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Abstract: Backstepping controller (BS) and model predictive controller (MPC) have been
widely used for many applications by virtue of their own merits. BS works even with non-
minimum phase and finite-time escape and MPC can handle state and input constraints
explicitly. Nevertheless, BS requires repeated differentiations of the virtual control, whereas high
computational loads of MPC are obstacles to practical implementation. This study proposes a
control strategy that combines BS and MPC for nonlinear systems in strict-feedback form. It is
proven that the controller renders the closed-loop system asymptotically stable. The proposed
MPC-BS requires less computational load than that of MPC, since it only optimizes the virtual
input of the first step and computes the input by backstepping approach. The explosion of terms
caused by the consecutive differentiation in BS approach is also addressed.
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1. INTRODUCTION

Since backstepping control (BS) was developed in 1990s,
there have been numerous applications of this nonlinear
controller. Ezal et al. (2000) suggests locally optimal and
robust backstepping design which starts with a linear H∞-
optimality. Tanner and Kyriakopoulos (2003) applies BS
to a unicycle driven by a new discontinuous kinematic
controller. Design of backstepping controller has fast cal-
culation speed and flexibility. Zhao and Kanellakopoulos
(1998) show that the virtual control of the first step and
the Lyapunov functions can be chosen differently, affecting
the performance of controller. In addition, the value of
gain and the form of Lyapunov function can be flexible.
However, BS often suffers from the explosion of terms
because of the continuous differentiation of the virtual
control (Yang et al. (2007)). Users should define a function
for the virtual control design in the first step.
Model predictive control (MPC) is an open-loop optimal
control with feedback update implemented in a receding
horizon fashion. It can consider both state and input
constraints explicitly in an online optimization. However,
high computational load is still a challenge for the nonlin-
ear MPC (NMPC) of systems with fast dynamics. There
have been many efforts to reduce the computational load
of NMPC, and among them are suboptimal NMPC and
fast NMPC. Suboptimal NMPC computes approximate
solution of the dynamic optimization problem (Stewart et
al. (2010), Zeilinger et al. (2011)). Fast NMPC improves
the optimization algorithm for NMPC-inspired optimiza-
tion problems (Lopez-Negrete et al. (2013), Jschke et al.
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(2014)). Coordinate transformation is another approach
to reducing the computational load of NMPC. When the
system is input-output feedback linearizable, the controller
designed by feedback linearization yields a linear system
with ũ, part of the real input, and ũ is determined by
linear MPC (Simon et al. (2013)). The main drawback of
the coordinate transformation approach is that the simple
state and input constraints are converted to nonlinear
constraints.
Both BS and MPC can synergistically complement each
other through proper integration of the two methods. The
computational advantage of BS and the explicit consider-
ation of constraints of MPC can address the issues of its
counterpart: the excessive computational load of MPC and
the explosion of terms of BS. Several studies (Gouta et al.
(2015), Ouali et al. (2012)) compares the performances
of BS and MPC. However, there is no previous study that
tried to combine BS and MPC to the best knowledge of the
authors. In this study, integrated backstepping and model
predictive controller is first proposed and its asymptotic
stability is proven. The virtual input of first step in back-
stepping approach is designed using MPC with piecewise
constant control, allowing for addressing the explosion of
terms in BS approach and alleviating the computational
load compared with MPC-only approach.
The paper is organized as follows: Section 2 presents a
class of nonlinear systems considered in this paper and a
preliminary theorem about the stability of the closed loop
system when the controller is applied in a sample-and-
hold fashion. The design of the proposed controller and
its stability analysis are shown in Section 3. The results of
applying the proposed controller to an illustrative example
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and the comparison between BS and MPC are discussed
in Section 4.

2. PRELIMINARIES

Consider the nonlinear continuous-time system in a strict-
feedback form in (1) and (2), which is obtained by coordi-
nate transformation.

