems, the characteristic equation involves polynomial
as well as exponential terms, and the delays cannot be
represented as a factor term in the transfer function, like
in the case of input/output delays. Thus, stability analysis
and controller design become a difficult task in the general
case Kolmanovskii et al. [1999] and a complete solution of
this problem has not been reported yet. In a recent paper,
Li et al. [2017], a new approach to analyse the stability of
state-delayed plants in the frequency domain is presented.

In the single-input-single-output (SISO) linear case, the
model of the-delayed plant can be expressed by

ẋ=Ax(t) +

r
∑

i=1

Dix(t− Li) + bu(t) (1)

y(t) = cx(t) (2)

where Li i = 1, 2, . . . r denotes each one of the state time-
delays and Di is the matrix attached to the time-delay Li.
A is the system matrix of the undelayed part, if it exists.
In this case, the transfer function of the undelayed part
would be

y(s) = G0(s)u(s); G0(s) = c(sI −A)−1b (3)

There is a lot of theoretical research to deal with these pro-
cesses Kharitonov [1998], Gu and Niculescu [2003], includ-
ing the case of time varying delays Gao and Chen [2007],
Mahmoud [1996], and distributed delays Kharitonov et al.
[2009]. To illustrate the problem complexity, let us assume
the simplest case where there is a single state time-delay

ẋ(t) =Ax(t) +Dx(t − L) + bu(t); y(t) = x(t) (4)
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The classical approach to study the open-loop stability is
to analyse the roots of the characteristic equation

|sI −A−De−sL| = 0 (5)

Moreover, if output feedback control Kimura [1975] is
applied, the closed-loop characteristic equation is of the
form

|sI −A− bKc−De−sL| = 0 (6)

and the design of K to get some performance is not
straightforward.

As previously mentioned, to deal with input/output time-
delayed plants, the classical solution is to design a dead-
time compensator, Normey-Rico and Camacho [2009],
Garćıa et al. [2006], in such a way that an undelayed
output/input model is obtained and the control is designed
for this model, without paying attention to the delay which
is transferred out of the control loop. But, as pointed
out in (5), when there are state delays, the characteristic
equation includes exponential terms and the analysis and
design of the control law is not conventional.

The main goal of this paper is to suggest a dead-time
compensator for state-delays plants. For the sake of clarity,
SISO plants are considered and a single state delay is
assumed initially. Also, the plant model is initially as-
sumed to be a low order one (the state vector dimension is
two). In a previous paper, the scalar case was considered,
Albertos et al. [2017]. As it will be shown in the proposed
solution, the general case defined by (1) is much more
complicated. Note that the main contribution is to design
a precompensator to obtain a delay-free model of the
state-delayed plant. It does not deal with the stability of
the state-delayed plant, which is initially assumed to be
stable, neither with the design of the control. Once the
plant model is reduced to a delay-free model, any suitable
control design technique can be applied to the final model.

The rest of the paper is organized as follows. First, the
problem is clearly stated. Then the structure of the pre-
compensator is defined and some requirements are estab-
lished. Two examples are considered. First, the procedure
is applied to the simplified model of a chemical reactor and
then, the control design options are illustrated with a pure
delayed plant. Some simulations illustrate the results and,
finally, some conclusions are drafted.

2. PROBLEM STATEMENT

The kind of systems to be considered are linear stable
SISO plants with state time delays. In order to simplify
the notation, low order models (second order as maximum)
and a single time delay will be assumed first. That is, the
plant model is defined by

ẋ(t) = Ax(t) +Dx(t − L) + bu(t); y = cx(t) (7)

where x ∈ R2, {y, u} ∈ R and A is assumed to be Hurwitz.

The plant transfer function is easily obtained as

G(s) = c[sI −A−De−sL]−1b (8)

Moreover, the plant (8) is assumed to be stable. Although
the time delay L due to a recycling could be time variant

as well as uncertain, here it would be considered constant
and known.

For D = 0, the undelayed plant is obtained. That is

ẋ(t) = Ax(t) + bu(t); y = cx(t) (9)

whose transfer function is given by (3).

The goal is to find a precompensator C(s) such that
the compensated plant, G(s)C(s), is the delay-free model
G0(s), (3).

2.1 Plant transfer function

Denote by ai,j the element of the A-matrix in raw i,
column j, and the same for any other matrix.

