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Abstract: Real-time fault detection and diagnosis of high speed trains is essential for the
operation safety. Traditional methods mainly employ rule-based alarms to detect faults when
the measured single variable deviates too far from the expected range, with multivariate data
correlations ignored. In this paper, a Map-Reduce decentralized PCA algorithm and its dynamic
extension are proposed to deal with the large amount of data collected from high speed trains.
In addition, the Map-Reduce algorithm is implemented in a Hadoop-based big data platform.
The experimental results using real high-speed train operation data demonstrate the advantages
and effectiveness of the proposed methods for five faulty cases.

Keywords: Big Data Modeling, Decentralized Principal Component Analysis, Fault Diagnosis,
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1. INTRODUCTION

The recent successes of big data technology are witnessed
in many fields including manufacturing, business, and fi-
nancial applications. The ultimate power of the big data
technology lies in the ability to process enormous amount
of data in parallel, which are usually handled by cloud
computing. Typically data collection, processing, and anal-
ysis happen simultaneously and nearly instantaneously via
data streaming, which enables one to merge data from
multiple sites and multiple time scales to solve a problem
at hand. The enlarged data scope also provides deeper
understanding of the problem than using local data alone.
Parallel computation and modeling are the choice for im-
plementation.

High-speed trains (HST) are such an example where faults
can happen to multiple trains at multiple routes and
lead to negative effects on the overall operations, and
even fatal disastrous consequences (Jia and Li, 2014).
Among all possible faults, the bearing faults, including
journal box fault, gear box fault, motor stator fault, motor
non-driving end fault, and motor non-driving end fault,
happen frequently and are of most important as they are
directly related to the operation safety of the trains. In
addition, high-speed trains operate as fast as 350km/h
with a high traffic density. The faults should be diagnosed
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and maintained before the negative effects propagate to
operation incidences such as an unexpected stop.

At present, bearing faults of high-speed trains are usually
detected with rule-based methods, for instance, the au-
tomatic diagnosis systems of German ICE train, French
TGV, and Japanese Shinkansen (Jia and Li, 2014). In
addition, the signal enhancement techniques were studied
to monitor the bearing faults using signal synchronization
average matrix diagram, inverted spectrum whitening,
and linear prediction filter Borghesani et al. (2013). A
wavelet and correlation filtering based bearing fault de-
tection method was proposed using the bearing vibration
signal (Wang et al., 2011). The Welch technique based
mechanical vibration evaluation and gear fault diagnosis
method was proposed using the electromagnetic torque
signal (Henao et al., 2010). The existing methods are
essentially single signal-based modeling and alarm systems
that are unable to detect incipient faulty behavior until the
effects grow significantly.

On the other hand, multivariate data-driven modeling and
fault diagnosis methods developed in recent years are able
to detect and diagnose small faults using data correlations
(MacGregor et al., 1994; Qin, 2012). The bearings of a
high-speed train operate in similar loads and environment
that make the temperature of each bearing correlated. The
correlations can be conveniently analyzed with multivari-
ate data modeling methods, such as principal component
analysis (PCA) and dynamic principal component analysis
(DPCA) (Ku et al., 1995).

One challenge in analyzing data from a network of HST
operations is the massive amount of data to be handled. As
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the train operation data come with a high sampling rate,
the amount of collected bearing data will be too large to
be imported into the regular computation platform and
the computational load for bearing data modeling could
be too heavy to implement.

In this work, a Map-Reduce based decentralized modeling
and monitoring algorithm is developed to implement with
parallel computation a block-wise PCA algorithm for mod-
eling large amount of data. The real-time fault monitoring
and diagnosis methods are also proposed.

2. MAP-REDUCE DECENTRALIZED PCA FOR
FAULT DIAGNOSIS

2.1 Map-Reduce Decentralized PCA Modeling

Given a mean-centered and appropriately-scaled data ma-
trix X ∈ Rn×m consisting of n samples with m variables
which can be large, principal component analysis projects
X to a lower-dimensional space as follows:

X =
A∑
i=1

tip
T
i +E = TPT +E

where T = [t1, . . . , tA] are the set of principal component
scores for X, P = [p1, . . . , pA] are the loading vectors
for X. E is the residuals for X. The PCA model, i.e.,
loading vectors P, and the scores can be derived by two
ways. One is singular value decomposition or eigenvalue
decomposition. The other one is the nonlinear iterative
algorithm that is popular in chemometrics and monitoring
applications (Geladi and Kowalski, 1986). Both of the
PCA algorithms require the overall modeling data X be
imported into the memory storage. However, for big data
applications such as HST bearing data, a single train can
generate more than 500MB of historical operation data
collected during 20 hours at a sampling rate of one second
for 36 bearing variables. The traditional PCA algorithms
and regular computers are often incapable to handling the
large volume of data.

