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Abstract: Data collected from Industry 4.0 scenarios present a variety of data structures, reflecting the 

evolution of industrial processes, measurement systems and IT infrastructures (“variety” is actually one 

of the 4 V’s of Big Data, meaning that its existence is widely recognized). Data analytics platforms must 

adapt to this context and keep the pace of its evolution, in order to continue providing effective solutions 

to practitioners for dealing with the large data resources now available. In this context, one prevalent 

feature of industrial data has been largely overlooked: their multiresolution nature. The multiresolution 

nature of data is directly connected to their granularity in the time domain, an aspect that induces inner 

dependencies that current frameworks cannot address in a consistent and rigorous way. Furthermore, 

multiresolution has been often mistaken as a simple multirate scenario, where in fact the meaning of the 

observations is completely different. In this paper, we highlight such differences and discuss current 

multiresolution frameworks for effectively handling industrial data sets. 
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1. INTRODUCTION 

With the evolution in sensing technology, delocalized 

acquisition systems, communication infrastructures 

(including the Internet of Things) and storage/retrieving 

facilities for huge amounts of data (using cloud technology), 

the nature of data presented to plant engineers and data 

scientists has been changing significantly. Modern data sets 

are high-dimensional, contain structured data of different 

types (sensor data, spectra, images, etc.) as well as 

unstructured data (fault and alarm tags, operators notes, etc.), 

noise, outliers, missing segments, dynamic features and 

multiresolution characteristics that need to be properly 

accounted for, in order to extract meaningful and useful 

information for the purposes of process monitoring, 

diagnosis, control and optimization. 

The high-dimensionality is perhaps the most well-known 

characteristic and has been handled through the use of 

projection-based (or latent variable) methods such as 

Principal Component Analysis (PCA) (Jackson, 1959; 

Jackson and Mudholkar, 1979; Jolliffe, 2002) and Partial 

Least Squares (PLS) (Geladi and Kowalski, 1986; Jackson, 

1991; Martens and Naes, 1989). These methodologies can 

also account for process dynamics by extending the original 

data matrices with time-shifted replicates (Kaspar and 

Harmon Ray, 1993; Ku et al., 1995; Rato and Reis, 2013a, 

2013b). The presence of noise is also properly handled by 

these approaches, including heteroscedastic noise (Reis and 

Saraiva, 2006b; Wentzell et al., 1997) and outliers (Chiang et 

al., 2003). On the other hand, the multiresolution aspect has 

received far less attention. Furthermore, it has been wrongly 

treated as a multirate problem. This confusion can be 

explained by the resemblance of the data structures produced 

in multiresolution and multirate settings, but also by a certain 

lack of awareness for the importance to deal with 

multiresolution systems. In fact, in both cases variables are 

recorded at different rates. Apart from that, the inner data 

structure and meaning of the observations is completely 

different. In the multirate case, the recorded values are just 

the instantaneous measurements acquired from the process, 

which are collected at different sampling rates. In the 

multiresolution case, the recorded values contain information 

about the process with different levels of granularity 

(different resolutions). Granularity can arise from the 

implementation of aggregation rules that merge multiple 

(high resolution) samples into a single (low resolution) 

observation. Another source of granularity can be found in 

situations where variables represent measurements made on 

composite samples collected during a certain time period 

(e.g., production lot, working shift, etc.), and therefore the 

recorded values regard specific windows of time. These 

windows of time are here defined as the variable’s “time 

supports”. For a further discussion on the differences between 

multirate and multiresolution data sets we refer the reader to 

(Rato and Reis, 2017c). 

Even though the multirate approaches underperform when 

applied to multiresolution data sets, it is worth reviewing the 

proposals made in this field, to underline their differences 

with the multiresolution frameworks. The main problem 

encountered in multirate data is the non-uniform sampling 

rate. To address this, a simple solution is to downsample the 

more frequently observed variables and then build a model 

with the remaining low sampling rate data (Dongguang et al., 

2003; Li et al., 2001; Lin et al., 2009). However, by 
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discarding the inter sample observations a considerable 

amount of information is lost. This is particularly critical 

when the process has dynamic characteristics or when the 

data is, in fact, multiresolution. Note that, in the latter case, a 

low resolution variable is aggregated over a given time 

support (e.g., through an averaging operation) and therefore it 

is likely to be related with the high resolution signal of the 

discarded samples of other variables. To preserve the 

relationship with past observations, multirate approaches 

based on finite impulse response (FIR) models have been 

proposed to weight past observations before including them 

in the model (Wu and Luo, 2010; Xie et al., 2013). In a 

similar manner, Shang et al. (2015) introduced a 

regularization approach to dynamic partial least squares 

(DPLS) in order to smooth out the coefficients related to past 

observations. However, none of these methodologies is able 

to handle the multiresolution structure of data in a consistent 

and rigorous way. 