ẋ = f0(x) + g0(x)z1 (1)

żi = fi(x, z1, ..., zi) + gi(x, z1, ..., zi)zi+1

for 1 ≤ i ≤ N-1 and N ≥ 2

żN = fN (x, z1, ..., zN ) + gN (x, z1, ..., zN )u

(2)

where x ∈ Rn, zi ∈ R, u ∈ R

The overall system is denoted by

Ẋ = F (X(t), u(t)), X = [x, z1, ..., zN ]T (3)

Without loss of generality, the steady-state is assumed to
be (Xs, us) = (0, 0)

2.1 Backstepping control

Assumption 1. The functions fi, gi for all i = 1, ..., N
are smooth and f0 to fN vanish at the origin, and
gi(x, z1, ..., zN ) 6= 0 over the domain of interest.

Under the strict-feedback structure and Assumption 1,
the backstepping approach is possible for designing the
controller. The procedure of designing the controller is well
described in Khalil (2015).

2.2 Sample-and-hold MPC

We uses the MPC with piecewise constant input for
designing the virtual input of the first step in backstepping
controller. This sample-and-hold MPC is described using
the same notation in (3).

Assumption 2. There exists a locally Lipschitz feedback
controller z1 = h(x) with h(0) = 0 such that the origin
of the closed loop system 1 is locally exponentially stable
and globally asymptotically stable.

If Assumption 2 holds and let R > 0, there exist a
radially unbounded Lyapunov function V : Rn → R≥0

and constants ci > 0 (i = 1, 2, 3, and 4) satisfying (4) for
all x ∈ Ωρ where ρ := max {V (x) : x ∈ BR}:

c1 ‖x‖2 ≤ V (x) ≤ c2 ‖x‖2

‖OV (x)‖ (f0(x) + g0(x)h(x)) ≤ −c4 ‖x‖
‖OV (x)‖ ≤ c4 ‖x‖

(4)

Here, BR denotes a closed ball with radius R and center
at the origin. ‖·‖ denotes the Euclidean norm.

Lemma 1. (Ellis et al. , 2014) If Assumption 2 holds,
there exist ∆∗ > 0 and M, σ > 0 such that for every
partition {tk}∞k=0 of R≥0 with supk≥0(tk+1 − tk) ≤ ∆∗,
the closed loop system of (1) with the input trajectory
u(t) = h(x(tk)) for t ∈ [tk, tk+1), k ∈ Z≥0 and for x0 ∈ BR
satisfies the estimate ‖x(t)‖ ≤ M exp(−σt) ‖x0‖ for all
t ≥ 0.

Since h : Rn → R is a locally Lipschitz mapping with
h(0, 0) = 0 and f0 and g0 are smooth with f0(0) = 0,
there exist constants L, M> 0 such that

‖g0(x)h(x)− g0(x)h(z)‖ ≤ L ‖x− z‖ ,
‖f0(x) + g0(x)h(z)‖ ≤M ‖x‖+M ‖z‖ (5)

By letting ∆∗ > 0 sufficiently small such that the following
inequality holds

c4L
2M∆∗exp(M∆∗)

1− 2M∆∗exp(M∆∗)
< c3, (6)

the inequality of (7) holds for i ∈ Z≥0

∇V (x(t))f(x(t), h(x(tk))) ≤ −q
2
‖x(t)‖2 (7)

, where q := c3 − c4L 2M∆∗exp(M∆∗)
1−2M∆∗exp(M∆∗) > 0. R≥0 and Z≥0

are the nonnegative real number and integer, respectively.
{tk}∞k=0 denotes a partitioning of R≥0, where tk is a
strictly increasing sequence with t0 = 0 and limk→∞ tk =
∞.

3. INTEGRATED MPC AND BACKSTEPPING
APPROACH

This section presents the integrated design of BS and MPC
for the system (3). First, the virtual input of Step 1 in BS
controller is designed by MPC.

