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Abstract: This study is concerned with the development of an extremum seeking (ES) strategy
based on recursive least square (RLS) for on-line estimation, and a regression model in the form
of a Hammerstein-Wiener model. RLS usually provides a faster convergence than the classical
bank of filter estimators, and the consideration of process dynamics allows to take account for
the phase-shift and attenuation occurring when increasing the frequency of the dither signal. The
resulting ES scheme achieves very significant improvement in convergence speed, as illustrated
with a numerical example, and a more realistic application to micro-algae cultures in a photo-
bioreactor in simulation.
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1. INTRODUCTION

Extremum-Seeking (ES) control is a Real-Time Optimiza-
tion (RTO) technique that aims at driving an objective
function to its optimum (maximum or minimum) by ad-
justing on-line the process input. In response to an exci-
tation provided by a dither signal, an estimator is used to
extract gradient information from the output signal. This
estimation is then driven to zero (in average) thanks to
an optimizer. ES has been the subject of intense research
in the last decades (see for instance (Dochain et al., 2011)
for a survey), and of a few real-life experimental studies
(Wang et al., 2000; Leyva et al., 2006; Deschênes et al.,
2012).

One of the earlier forms of ES (Ariyur and Krstic, 2003)
is based on a Bank Of Filters (BOF), which is designed in
order to extract information about the objective function
gradient. Fig 1 shows the ES scheme described by the
following equations :

y = f(û+Asin(ωt)) (1a)

˙̂u = kξ (1b)

ξ = (y − η) Asin(ωt) (1c)

η̇ = −ωhη + ωhy (1d)

where

• u = û + A sin(ωt) : the input signal applied to the
process, including a sinusoidal dither signal,

• y : the measurable objective function,
• y−η: the filtered signal at the output of the high-pass
filter,

• δ: the demodulated signal,

• ξ̂ ≈ 1
k
∂û
∂t
: a proportional gradient estimation, ob-

tained as the output of a low-pass filter,
• û : the estimated input.

Static Map

s
s+ωh

×
ωl

s+ωl
k
s

+

d = A sin(ωt)

Bank Of Filters

y

y − ηδξ̂û
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Fig. 1. ES with BOF.

The cut-off pulsation of the low pass filter ωl and high-pass
filter ωh should be lower than the dither signal pulsation ω.
Furthermore the dither signal pulsation ω should be small
with respect to the process dynamics and its amplitude
sufficient to ensure catching gradient information. This
illustrates the three-scale time separation (Ariyur and
Krstic, 2003) where :

• the process has the fastest dynamics, and is approxi-
mated as a static map,

• the dither signal has intermediate dynamics,
• the gradient estimator has the slowest dynamics.

A suitable choice of the algorithm parameters ensures an
exponential convergence in a O(ω + A) neighborhood of
the optimum u∗ , thus, of y to the maximum y∗ = f(u∗)
(Ariyur and Krstic, 2003).
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However, this time-scale separation implies relatively slow
convergence, which makes the algorithm of little use in
some practical situations. On the other hand, increasing
the dither signal frequency introduces phase-shift and
amplitude attenuation due to process dynamics. Some
solutions have been proposed to compensate for this be-
havior in (Deschenes and St-Onge, 2013; Sharafi et al.,
2013; Moase and Manzie, 2011; Krstic, 2000) but their
implementation is complex. In (Dewasme et al., 2011,
2012; Chioua et al., 2016) a linear static map between the
input and output is still assumed, but the bank of filter
is replaced by a continuous Recursive Least Square (RLS)
for the gradient estimation. These studies show that the
RLS scheme improves the speed of convergence over the
classical BOF configuration.

The contribution of this work is to extend these latter
results by considering a dynamic representation of the
plant in the form of a Hammerstein-Wiener model. Using
a recursive RLS estimator, the speed of convergence of the
ES scheme is significantly improved, as illustrated with an
application to the optimization of the production of micro-
algae in a continuous photo-bioreactor (PBR).

This paper is organized as follows. The next section
presents the ES scheme modifications, including the use of
RLS instead of BOF, and the representation of the process
dynamics by a Hammerstein-Wiener model. Section 3
presents the application of the resulting ES scheme to
production optimization in a micro-algae PBR. Finally,
the last section draws some conclusions.