Regarding the signal processing methodologies for optimal 

estimation, namely those based on the Kalman filter (KF) 

(Kalman, 1960), it can be once again verified that multirate 

approaches only account for dynamic dependencies. 

Examples include the proposal of Roshany-Yamchi et al. 

(2013), where the missing observations are given zero 

weights during the KF state estimation; or the approach of 

Wu and Luo (2010), which employs a bank of KFs 

depending on the available data at each time instant. 

The currently miscalled “multiresolution” approaches, fail to 

accommodate this data structure as well. In fact, this 

nomenclature does not reflect the analysis being done and 

should be called instead, “multiscale”. Multiscale methods 

essentially apply a wavelet transformation in order to 

decompose single-resolution signals into several time-

frequency scales (Basseville et al., 1992; Chou et al., 1994; 

Stephanopoulos et al., 2008a; Stephanopoulos et al., 2008b; 

Willsky, 2002). This leads to a set of detail coefficients, 

which represent the specific contribution of each scale, and 

approximation coefficients, with the coarsest approximation 

of the original signal (low frequency bands). As coefficients 

at different scales are analyzed, these methodologies should 

be called “multiscale”. A multiresolution approach analyzes 

signals represented at different resolutions or granularity 

levels (i.e., only approximation coefficients at different scales 

are considered, and not the detail coefficients). This is the 

main difference between multiscale approaches and 

multiresolution approaches. For instance, multiscale 

statistical process control (MSSPC), is a multiscale, single-

resolution approach for process monitoring (Bakshi, 1998; 

Reis et al., 2008); on the other hand (MR-MSSPC) is a 

multiscale, multiresolution approach (Reis and Saraiva, 

2006c).  

Following the above discussion, it is now both opportune and 

important to incorporate multiresolution analytics in the 

routine analysis of industrial data. This paper reviews the 

current multiresolution frameworks available for handling 

industrial data sets. These are divided into two main 

categories depending on whether the data already possesses a 

multiresolution structure or not. In the first case, the 

methodologies have to accommodate for the multiresolution 

structure in order to take advantage of the information 

embedded in it. On the other hand, for the cases in which the 

data set is single-resolution, we have found out that there may 

be a potential advantage in creating a multiresolution 

structure in order to optimize the analysis goal. Therefore, the 

motivation for the second case is to explore if there is any 

advantage on changing the original resolution of the variables 

in order to increase the performance of the analytics, for 

instance by producing better predictive models. The 

methodologies in each of these categories, as well as their 

application scopes, are summarized in Fig. 1 and will be 

further discussed in the following sections. 
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Fig. 1. Organogram of the available Multiresolution 

frameworks and their application scope. 

 

The rest of this paper is organized as follows. In the next 

section the frameworks for analyzing data with a native 

multiresolution structure are discussed. Afterwards, in 

Section 3, we present the methodologies that actively 

introduce multiresolution structure into the data. The main 

conclusions of this work are summarized in Section 4. 

2. ANALYSIS OF MULTIRESOLUTION DATA 

2.1 Exploratory 

Every data analysis task should start with an exploratory 

analysis of the collected data, with special focus on visual 

tools, such as graphs and diagrams. However, when data 

present multirate or multiresolution structures, a 

preprocessing stage is required, in order to make the analysis 

consistent in terms of the granularity of what is being 

portrayed. In this context, frameworks were developed that 

are able to project variables under analysis to the same 

resolution level (defined by the user). When the data is 

multirate, a Generalized Multiresolution Decomposition 
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(GMRD) framework was proposed that is able to extend 