Step 1 : Finite-horizon optimal control problem (FHOCP)

min
z̄1∈S(Ts)

∫ tk+Tp

tk

(‖x̄(s)‖Q + ‖z̄1(s)‖R)ds

subject to ˙̄x(t) = f0(x̄(t)) + g0(x̄(t))z̄1(t)

x̄(tk) = x(tk)

∂V0

∂x
(f0(x(tk)) + g0(x(tk))z̄1(tk))

≤ ∂V0

∂x
(f0(x(tk)) + g0(x(tk))h(tk))

(8)

, where x̄ is the predicted state, S(Ts) is the set of
piecewise constant functions with the period Ts, and Tp
is the prediction horizon. The optimal desired z1 obtained
by FHOCP is denoted as z∗1,des(t) and for t ∈ [tk, tk+1),

z1,des(t) = z∗1(tk). Sampling time (Ts) is chosen such that
Ts ≤ ∆∗ with ∆∗ satisfying (6).

Given V0 = p0
2 x

2, z∗1,des(tk) yields (9) by Lemma 1:

V̇0 = p0x(f0 + g0z1,des(t)) ≤ −
q

2
‖x(t)‖2 (9)

Since there exists error between z1,des and real z1,

V̇0 = p0x(f0(x) + g0(x)(e1 + z1,des))

≤ p0x(f0(x) + g0(x)h(tk)) + p0xg0(x)e1

≤ −q
2
‖x(t)‖2 + p0xg0(x)e1

(10)

, where e1 = z1 − z1,des.

Step 2:
Letting V1 = p0

2 x
2 + p1

2 e
2
1, its derivative is given by:

V̇1 ≤ −
q

2
‖x(t)‖2 + p0xg0(x)e1 + p1e1(ė1) (11)
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Since z1,des is constant for t ∈ [tk, tk+1), ė1 is simply equal
to ż1. This leads to

V̇1 ≤ −
q

2
‖x(t)‖2 + p0xg0(x)e1 + p1e1(ż1)

= −q
2
‖x(t)‖2 + e1(p0xg0(x) + p1(f1(x, z1) + g1(x, z1)z2))

(12)

By letting z2,des = 1
g1(x,z1) (−f1(x, z1) − p0

p1
xg0(x) − a1

p1
e1)

and e2 = z2 − z2,des,

V̇1 ≤ −
q

2
‖x(t)‖2 + p0xg0(x1)e1 + p1e1(ż1)

= −q
2
‖x(t)‖2 − a1e

2
1 + e1p1g1(x, z1)e2

(13)

Step 3:
Given V3 = p0

2 x
2 + p1

2 e
2
1 + p2

2 e
2
2,

V̇3 ≤ −
q

2
‖x(t)‖2 − a1e

2
1 + p1e1g1(x, z1)e2 + p2e2ė2

= −q
2
‖x(t)‖2 − a1e

2
1 + e2(p1e1g1(x, z1) + p2(ż2 − ż2,des))

= −q
2
‖x(t)‖2 − a1e

2
1 + e2(p1e1g1(x, z1)

+ p2(f2(x, z1, z2) + g2(x, z1, z2)z3 − ż2,des))

(14)

By letting z3,des = 1
g2(x,z1,z2) (−f2(x, z1, z2) + ż2,des −

p1
p2
e1g1(x, z1)− a2

p2
e2) and e3 = z3 − z3,des,

V̇3 ≤ −
q

2
‖x(t)‖2 − a1e

2
1 − a2e

2
2 + p2e2g2(x1, z1, z2)e3

(15)

Step N:
Finally, taking VN = p0

2 x
2 + p1

2 e
2
1 + ... + pN

2 e
2
N as a

Lyapunov function candidate for the overall system,

˙VN ≤ −
q

2
‖x(t)‖2 − a1e

2
1 + ...− aN−1e

2
N−1

+ pN−1eN−1gN−1(x1, z1, ..., zN−1)eN + pNeN ˙eN

= −q
2
‖x(t)‖2 − a1e

2
1 + ...− aN−1e

2
N−1

+ pN−1eN−1gN−1(x1, z1, ..., zN−1)eN
+ pNeN (fN (x, z1, ..., zN ) + gN (x, z1, ..., zN )u− żN,des)