The computation of (8) leads to

G(s) =
α1s+ α2 + βe−Ls

pA(s) + f(s)e−Ls + de−2Ls
(10)

where

α1 = c1b1 + c2b2 (11)

α2 =−c1b1a22 + c1b2a12 + c2b1a21 − c2b2a11

β =−c1b1d22 + c1b2d12 + c2b1d21 − c2b2d11

pA(s) = s2 − (a22 + a11)s+ a11a22 − a12a21

f(s) =− (d22 + d11)s+ a11d22 − a12d21 + a22d11 − a21d12

d= |D| = d11d22 − d12d21

Note that

G0(s) =
α1s+ α2

pA(s)
=

α(s)

pA(s)
(12)

2.2 Transfer function blocks

The plant transfer function (10) can be represented in the
following blocks:

G(s) =
α1s+ α2 + βe−Ls

pA(s) + f(s)e−Ls + de−2Ls
(13)

= F1(s)[F2(s) + F3(s)] (14)

where

F1(s) =
1

1 + f(s)
pA(s)e

−Ls + d
pA(s)e

−2Ls
(15)

F2(s) =G0(s) =
α1s+ α2

pA(s)
(16)

F3(s) =
βe−Ls

pA(s)
(17)

See Fig. 1 for the block structure.

Remark 1. If the plant (7) is n-dimensional, that is, x ∈
Rn, the transfer function, similar to (10), would be

G(s) =
α(s) +

∑n−1
i=1 βi(s)e

−iLs

pA(s) +
∑n

i=1 fi(s)e
−iLs

(18)

where fn(s) = d =| D |.
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G(s) 

+ 

+ 
F1(s) F2(s) 

F3(s) 

u(s) 

u(s) 

y(s) 

y(s) 

Fig. 1. Block model representation

Remark 2. For multiple time-delays in the state (1), the
transfer function would be

G(s) = c[sI −A−

r
∑

i=1

Die
−sLi ]−1b (19)

leading to a fraction similar to (10), such as

G(s) =
α(s) +

∑m

i=1 βie
−Lis

pA(s) +
∑h

i=1 fi(s)e
−Lis

(20)

where h represents the number of different combinations
of the initial delays appearing in the determinant of [sI −
A −

∑r

i=1 Die
−sLi] in (19) and m represents the number

of different combinations of the initial delays appearing in
its adjoint matrix. For instance, for r = 2 in (19), h = 5
and the different delays appearing in the determinant are
{L1, L2, 2L1, 2L2, L1 + L2}.

As a conclusion from the two previous remarks, if the plant
is n-dimensional and/or there are multiple state time-
delays, keeping the assumption of open-loop stable plant,
the approach is still applicable but the block structure
depicted in Fig. 1 becomes much more complicated.

3. COMPENSATOR DESIGN

Following the ideas presented in Luan et al. [2018], in order
to design the compensator, two parts are considered such
that C(s) = C2(s)C1(s).

3.1 Second order systems

Related to the model in Fig. 1, the subsystem C1(s) will
deal with the F1(s) block. In order to cancel it, this part
will be taken as its inverse

C1(s) =
1

F1(s)
= 1 +

f(s)

pA(s)
e−Ls +

d

pA(s)
e−2Ls (21)

This precompensator is always realizable as the order of
pA(s) is larger than those of f(s) and d, and the delays
are negative. Moreover, it is stable if A is Hurwitz.

Now, let us consider the remaining two blocks.

F2(s) + F3(s) = G0(s)[1 +
βe−Ls

α(s)
] (22)

Thus, the second block of the precompensator will be

C2(s) =

[

1 +
βe−Ls

α(s)

]−1

(23)

G(s) + 
+ 

- 

 

( )
 

1 + 2

 

u(s) y(s) v(s) 

C1(s) C2(s) 

C(s) 

 ( )

( )
 

Fig. 2. Precompensator representation

which can be easily implemented as a loop with unitary

forward path and βe−Ls

α(s) in the feedback path. Again, this

term is always realizable as the relative degree is one, but
it should be stable.

As a result, the resulting compensated system will be the
undelayed part, G0(s). This result can be expressed by the
following theorem.

Theorem 1. Given a stable second order system, as de-
scribed in (7), with a Hurwithz undelayed system matrix
A, and a state delay L, the contribution of the delayed part
can be cancelled by using a precompensator C1(s)C2(s) as
defined in (21),(23) if the zero of the polynomial α(s) (12)
is negative.

In summary, the following conditions are required to
directly apply the precompensator design:

(1) The delayed plant should be stable
(2) The A matrix should be Hurwitz. This condition will

be relaxed later on just requiring it to have non
positive eigenvalues.

(3) The zeros of α(s) should be out of the RHP (α2

α1
≥ 0).

The last two conditions require that the undelayed plant
should be stable and minimum phase.

The structure of the precompensator can be seen in Fig. 2.

3.2 Pure delayed plant

Let us assume that the system matrix A is null. So, the
plant model is

ẋ(t) = Dx(t − L) + bu(t); y = cx(t) (24)

The plant transfer function as well as the precompensator
parameters can be computed following the expressions in
(10) and (11), assuming that ai,j = 0, ∀{i, j}.