Fortunately, in the process monitoring literature, block-
wise PCA algorithms are available that are developed to
make diagnosis easier by decomposing a large number of
variables into blocks (Westerhuis et al., 1998; Qin et al.,
2001). It is further shown that the multi-block algorithms
via partitions of the original data give an equivalent global
PCA model for the whole data matrix. Furthermore, Liu
et al. (2013) shows that the equivalent PCA model is
achieved with hierarchical partitions of the original data
matrix. Recently, a distributed PCA in Ge and Song
(2013) suggested to build sub-PCA models with each
one involving variables related to a principal component.
This algorithm, however, can result in a variable being
used in many sub-models, which increases the overall
computation. In addition, unlike the other multi-block
PCA models, it does not yield a model equivalent to
performing PCA on the global data. Therefore, in this
subsection, a novel Map-Reduce based decentralized PCA
is proposed by using multi-block PCA (Qin et al., 2001)
for parallel computation and for large volume data.

The collected historical data matrix X is divided to B
blocks

X = [X1 X2 · · · XB ] (1)

and let mb be the number of variables in Xb.

By block partition in the following algorithm, the block
data can be successfully imported into the memory for
computation.

1. Scale Xb to have zero mean and let Xb,1 ← Xb and
i← 1.

2. Choose an initial tT,i and iterate the following equations
until convergence of tT,i:

block loadings: p
b,i
← XT

b,itT,i/
∥∥∥XT

b,itT,i

∥∥∥
block scores: tb,i ← Xb,ipb,i

Ti ←
[
t1,i t2,i · · · tB,i

]
super loadings: p

T,i
← TT

i tT,i/
∥∥∥TT

i tT,i

∥∥∥
super scores: tT,i = TipT,i

3. Deflate block residuals

Xb,i+1 ← (I− tT,it
T
T,i/t

T
T,itT,i)Xb,i

where I is an identity matrix of n× n.

4. i← i+ 1

5. Iterate i until all desired components are computed.

The Map-Reduce based computation scheme can be de-
scribed as follows. The block loadings p

b,i
and block scores

tb,i are computed by Map, with the block score matrix Ti,
super loadings p

T,i
, and super scores tT,i computed by

Reduce. After that, the loadings of PCA can be obtained
from the block loadings and super loadings of multiblock
PCA based on the work of Qin et al. (2001). Normally the
computation load and time cost will decrease for each Map
when the number of Maps grows.

2.2 PCA-based Fault Monitoring and Diagnosis

Three statistical indices, i.e., squared prediction errors
(SPE), T-square, and combined index, can be defined and
compared with the corresponding control limits to monitor
the fault in a similar way to the work of Cherry and
Qin (2006). After that, contribution plot or reconstruction
based contribution can be used to pinpoint the faulty
variable (Alcala and Qin, 2009). Details are omitted in
this work due to limited space. The interested readers are
encouraged to have more information from the work of Qin
(2012).

It is noted the monitoring and diagnosis results can be
obtained in real-time by multiplying the real-time sample
vector with the loading computed in the modeling stage.

2.3 Dynamic PCA with Map-Reduce

Dynamic extension is necessary and an easy way is to
include lagged value of data in the augmented data matrix
Ku et al. (1995). The dynamic PCA builds dynamic rela-
tions of the variables according to the PCA decomposition
of the augmented data with a the time orders.
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Decentralized DPCA for large amount of data can also
be achieved similar to the decentralized PCA algorithm.
Faults can be detected thereafter according to the un-
expected deviation of the dynamic relations. The SPE
statistic is used for this work.