Mallat’s wavelet-based multiresolution decomposition 

(Mallat, 1989) to multirate contexts (Reis and Saraiva, 

2006a). Therefore, the approximation coefficients obtained at 

different resolutions, provide the variable projections with 

different levels of granularity. Due to the multirate nature of 

data, the number of high-frequency observations used in the 

computation of a given coarser approximation coefficient 

may vary. This implies that these coefficients, for a given 

resolution, do not present all the same “quality” or 

uncertainty. Therefore, an uncertainty propagation 

computation is performed in parallel, in order to provide not 

only the values for the variables at the desired resolution 

(granularity), but also their associated uncertainty. With the 

values and associated uncertainties available, a detailed 

exploratory analysis can then be performed, using the existent 

rich graphical toolkit and good visualization practices (Tufte, 

2001). Fig 2. illustrates the computational scheme adopted in 

the implementation of GMRD. 
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Fig. 2. The GMRD projection framework. 

 

For multiresolution data, the approach to follow is similar in 

the sense of adopting a dyadic projection scheme (as the one 

depicted in Fig.1), but variables with coarser granularities can 

only be projected to resolutions even coarser than their own 

native resolution. The high resolution variables can be 

projected to all resolutions (Reis and Saraiva, 2006c). 

Therefore, depending on the resolution selected by the user to 

conduct the exploratory analysis, different sets of variables 

may be available, all of them consistent in terms of the 

variables’ granularity. 

2.2  Monitoring 

The first (and only) methodology for handling 

multiresolution data for high-dimensional process monitoring 

was proposed by Reis and Saraiva in 2006 (MR-MSSPC) 

(Reis and Saraiva, 2006c). This approach extends multiscale 

statistical process control (Bakshi, 1998), where the process 

variables are simultaneously monitored at different time-

scales, to a multiresolution scenario. MR-MSSPC begins 

with the specification of the native resolutions of each 

variable. Quite often there is a finest resolution, 

corresponding usually to the variables that are also collected 

at higher sampling rates. This is used to establish the finest 

grid of time (scale index 0j  ). If variable 
i

X  corresponds 

to averages over time supports of length 2 iJ
 times that of the 

finest resolution, than its scale index or resolution level is set 

to 
i

J . A variable at a resolution 
i

J  can only be decomposed 

to scales coarser (i.e., higher) than 
i

J  and therefore it does 

not contribute to the monitoring implemented at finer scales 

(
i

j J ). Therefore, in MR-MSSPC not all variables are 

being monitored at all scales, but only at those that are 

coarser than their native resolutions. In this way, MR-MSPC 

is able to simultaneously handle the following “variety” 

aspects of industrial data: high-dimensionality, cross-

correlation, multiscale dynamics and multiresolution 

structure. 

2.3 Prediction 

The key quality features of industrial processes are typically 

obtained offline with a considerable delay and by resort to 

expensive equipment. To avoid this experimental burden, soft 

sensors have been developed in order to predict the expensive 

quality variables based on the more frequently collected 

variables. However, the multiresolution structure of data 

raises several fundamental problems while extracting the 

relevant relationships between predictor and response 

variables. To accommodate for the presence of observations 

at different resolutions in soft sensor development, a new 

weighted PLS scheme was proposed (Rato and Reis, 2017c).  

To introduce the modelling stages of multiresolution soft 

sensors (MR-SS), let us assume that the predictors are readily 

obtained at high resolution (xt
(0)

), while the response (yt
(r)

) is 

a low resolution variable with time support 2
r
 (i.e., the 

response is only observed at every 2
r
-th observation and the 

recorded value is the result of aggregating high resolution 

data over a window of 2
r
 time instants). The superscript “(r)” 

represents the variable’s resolution. 