Thence, the precompensator parameters are:

α1 = c1b1 + c2b2 (25)

α2 = 0; α(s) = α1s (26)

β =−c1b1d22 + c1b2d12 + c2b1d21 − c2b2d11 (27)

pA(s) = s2; f(s) = −(d22 + d11)s (28)

d= |D| = d11d22 − d12d21 (29)

leading to the precompensator components
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C1(s) = 1 +
d11 + d22

s
e−Ls +

d

s
e−2Ls (30)

C2(s) =

[

α1s+ βe−Ls

α1s

]−1

(31)

Note that the precompensated plant is reduced to

G0(s) =
α1s

pA(s)
=

α1

s
(32)

that is, an integrator.

3.3 General case

Now, let us consider the general case of multiple state time-
delays in a multidimensional system (1). As developed in
Remark 1 and Remark 2, the global transfer function has
the same structure

G(s) = F1(s)[F2(s) + F3(s)]

but each block has several elements in parallel, being

F1(s) =
1

1 +

∑

h

i=1
fi(s)e−Lis

pA(s)

(33)

F2(s) =G0(s) =
α(s)

pA(s)
(34)

F3(s) =

∑m
i=1 βie

−Lis

pA(s)
(35)

Thence, the following theorem can be stated

Theorem 2. Given a state delay plant with several delays,
as described in (1), it can be reduced to the undelayed part
of the plant, if it exists, by means of a precompensator
similar to the one shown in Fig. 2 with h feedback paths
(33) in C2(s) and m parallel paths (35) in C1(s). The same
assumptions summarized after the previous theorem are
required.

Remark 3. If the undelayed part of the plant is null, that
is, A = 0, some precompensator’s elements will exhibit
integrative behavior.

4. EXAMPLES

Two examples are considered. First, a simplified model
of a continuous stirred tank reactor (CSTR), typical in
many chemical processes, is used to illustrate the design
procedure. Then, an academic example for a pure delayed
system is used to show the control design options for
integrative plants.

4.1 Example 1. A CSTR

A CSTR where a simple irreversible reaction A→ B occurs
is a typical process representing many processes involving
catalytic reactors and hydrolysis reactions, among others.
The issues about the dynamic behavior of CSTRs have
been treated in various papers (Teymour [1997], Soroush
[1997]) and books (Luyben [1990], Marlin [1995]). Non-
isothermal CSTR can show three steady states. In order to
apply the proposed methodology, a stable operating point
will be selected. In practice, the reaction is not complete

A ----> B
k

CT

VC1

Jacket  Vj T j

C (t)a

Q0 , T0 , Ca0 , r

Q , T , Ca , rQj0 , Tj0

Ca , T

Fig. 3. CSTR with recycling

and in order to increase the overall conversion, reducing
costs and use the reactant at most, part of the outlet flow
is recycled to the reactor input. But there is a delay in
the material feedback. This leads to a CSTR model with
internal delays.

Following Pérez and Albertos [2004], let us consider a first
order, exothermic, irreversible reaction, as shown in Fig. 3.
It is refrigerated by a cooling jacket. Suppose now that the
outlet product has a recycling flow rate λq(t); 0 ≤ λ ≤ 1,
where q(t) is the total reactor flow, and L is the transport
delay. The limits 0 and 1 correspond to no recycling stream
and to a complete recycle, respectively. Then the material
and energy balances are described by a dynamical system,
including delays of the form:

dCa(t)

dt
=

1

V
[(1− λ)q(t)Ca,0 + λq(t)Ca(t− L)]

−

1

V
[q(t)Ca(t)] − αCa(t)e

−

E

RT(t)

dT (t)

dt
=

1

V
[(1− λ)q(t)T0 + λq(t)T (t − L)]

−

1

V
q(t)T (t) +

Hα

ρcp
Ca(t)e

−

E

RT (t)
−

US

ρcpV
[T − TJ ]

dTJ (t)

dt
=

qJ (t)

VJ

[TJ,0 − TJ (t)] +
US

ρJcp,JVJ

[T (t) − TJ (t)]

where Ca(t) is the concentration of the component A
in the reactor and also at the exit, (Ca,0 is the input
concentration), T (t) is the temperature in the reactor (T0

is the reactant input temperature) and similarly for the
temperature in the jacket, TJ(t). Volumes in the reactor
(V ) as well as in the jacket (Vj) are considered constant. E,
α and R are chemical constants, H is the reaction heat,
ρ and cp are the density and specific thermal coefficient
of the liquid and the same for the refrigerant. U is the
heat transmission global coefficient and S is the heat
transmission surface area.