(16)

By letting

u =
1

gN (x, z1, ..., zN )
(−fN (x, z1, ..., zN ) + żN,des

− pN−1

pN
eN−1gN−1(x, z1, ..., zN−1)− aN

pN
eN )

(17)

and eN = zN − zN,des,

˙VN ≤ −
q

2
‖x(t)‖2 − a1e

2
1 + ...− aie2

N (18)

Since we uses MPC with piecewise constant functions for
designing the z1,des and backstepping approach, VN (χ(t))
with χ = [x, e1, ..., en]T decreases for t ∈ [tk, tk+1) for all
k ∈ Z≥0. However, at tk for all k ∈ Z≥0, VN (χ(t+k )) >

VN (χ(t−k )) can occur depending on the z1,des(t
+
k ) deter-

mined by FHOCP at tk, which requires Assumption 3:

Assumption 3. There exists 0 < ∆∗2 ≤ Ts such that
FHOCP has a feasible solution under the following ad-
ditional constraints

cN,2
∥∥χ(t+k )

∥∥2 ≤ cN,1
∥∥χ(t−k )

∥∥2
+ cN,4

∥∥χ(t−k )
∥∥2

(Ts −∆∗2)

(19)

Theorem 1. If Assumption 1 holds, there exists δ∗ > 0

such that c4L
2M∆∗exp(M∆∗)

1−2M∆∗exp(M∆∗) < c3. In addition, if As-

sumptions 2 and 3 hold, the controller designed by in-
tegrated MPC and backstepping approach (FHOCP and
(17)) with the additional constraint of (20) for FHOCP
renders the closed-loop system of (3) asymptotically sta-
ble.

The additional constraint for FHOCP with a constant τ
such that 0 ≤ τ ≤ ∆∗2 is given by

cN,2
∥∥χ(t+k )

∥∥2 ≤ cN,1
∥∥χ(t−k )

∥∥2
+ cN,4

∥∥χ(t−k )
∥∥2

(Ts − τ)

(20)

Proof :

By Lemma 1, during each [tk, tk+1) for all k ∈ Z≥0, (18) is
satisfied. Thus, we only need to show that for all k ∈ Z≥0,
VN (χ(t−k+1)) ≤ VN (χ(t−k )), with χ = [x, e1, ..., en]T .

There exist some positive constants cN,1, cN,2 and cN,4
such that

cN,1 ‖χ‖2 ≤ VN (χ) ≤ cN,2 ‖χ‖2 (21)

∂VN
∂t

+
∂VN
∂x

F (t, χ) ≤ −cN,4 ‖χ‖2 (22)

For all 0 ≤ ω ≤ Ts, we can obtain

VN (χ(t−k+1)) ≤ VN (χ(t−k+1 − ω))

≤ VN (χ(t+k ))− cN,4
∥∥χ(t−k+1 − ω)

∥∥2
(Ts − ω)

(23)

By virtue of

VN (χ(t+k )) ≤ VN (χ(t−k )) + cN,2
∥∥χ(t+k )

∥∥2 − cN,1
∥∥χ(t−k )

∥∥2
,

we obtain

VN (χ(t−k+1))

≤ VN (χ(t−k )) + cN,2
∥∥χ(t+k )

∥∥2 − cN,1
∥∥χ(t−k )

∥∥2

− cN,4
∥∥χ(t−k+1 − ω)

∥∥2
(Ts − ω)

(24)

If
∥∥χ(t−k+1 −∆∗2)

∥∥ ≥ ∥∥χ(t−k )
∥∥, under the additional con-

straint and by (24),

VN (χ(t−k+1)) ≤ VN (χ(t−k+1 − τ)) ≤ VN (χ(t−k+1 −∆∗2))

≤ VN (χ(t−k )) + cN,2
∥∥χ(t+k )

∥∥2 − cN,1
∥∥χ(t−k )