2. ES WITH RLS ESTIMATION AND
HAMMERSTEIN-WIENER MODELING

The BOF in Fig 1 is replaced by a RLS algorithm with for-
getting factor (see Fig 2). The static map is approximated
by the regression form :

y = φT θ + ν(t) (2)

where y is the output, φ a known vector of explanatory
variables, θ is the parameter vector, ν(t) ∼ N (0, σ2) .

The following objective function is minimized:

J(t) =

t∑

i=1

λt−i
[
y(i)− φ(i− 1)T θ(t)

]2
r−1

+[θ(t) + θ(0)]
T
P (0)−1[θ(t) + θ(0)] (3)

The recursive solution is (Landau and Dugard, 1986) :

e(t) = y(t)− φ(t− 1)T θ(t− 1) (4)

P (t) =
1

λ

[
P (t− 1)− P (t−1)φ(t−1)φ(t−1)TP (t−1)

λr+φ(t−1)TP (t−1)φ(t−1)

]
(5)

θ(t) = θ(t− 1) + P (t)φ(t− 1)e(t) (6)

The forgetting factor 0 < λ ≤ 1 determines how fast past
data are disregarded, and typically 0.8 ≤ λ ≤ 0.99. The
”memory length” of the estimator is given by (Åström and
Wittenmark, 1995):

N0 =
2

1− λ
(7)

r > 0 is the variance estimate; with no model mismatch,
we set r = E[ν2(t)].
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Fig. 2. ES with RLS.

For gradient estimation in a ES scheme, the model is
chosen as:

y(t) = b+m u(t) (8)

with φT = [1, u(t)]T and θ = [b, m]T .

RLS (see Fig 2) provides estimates (m̂, b̂) of (m, b) where

m̂ ≈ ∂̂y
∂u

, the gradient estimation, is pushed to zero in
average by the integrator.

Note that the dither signal is used to ensure persistency
of excitation. (Åström and Wittenmark, 1995) has shown
that a sinusoid is persistently exciting of order 2 and thus
allows the identification of at least 2 parameters. As a
general rule, a minimum of n

2 distinct sinusoids is necessary
for the identification of n parameters (Landau and Dugard,
1986) (e.g for MISO Extremum Seeking) .

2.1 BOF versus RLS: a simple numerical example

Consider a process described by :

y(u) = b+mu (9)

with m = −1, b = 6, and the regression model defined
as in (8), thus with a structure perfectly matching the
process. The input u as well as output y(u) are assumed
measurable and the objective function to be maximized is
of the form (this form corresponds to the productivity of
a bioreactor):

h(u) = u y(u) = bu+mu2 (10)

At the maximum, u∗ = 3 and h∗ = 9 as illustrated in
Figure 3.

Since y(u) and u are available, the gradient of the objective
function can be computed as:

∂h(u)

∂u
=

∂uy(u)

∂u
= y(u) + u

∂y(u)

∂u
= y(u) + um (11)

The selected parameters for BOF and RLS (with sampling
time Ts = 0.01 h) are provided in Table 1. Simulation
results in Fig 4 shows that ES with RLS is faster than
with BOF. Whereas RLS estimates the objective function
gradient, BOF only provides a proportional estimate of
this gradient (Ariyur and Krstic, 2003). Furthermore,
increasing the integrator gain in the BOF scheme in
order to speed up the convergence may result in system
instability. Indeed, from averaging theorem, there exists an
upper bound on k depending on the perturbation pulsation
(Ariyur and Krstic, 2003).
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Fig. 3. Static Map: Evolution of the cost function h with
respect to the input u.

Parameters BOF RLS

A 0.4 0.4

k 2 2

ω 1 1

ωh 0.95 –

ωl 0.9 –

λ – 0.99

r – 1

P0 – 1e3

Table 1. BOF and RLS parameters
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Fig. 4. Comparison of RLS and BOF schemes

2.2 Hammerstein-Wiener modeling

Consider now the case where the output static map y(u)
is followed by a linear filter (strictly proper and stable),
e.g, a 1st or a 2nd order transfer function. This leads to
the classical Hammerstein-Wiener representation of Fig 5.
From a practical point of view, the transfer function can
represent system and/or sensor dynamics.