3. IMPLEMENTATION AND EXPERIMENTS FOR
HST FAULT DIAGNOSIS

The proposed Map-Reduce decentralized PCA for mod-
eling and fault diagnosis is implemented in the Hadoop
platform of big data analytics. The overall system is com-
posed of two parts, i.e., off-line modeling system and on-
board fault diagnosis system. The sensor data generated
on-board are first transferred to store using the Hadoop
distributed file system (HDFS). The Map-Reduce decen-
tralized PCA modeling algorithm is achieved in the cloud
computing cluster with distributed computers. The decen-
tralized PCA model is then used for on-board real-time
monitoring and diagnosis.

The platform uses Hadoop as its basic framework and
combines HDFS and HBase databases as the data storage
framework (Gudmundsson et al., 2012). A lossless data
compression method is presented to reduce the data stor-
age space and improve storage efficiency.

The proposed methods are implemented using the platfor-
m to model the bearing temperature data collected from
36 variables, including 4 bearings each with 7 temper-
ature sensors, and additional 8 bearing box. The data
are collected at a sampling of 1 second and more than
60,000 samples of almost 20 hours are used for modeling.
The historical operation data is too big to be analyzed
with regular computers. Map-Reduce decentralized PCA
that divides the original data into the memory of cloud
computing cluster is implemented. The computation speed
of Map-Reduce PCA with 8 nodes is almost 7 times faster
than the one with single nodes.

Five faulty cases, including Case 1 (journal box fault),
Case 2 (gear box fault), Case 3 (motor stator fault), Case
4 (motor non-driving end fault), and Case 5 (motor non-
driving end fault) are used to demonstrate the proposed
decentralized PCA and dynamic extension of decentralized
PCA with the traditional rule based methods.

The fault monitoring results are shown in Fig. 3-Fig. 7
while the red line indicates where the true fault occurred.
The faults are successfully detected by both of decen-
tralized PCA and dynamic PCA with Map-Reduce. For
example, faults in Case 1 are detected by combined index
of decentralized PCA around Time 3280(second) in Fig.
3(a) and SPE index of dynamic extension of decentralized
PCA around Time 3015(second) in Fig. 3(b). In addition,
PCA based contribution plots for the five faulty cases are
provided as shown in Fig. 8(a)-(e), respectively. The faulty
variables are successfully identified. As shown in Fig. 8(a),
the third variable, i.e., journal box fault, is identified as the
faulty bearing, which is also verified by the practitioners.

The results are summarized in Table 2 while the alarm
limits for single variable based fault diagnosis are listed in
Table 1. As the false alarm rate and missed alarm rate are
trade-off, the thresholds for single variables are selected
in Table 1 according to priori knowledge in practice and

receiver operating characteristic curve (ROC) to eliminate
false alarms. From Table 2, all of the five faulty cases are
successfully detected by the three methods. The detection
time of decentralized PCA and dynamic extension of de-
centralized PCA is earlier (800 seconds to 8,000 seconds)
than that of rule based method. Compared to decentral-
ized PCA, dynamic PCA with Map-Reduce can detect the
fault much earlier which demonstrates an advantage.

Table 1. Thresholds for Rule Based Method.

Sensor Location Warning (◦C ) Alarms (◦C )

Journal box 100 120

Gear box 110 130

Motor stator 160 180

Motor non-driving end 90 110

Motor driving end 110 130

4. CONCLUSIONS

In this paper, multivariate latent variable modeling
method is proposed for bearing fault diagnosis of high-
speed trains: i) the proposed decentralized PCA algorithm
is suitable for Map-Reduce based implementation of PCA
for large amount of data; ii) the decentralized PCA and
dynamic PCA based methods demonstrate earlier fault de-
tection compared to the rule based alarms, while dynamic
PCA outperforms PCA; iii) the contribution plot of de-
centralized PCA successfully pinpoints the faulty bearing.
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(b) Dynamic Extension of Decentralized PCA

Fig. 1. Monitoring result for faulty case 1.
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(b) Dynamic Extension of Decentralized PCA

Fig. 2. Monitoring result for faulty case 2.
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(b) Dynamic Extension of Decentralized PCA

Fig. 3. Monitoring result for faulty case 3.
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Table 2. Comparison Results of Rule-Based Method, PCA, and DPCA.
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Fig. 4. Monitoring result for faulty case 4.
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Fig. 5. Monitoring result for faulty case 5.
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Fig. 6. Faulty variable diagnosis results for PCA.
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