∥∥2

− cN,4
∥∥χ(t−k+1 −∆∗2)

∥∥2
(Ts −∆∗2)

≤ VN (χ(t−k )) + cN,2
∥∥χ(t+k )

∥∥2 − cN,1
∥∥χ(t−k )

∥∥2

− cN,4
∥∥χ(t−k )

∥∥2
(Ts −∆∗2)

≤ VN (χ(t−k ))
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(25)

If
∥∥χ(t−k+1 −∆∗2)

∥∥ < ∥∥χ(t−k )
∥∥,

VN (χ(t−k+1)) ≤ VN (χ(t−k+1 − τ)) ≤VN (χ(t−k+1 −∆∗2))

≤ VN (χ(t−k ))

(26)

2

4. ILLUSTRATIVE EXAMPLE

In this section, we apply the proposed controller to the
example of (27) (Khalil , 2015), and compare the results
with those of the conventional BS controller and MPC.

ẋ = x2 − x3 + z1

ż1 = z2

ż2 = u

(27)

The simulations are conducted with the initial condition
of χ(0) = (0.3, 0.1, 0.2).

4.1 Backstepping controller

From Khalil (2015),

z1,des,BS = −x2
1 − x1

z2,des,BS = −x1 + ż1,des,BS − a1e1

= −x1 − (1 + 2x1)(−x1 − x3
1 + e1)− e1

uBS = −e1 + ż2,des − a2e2

(28)

, with

∂z2,des,BS

∂x
= 2x1 − 2e1 + (2x1 + 1)(3x2

1 + 1) + 2x3
1 − 1

∂z2,des,BS

∂e1
= −a1 − 2x1 − 1

(29)

We set all the constants (a1, ..., aN , p0, ..., pN )as one in
both BS control design and the proposed control design.

4.2 The proposed controller

We have the z1,des,MPC(t) = z1,des,MPC(tk) for t ∈
[tk, tk+1) at each sampling time tk by solving the following
FHOCP:

min
z̄1∈S(Ts)

∫ tk+Tp

tk

(‖x̄(s)‖Q + ‖z̄1(s)‖R)ds

subject to ˙̄x(t) = x̄2 − x̄3 + z̄1

x̄(tk) = x(tk)

x(tk)(x(tk)2 − x(tk)3 + z̄1(tk))

≤ −x(tk)2 − x(tk)4

cN,2
∥∥χ(t+k )

∥∥2

≤ cN,1
∥∥χ(t−k )

∥∥2
+ cN,4

∥∥χ(t−k )
∥∥2

(Ts/2)

(30)

, where Q = 1, R = 2, and Tp = 0.5
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Fig. 1. The trajectories of state and desired z1 under BS

and
z2,des,MPC = −x− a1e1

uMPC = −e1 + ż2,des − a2e2
(31)

with
∂z2,des,MPC

∂x
= −1

∂z2,des,MPC

∂e1
= −a1

(32)

For x ∈ [−0.5, 0.5] with h(x) = −x2
1− x1, Ts can be set as

0.1 and then q = 0.2849, since L = 1,M = 1.75, c3 = 1,
and c4 = 1.

4.3 MPC

min
ū∈S(Ts)

∫ tk+Tp

tk

(‖χ̄(s)‖Q + ‖ū(s)‖R)ds

subject to ˙̄χ = F(χ̄, ū)

χ̄(tk) = χ(tk)

∂VN
∂χ

F(χ, ū) ≤ ∂VN
∂χ

F(χ, ūBS)

(33)

We set Q = [1 0; 0 2] and R = 1 to make the objective
function similar to that of the proposed controller.