Static Map G(p)
u x(u) y(u)

Fig. 5. Hammerstein-Wiener Model

Measurements are usually collected at discrete times, and
discrete-time transfer functions derived with the matched
pole-zero method, are considered for first- and second-
order systems

G1(p) =
1

1 + τp
−→ G1(z) =

K1

z − α
(12)

with α = e−
Ts

τ and K1 = 1− α

G2(p) =
1

(1 + τ1p)(1 + τ2p)
=

γ2
p2 + γ1p+ γ2

−→ G2(z) =
(1− α1)(1− α2)z

(z − α1)(z − α2)
=

K2z

z2 + β1z + β2
(13)

with α1 = e−
Te

τ1 , α2 = e−
Te

τ2 , β1 = −(α1+α2), β2 = α1α2,
K2 = (1− α1)(1− α2) = 1 + β1 + β2.

Figure 6 displays the modified ES scheme assuming 1st

order dynamics. The model outputs read:

x(t) =b+m u(t) (14)

y(t) =K1x(t) + αy(t− 1) (15)

or,

y(t) =K1mu(t) + αy(t− 1) +K1b (16)

y(t) =φT θ

where

φT = {1, y(t− 1), u(t)}
T
and θ = {K1b, α,K1m}

T
.

The RLS provides estimates θ̂i=1,2,3 from which we deduce
successively:

• α̂ = θ̂2,

• K̂1 = 1− α̂,

• b̂ = θ̂1
K̂1

• m̂ = ∂̂x
∂u

= θ̂3

K̂1

For a 2nd order transfer function,

y(t) = K2 [x(t− 1)]− β1 y(t− 1)− β2 y(t− 2) (17)

Then, (17) and (14):

y(t) =K2m [u(t− 1)]− β1 y(t− 1)− β2 y(t− 2) +K2b
(18)

y(t) =φT θ

where φT = {1, − y(t− 1), − y(t− 2), u(t− 1)}
T

and

θ = {K2b, β2, β1, K2m}
T
.

The RLS provides estimates θ̂i=1,2,3,4 from which we
deduce successively:

• β̂2 = θ̂2,

• β̂1 = θ̂3,

• K̂2 = 1 + β̂1 + β̂2,

• b̂ = θ̂1
K̂2

• m̂ = ∂̂x
∂u

= θ̂4

K̂2

A gradient estimation can be computed following:
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∂̂h
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∂̂u.y
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∂̂y

∂u

= y + u
∂̂y

∂x

∂̂x

∂u
= y + uγ̂(t) m̂ (19)

(20)

where an estimation of γ(t) is obtained as:

γ̂(t) =
y(t)

m̂u(t) + b̂
(21)
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Fig. 6. Discrete ES scheme with RLS estimator with
forgetting factor.

γ(t) accounts for phase-shift and the attenuation intro-
duced by the plant dynamics at higher frequencies.
Simulation results in Fig 7 show the results of ES applied
to a first-order plant, either with a regression model in-
cluding the process dynamics or omitting it. The param-
eters selected for the simulation are : ω = 1, A = 0.1,
Ts = 0.01, k = 0.1, r = 1e − 5, P0 = 1e3. It is clear
that the inclusion of the process dynamics (τ = 2.5) in the
regression model (16) allows the convergence to the opti-
mum whereas performance of the loop deteriorates with a
static regression model (8). Figure 8 shows that the plant-
model mismatch also results in a bias in the parameter
estimates and especially in m = ∂y

∂u
. On the other hand,

(16) provides perfect estimation of the parameters and
thus of the gradient (Fig 8).
The combination of RLS with a regression model in the
form of a Hammerstein-Wiener model, e.g., (16) and (18),
provides an elegant and easy-to-implement ES strategy of-
fering the possibility to increase the frequency of the dither
signal and in turn increased speed of convergence. This
later point is further illustrated with a real-life application,
i.e., the optimization of the production of micro-algae in a
continuous photo-bioreactor.