Due to the multiresolution nature of the data, the observed 

low resolution response at time t ( ( )r

t
y ) is inherently linked to 

an unknown high resolution version of itself ( ( 0 )

t
y ) within its 

time support. This relationship is represented by, 

 

( ) (0 ) (0 ) (0 )

1 2 1
... ,r

r

t t t t
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     (1) 

 

where w is a weighting constant (usually w = 1/2
r
, 

representing an average operation). While the high resolution 

signal of the response is unknown, it can still be considered 

that the predictors (which are also at the highest resolution) 

can be used to estimate it through a linear relationship, such 

that (left side of (2)), 
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where b is a vector of regression coefficients and ut
(0)

 

represents the sum of weighted predictors over the time 

support of the response. However, since the response’s high 

resolution signal is unknown, the high resolution model 
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cannot be directly fitted. For such, it is necessary to recast the 

model in its equivalent low resolution format, as presented in 

the right side of (2). The low resolution model can then be 

estimated by fitting a PLS model between y
(r)

 and u
(0)

. This 

formulation can be further generalized for handling predictors 

at different resolutions, to model dynamic relationships as 

well as to address the use of unknown averaging weights (w) 

(Rato and Reis, 2017c). 

The main advantages of this methodology is its ability to 

explicitly model the multiresolution structure of the data, 

through a more parsimonious model, which in turn translates 

into better estimates of the response. Furthermore, even 

though the model is fitted on the low resolution response, the 

equivalency between the high and low resolution models 

implies that the parameters of the high resolution model are 

also readily available. Therefore, it is possible to estimate (or 

reconstruct) the initially unknown high resolution signal of 

the response. This is a quite interesting aspect of the proposed 

framework, opening new perspectives to increase the 

resolution and frequency of the response estimates, through 

multiresolution analytics. 

Another application of the weighted PLS is on the 

development of optimal multiresolution estimation 

frameworks that extend the single-resolution KF to the 

multiresolution scenario. In this regard, a multiresolution 

Kalman filter (MR-KF) can be used to optimally fuse the 

information conveyed by (i) the high resolution model (left 

side of (2)), (ii) the low resolution model (right side of (2)), 

(iii) the low resolution observations and (iv) the high 

resolution observations. Note that the high resolution 

observations are not strictly necessary for applying MR-KF, 

and in fact they are often unavailable. However, even in this 

scenario the MR-KF can still be used and benefit from the 

fusion of the other three sources of information. 

The proposed implementation for the MR-KF has roots on 

the works of (Basseville et al., 1992; Chou et al., 1994; 

Stephanopoulos et al., 2008a; Stephanopoulos et al., 2008b; 

Willsky, 2002) and consist of applying two KF that exchange 

information with each other. The first stage of the MR-KF is 

a high-to-low sweep that employs a high resolution KF to 

merge the information at the high resolution level (i.e., high 

resolution observations and the estimates of the high 

resolution model). The output is a filtered high resolution 

estimate. This estimate is then send to a low resolution KF 

that merges it with the remaining low resolution information 

(i.e., low resolution observations and the estimates from the 

low resolution model) to generate an optimal low resolution 

estimate. Afterwards, a low-to-high smoothing stage is 

implemented in order to smooth the previous high resolution 

estimates based on the optimal low resolution estimate, by 

means of the Rauch-Tung-Striebel algorithm (Rauch et al., 

1965). 

The MR-KF was tested and compared against the standard 

single-resolution KF in simulated case studies (where the 

“real”, noiseless response values are known) and showed to 

be substantially better than its counterpart, leading to 

estimation improvements for both the high and low resolution 

signals (Rato and Reis, 2017b). 

 

3. OPTIMAL SELECTION OF THE MULTIRESOLUTION 

STRUCTURE 

3.1  Continuous Processes 

Even when the data is available at a single-resolution it is not 

guaranteed that their native resolution is the best resolution 

for achieving the analysis goals. This is particularly relevant 

in predictive analytics tasks. For instance, the variables may 

be collected at a high resolution in order to capture the local 

variability from the standpoint of process control or 

monitoring, while for process modelling it might be 

preferable to adopt low resolution representations in order to 

obtain more parsimonious and stable models. Therefore, 

during model building it is not only desirable to select the set 

of predictors most suitable for estimating the response (as in 

the case of classical stepwise selection methodologies), but 

also to consider at which resolution they should be included 

in the model. In this way, a framework was proposed for 

building multiresolution empirical model for continuous 

processes (MR-EMC) (Rato and Reis, 2017a) that 

contemplate the definition of the multiresolution structure as 

an additional degree of freedom for model building. 