Using the parameters of a typical CSTR, as described in
Pérez and Albertos [2004], a third order model is obtained.
To further simplify the model, the following assumptions
are taken:

• The model is linearized around an operating point
defined by the reactor and jacket outflows q =
1.13 m3/s, qJ = 1.41 m3/s, leading to Ca,e =
4.031; Te = 333.6; TJ,e = 330.

• The dynamics related to the jacket temperature is
much faster than that related to the reactor temper-
ature. Thus, the jacket temperature time constant is
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Undelayed plant, (A,B,C)
Initial delayed plant (A,D,B,C)
Compensated plant

Fig. 4. Reactor step response of the undelayed plant (blue),
the initial delayed plant (green) and the compensated
plant (red).

negligible and a simplified (second order) model can
be derived.

• The refrigerator flow is maintained constant at the
operating point. Thus, a single input model is ob-
tained.

• The output is the component A measured composi-
tion at the exit.

Thus, the simplified model is given by

[

Ċa(t)

Ṫ (t)

]

=

[

−1.9076 −0.1834
161.0772 −71.0777

] [

Ca(t)
T (t)

]

+ (36)

[

2.07 0
0 2.07

] [

Ca(t− L)
T (t − L)

]

+

[

3.1693
−199.5326

]

q(t)

u(t) = q(t); y(t) = Ca(t)

First, the constraints fulfilment is verified: A is Hurwitz,
the plant is stable and zα < 0. Then, according to (21),
(23), the compensator components are computed as:

C1(s) = 1 +
143.2e−0.5s − 4.285e−s

s2 + 72.99s+ 165.1

C2(s) = [1 +
−6.56e−0.5s

3.169s+ 261.9
]−1

The effect of the precompensator is shown in Fig. 4.

4.2 Example 2

In order to illustrate the use of the precompensator in
the control design stage for undelayed integrative behavior
plants, let us assume a pure state delay plant such as (24),
where the following parameters are assumed:

[

ẋ1(t)
ẋ2(t)

]

=

[

−2 −0.1
10 −0.4

] [

x1(t− 0.5)
x2(t− 0.5)

]

+

[

1
2

]

u(t) (37)

y(t) = x1(t)

the control goal being to design a controller stabilizing
the plant and providing an over-damped step response
characterized by a time constant τ = 1.0 s. Obviously,
other requirements could be demanded. Observe that this
plant is stable (see the step response in dotted line and

0 1 2 3 4 5
−1

0

1

2

3

4

5

 

 
Undelayed plant, (A,B,C)
Initial delayed plant (A,D,B,C)
Compensated plant

Fig. 5. Step response of the undelayed plant (blue), the ini-
tial pure delayed plant (green) and the compensated
plant (red), for the plant in Example 2.

0 1 2 3 4 5
−1

0

1

2

3

4

5

 

 
Initial delayed plant (A,D,B,C)
Pre−Compensated plant
Controlled plant

Fig. 6. Step response of the delayed plant (green), the
compensated plant (red) and the P-controlled plant
(blue), as for Example 2.

green in Fig. 5). First, the precompensator is computed
following the approach proposed in section 3.2 to cancel
the delay. The result is:

C1(s) = 1 +
−2.4

s
e−0.5s +

1.8

s
e−s

C2(s) =

[

s+ 0.2e−0.5s

s

]

−1

leading to a pure integrator, as shown in the Fig. 5. Then
to achieve the desired controlled plant behavior, a simple
P-controller (unitary gain) is implemented by feed backing
the output signal to be compared with the reference. The
closed loop response to a unit step reference change is
shown in Fig. 6. The gain of the P-controller can be
adjusted to achieve the desired transient response.

Note that, if the initial plant would be unstable (for
instance, taking d2,1 = −10 instead of 10), the design
procedure could be applied but the controlled plant will
loose the internal stability due to the cancellation by the
precompensator C1(s) of the characteristic polynomial of
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the initial plant [1 + f(s)
pA(s)e

−Ls + d
pA(s)e

−2Ls]. The same

kind of instability could appear if the delay is changed
(L = 1.5), making the initial system (37) also unstable.

5. CONCLUSION

The main and original contribution of this paper is the
proposal of a DTC for stable and minimum phase plants
with state time-delay. The main development has been
presented for second order plants, but it can be easily
extended for any order plant, with multiple state time
delays. The proposed algorithm allows to reduce the plant
to the undelayed part, if it exists. If the plant is a pure
delay, the compensated plant is reduced to an integrator,
for a second order plant.

Two examples have been presented to illustrate the pro-
cedure. First, a simplified model of a typical reactor with
recycling has been transformed into a non-delayed plant.
Then, an academic example to show the control design
options for state-delay plants has been developed.

The proposed approach is based on process cancellations.
Thus, the plant should be stable, minimum phase and the
non-delayed part should be also stable. In any case, the
internal stability of the design should be always verified.
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