3. APPLICATION TO MICRO-ALGAE CULTURE
PRODUCTION

The proposed ES scheme with RLS and Hammerstein-
Wiener modeling is now applied to the maximization of the
production in micro-algae cultures. Microalgae have a wide
range of potential applications ranging from wastewater
treatment (Mairet et al., 2011; Abdel-Raouf et al., 2012)
to biofuel production (Christi, 2008), and it is of interest to
drive the process towards an optimal region of operation,
without developing precise prior knowledge about the pro-
cess model, which would require intensive laboratory work
to collect data and perform model identification. RTO such
as ES provides an appealing alternative as it requires a
priori no or few knowledge about the process dynamics.
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Fig. 7. ES with RLS applied to a first-order plant. Red:
optimum operation, Blue: regression model based on
a Hammerstein-Wiener form (16), Black: omitting
dynamics in the regression model as in (8) - τ = 2.5
and ω = 1.
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Fig. 8. Parameter estimate convergence. Red: true param-
eters, Blue: estimates using the regression form (16),
Black: estimates using (8) - τ = 2.5 and ω = 1.

In the present simulation case study, the underlying pro-
cess is described by an extended Droop Model (Bernard
et al.; Bernard and Rémond, 2012) identified for culture
of Isochrisys Galbana. This model accounts for photo-
acclimation and photo-inhibition and has already been
used by the authors in (Dewasme et al., 2017), where a
classical BOF scheme is applied. Parameters are presented
in Table 2.

Ẋ = µ (Q, I, θ ) X − DX − RX

Ṡ = −ρ (S, Q) X + D (Sin − S )

Q̇ = ρ (S, Q) − µ (Q, I, θ ) Q

İ∗ = δ µ (Q, I, θ )
(
Ī − I∗

)
(22)

where D, X, S, Q, I∗ respectively represent the dilution
rate, the biomass concentration, the substrate concentra-
tion, the internal quota concentration and the irradiance at
which the micro-algae are photo-acclimated. The growth
rate is assumed to be a Haldane function of the incident
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irradiance:

µ (Q, I, θ ) = µmax

I

KsI + I +
(

I 2

K iI

)
(
1−

Qmin

Q

)

(23)
and the uptake rate:

ρ(S,Q) = ρmax

S

S +KS

(
1−

Q

Qmax

)
(24)

Further details can be found in (Bernard et al.; Bernard
and Rémond, 2012).

Table 2. Model parameter values for Isochrisys
Galbana

Parameter Value

ρmax 0.0730 gN.gC−1d−1

KS 0.0012 gN.m−3

µmax 1.7000 d−1

Qmin 0.0500 gN.gC−1

Qmax 0.25 gN.gC−1

δ 1

R 0.0081 d−1

KsI 1.4 µmol m−2s−1

KiI 295 µmol m−2s−1

The dilution rate and biomass are assumed measurable
on-line. The production is defined as h = DX and the
gradient is estimated using (19) following the scheme pre-
sented in Fig. 6 with (u, y) = (D,X). Based on open-loop
simulation, the regression form used for this simulation is
(16) assuming 1st order dynamics. The sampling time is
taken as Ts = 0.01 day = 14.4 min, the dither signal is
defined by A = 0.05, ω = 2, the parameters of RLS are
λ = 0.95, r = 1e − 5, P0 = 1e3 I3×3, and the integrator
gain is k = 0.025. The incident light intensity is switched
from 100 µmol/(m2.s) to 200 µmol/(m2.s) after 60 days
and switched back to 100 µmol/(m2.s) at t = 120 days.

Starting with D = 0.1 day−1, simulation results (Fig. 9
and 10) show a convergence to the maximum in 20 days
whereas, in a previous study (Dewasme et al., 2017), more
than 200 days were needed with a BOF scheme (the best
set of parameters found was ω = 0.17, ωl = 0.95ω, ωh =
0.9, ω k = 40, A = 0.01). Furthermore Fig 11 illustrates
the ability of the proposed scheme to seek the maximum
of production despite changes in operating conditions.

4. CONCLUSION

A simple extremum seeking strategy is proposed in this
study, which includes a recursive least square estimator
and a regression model in the form of a Hammerstein-
Wiener model. The algorithm is developed in the case of
first- or second-order dynamics, which is sufficient in most
practical cases. The inclusion of process dynamics in the
regression model dramatically improves the speed of con-
vergence with respect to a classical bank-of-filter (BOF)
approach. Especially, the application to the production
maximization in micro-algae cultures shows a speed-up
by a factor of 10, which makes the strategy of practical
use (whereas previous results with BOF were difficult
to achieve in real-life experiments due to the very long
convergence time). On-going work entails the experimental
validation with a lab-scale photo-bioreactor.
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