In brief terms, MR-EMC simultaneously selects the best 

variable to be included in the model and searches for the best 

resolution for each variable. The search space for the 

variables’ resolution is constrained between the native 

resolution of the variables and a given maximum resolution 

defined by the user. One way to implement MR-EMC is by 

extending the predictors space with variable duplicates at all 

resolutions. This extended matrix is then the base for 

simultaneous variable and resolution selection, following a 

procedure similar to the standard stepwise forward algorithm 

(Draper and Smith, 1998). However, it should be noted that 

while the search space includes all duplicates at different 

resolutions, only one of them is included in the model (i.e., 

the same variable cannot included in the model at different 

resolutions). 

To illustrate the advantage of MR-EMC, a simulated 

Continuous Stirred Tank Reactor (CSTR) was used to 

generate data and then build PLS, DPLS and MR-EMC 

models for estimating the output concentration. This 

simulator, returns readings for seven variables: (i) feed 

stream concentration of compound A, (ii) feed stream 

temperature, (iii) heating fluid inlet temperature, (iv) fluid 

level in the reactor, (v) outlet concentration of compound A, 

(vi) outlet stream temperature and (vii) heating fluid outlet 

temperature. The full specification of the simulated process 

can be found in (Rato and Reis, 2015). In this study, all 

variables are recorded at high resolution and subject to 

measurement noise. As mentioned before, for modelling 

purposes, the output concentration was selected as the 

response variable and the other six variables form the 

predictors set. To assess the consistency of the results, 100 

replicates were made and for each replicate 1000 

observations were generated for training the models and 

another 1000 observations for testing their performance. The 
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performance was evaluated through the Mean Squared Error 

(MSE) based on the noise free values for the concentration. 

The median MSE over the 100 replicates is represented in 

Fig. 3. From this figure, it is clear that PLS presents the worst 

performance as it only makes use of the native resolution of 

the variables and has no information for modelling the 

process dynamics. When time-shifted replicated are added to 

the DPLS model, it is observed a significant improvement 

over PLS. However, the MSE of DPLS is still larger than that 

obtained with MR-EMC. As MR-EMC is not accounting for 

process dynamics, these results demonstrate that choosing the 

appropriate resolution for each variable is more important 

that including information about the process dynamics. In 

subsquent studies, it was also observed that a dynamic 

version of MR-EMC produces slightly better estimates, being 

again verified that resolution selection in the main driver for 

an accurate estimation of the response. 

 

Fig. 3. Median MSE over 100 replicates of the CSTR case 

study. For reference, note that the variance of the noise is 

4×10
-6

. 

3.2  Batch Processes 

A multiresolution framework for predicting batch-end quality 

by exploiting the structured correlation in both the time and 

variables dimensions was also proposed, called multi-

resolution quality prediction (MRQP) (Geert et al., 2017). 

This methodology lead to models that are often much more 

parsimonious than those derived from Batch Wise Unfolding 

(Nomikos and MacGregor, 1994; Nomikos and MacGregor, 

1995), being theoretically guaranteed that they are at least as 

good as their single-resolution counterparts. From an 

interpretation standpoint, multi-resolution models are also 

more robust with respect to the selection of too many 

predictors, facilitating the identification of key process 

variables and providing information on the process time 

scales that influence final product quality, which can be 

further exploited for diagnosis, control, and optimization. 

This approach was tested with several systems, including 

simulated and real world processes. For the real world case, 

regarding an industrial batch polymerization process, the 

improvement achieved in prediction (PRESS) was of 54%. 

 

4. CONCLUSIONS 

Even though a large variety of industrial processes generate 

data with a multiresolution structure, the current modelling 

and analysis methodologies are not able to accommodate for 

this aspect, nor to take advantage of its presence. 

Furthermore, multiresolution structures are often erroneously 

taken as multirate data, leading to the adoption of inadequate 

analysis procedures. To address this situation, a series of 

multiresolution frameworks for data analysis have been 

proposed and are currently available. These approaches are 

applied to two distinct scenarios. In the first case, 

multiresolution is already present it the data and thus the 

focus is to explore the best way to incorporate it during 

model building. In the second scenario, data is originally 

single-resolution and the goal is to introduce multiresolution 

structure in order to improve the predictive performance. In 

both scenarios, the multiresolution approaches were 

compared against their single-resolution counterparts and 

consistently positive results were obtained in favor of the 

multiresolution frameworks. 
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