4.4 Results and discussion

To solve the optimization problems, IPOPT (Wchter and
Biegler , 2006) was used and computation was performed
on an Intel i5-4670 3.40 GHz processor. To compare the
settling time, the first time to maintain ‖χ(t))‖ less than
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Fig. 2. The trajectories of state and desired z1 under MPC-
BS
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Fig. 3. The trajectories of state under MPC

‖χ(0)‖ × 0.03 and the first time to maintain ‖χ(t)‖∞ less
than ‖χ(0)‖∞ × 0.03 are shown in Table 1. The mean of
the maximum elapsed time and average elapsed time were
obtained by running the simulation for 10 times.

Table 1. The simultaion results of MPC-BS,
MPC, BS

MPC-BS MPC BS

The first time of maintaining
15.7 7 4.2‖χ‖ < ‖χ(0)‖ × 0.03

The first time of maintaining
15.7 7.3 4.2‖χ‖∞ < ‖χ(0)‖∞ × 0.03∑TF /Ts

k=1
(‖u(tk)‖ × Ts) 3.42 1.45 1.18

Mean of Maximum Elasped time [s] 0.165 0.245 -

Mean of Average Elasped time [s] 0.089 0.147 -

Table 1 shows the simulation results of MPC-BS, MPC,
and BS. In terms of the first time of maintaining ‖χ‖ <

0 5 10 15 20 25 30

time
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BS

BS-MPC

MPC

Fig. 4. The trajectories of input under BS, BS-MPC, and
MPC

‖χ(0)‖ × 0.03, the value increased in the order of BS,
MPC, and MPC-BS. The ratio between the three val-
ues is 3.74:1.67:1, respectively. Since z1,des,MPC(t) =
z1,des,MPC(tk) for t ∈ [tk, tk+1), ż1,des,MPC = 0 in the
proposed controller. This causes fluctuation as shown in
Figure 2 and leads to a longer convergence time than the
conventional methods. The same tendency is observed for
the first time of maintaining ‖χ‖∞ < ‖χ(0)‖∞× 0.03, and
the ratio of MPC-BS, MPC, and BS is 3.74:1.74:1, respec-

tively. The larger
∑TF /Ts

k=1 (‖u(tk)‖ × Ts) value of MPC-
BS came from the longer settling time. In the case of the
elasped time, MPC-BS showed the smaller elapsed time
than that of MPC. The mean of the maximum elapsed time
and average elapsed time are 0.67 and 0.6 smaller than
those of MPC, respectively. This is because the dimension
of the optimization problem in MPC-BS is smaller than
that of MPC. From (29) and (32), MPC-BS had much
simpler form of input than that of BS, addressing the
explosion of terms.

Since the performance of MPC-BS is not better than
those of both MPC and BS, it is not useful for this
simple stabilization problem. However, in the case of
control problems which need the trajectory determined
by optimization and the constraints for states of (1), the
proposed method can be used instead of MPC or BS.
Nonlinear systems in strict-feedback form of (1) and (2)
usually have z1 as the output (y). In this case, (1) is called
internal dynamics and the proposed method determines
the optimal trajectory z1 under the user-defined objective
function of x and z1 using MPC and an observer of x.
Then, the input (u) is designed by backstepping approach.

5. FUTURE WORK

This is the first work that integrates MPC and BS and
proves its stability. In the future, we plan to check the
applicability of the proposed controller on practical prob-
lems. Since the general output of the nonlinear systems in
the strict-feedback form is z1, the observer will be designed
and its stability analysis will be further investigated.
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6. CONCLUSION

This work integrates MPC optimizing with piecewise con-
stant functions and BS. The asymptotic stability of the
proposed controller is proven. Compared with backstep-
ping controller, the slower stabilization speed caused by
removing the time derivative term of the virtual control
of the first step was observed, when MPC-BS controller
was used. As a result, performance was not better than
MPC and BS in two respects: the settling time and total
amount of the input. However, the elapsed time of MPC-
BS is less than that of MPC because of its reduced size
of optimization problem. Furthermore, the explosion of
complexity caused by the repeated differentiations of the
virtual control is addressed. Given the problems of deter-
mining optimal trajectories and tracking them simultane-
ously, the proposed method is applicable, whereas the BS
approach-only is not appropriate.
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