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Abstract: Recently, the combination of cointegration analysis (CA) and slow feature analysis (SFA), has 
been adopted for concurrent monitoring of operation condition and process dynamics for nonstationary 
dynamic processes subject to time variant conditions. By isolating long-term temporal equilibrium 
features and specific temporal slow features from steady-state information, the CA-SFA based 
monitoring scheme can well distinguish between the changes of operation conditions and real faults. 
Considering that the temporal variation can provide an indication of control performance changes, the 
CA-SFA algorithm is further exploited based on dissimilarity analysis of temporal distribution to explore 
its unique efficacy in control performance monitoring (CPM). Two attractive features of the proposed 
approach are noticed. First, it is compatible with various operation conditions simultaneously including 
multifarious steady states and dynamic switchings between different working points. Second, a new 
performance monitoring index is used to monitor the control performance by quantifying the distribution 
structure of temporal features against the benchmark from both fast and slow dynamics aspects. Case 
study on a chemical industrial scale multiphase flow experimental rig shows the feasibility of the new 
CPM method. 
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1. INTRODUCTION 

Data-driven methods (Zhao and Gao, 2014, Zhao and Gao, 
2017, Zhao and Gao, 2016, Li et al., 2018) have been widely 
applied for process monitoring and fault diagnosis in 
industrial field. Owing to wide applications of automatic 
controllers, controller performance has become one of the 
key factors determining the productivity of a plant on 
industrial processes and its impacts are of increasing 
significance. Due to the labor cost of manual monitoring, the 
demand of online and automated controller performance 
monitoring has become increasingly necessary in practice. To 
this aim, the technique of control performance assessment 
(CPA) has drawn considerable attention with respect to both 
academia and industry aspects for the past two decades. The 
objective is to detect performance degradation by analyzing 
routine closed-loop operating data. In parallel, control 
performance monitoring (CPM) is to detect change of 
controller performance. The most common approach to 
controller performance monitoring is to compare the 
performance of the monitored loops with that of a benchmark. 
In general, the category of CPM benchmarks covers three 
types, i.e., theoretical optimal benchmarks, user-specified 
benchmarks and historical benchmarks. The performance 
benchmark can be the performance of either some optimal 
controller designed for certain objectives, or the monitored 
controller during its golden operation periods. Studies of 
CPA algorithms began to appear in the early 1990s after the 
work of Harris (Harris, 1989), in which Harris proposed the 

use of closed-loop data to evaluate and diagnose controller 
performance using minimum variance control (MVC) as a 
benchmark. Multivariable control performance assessment 
requires the knowledge of process time delay, the structure of 
which is represented by interactor matrix (Huang et al., 1997, 
Huang and Shah, 1998). In contrast, user-specified 
benchmarks are established using historical measurement 
data during which the concerned control system was 
operating at satisfactory statues. This approach can avoid 
ideal assumptions on processes and is becoming more 
practical(Yu and Qin, 2008a, Yu and Qin, 2008b, Li et al., 
2015, Li et al., 2003, Schäfer and Cinar, 2004, Patwadhan, 
2002, Huang et al., 2014). As a purely data-driven solution to 
CPA/CPM, it relieves users from cost of building physical 
models, and is thus applicable to both industrial single loops 
and more complicated MIMO processes. A covariance-based 
performance metric has been statistically defined (Schäfer 
and Cinar, 2004, Patwadhan, 2002), which makes use of only 
historical operation data in a period of time to form an index 
for CPM. An improved covariance-based index was put 
forward based on dissimilarity analysis (Huang et al., 2014). 
Although the DISSIM index can evaluate the changes of 
distribution structure and is thus more sensitive to control 
performance changes; it, however, only considers the unique 
static operation condition which thus may not work if the 
process has shifted to a new working point. 

As an alternative, Shang et al. (Shang et al., 2015) 
demonstrated that temporal behaviors of all types of variables 
including MV, CV and DV, can provide an indication of 
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current control performance. Shang et al. (Shang et al., 2015) 
reported a data-driven monitoring and diagnosis of control 
performance based on process dynamic behaviors statistically 
described by slow feature analysis (SFA) (Wiskott and 
Sejnowski, 2002). The benefit of SFA-based monitoring 
method was revealed in CPM by new monitoring indices 
based on the temporal difference of slow features. The 
monitoring indices essentially allude to alterations in control 
performance to quantify how fast the process varies. 
However, the SFA-based monitoring method in CPM has not 
been analyzed for nonstationary processes subject to time 
variant conditions despite that it has claimed that the 
temporally differenced features are free from specific steady-
states. In practical scenarios, changes of operation conditions 
can be frequent and common due to various reasons. For 
chemical processes with time variant conditions, the process 
status is often multimodal with not only multifarious steady 
states but also frequent dynamic switchings between different 
steady states. Besides, in their work, the SFA-based CPM 
method can only detect performance changes if the temporal 
variation increases based on the calculation of conventional 
monitoring statistics. It cannot indicate the change of 
temporal variations if the process varies more slowly. In fact, 
unusual process dynamics cover both increased and 
decreased temporal variations both of which may point to 
changes of control performance. Therefore, a proper CPM 
method needs to be developed to completely quantify the 
changes of temporal variations and indicate the changes of 
control performance for diversified operating conditions. In a 
very recent work, Zhao et al. (Zhao and Huang, 2017) 
provided a novel full-condition fault detection framework for 
nonstationary dynamic processes subject to time-variant 
conditions based on cointegration analysis (CA) (Engle and 
Granger, 1987) and SFA. That method can distinguish 
between the changes of operation conditions and real faults 
by checking deviations from equilibrium relation and 
deviations from the specific relation from both static and 
dynamic aspects. It is in particular powerful when the 
considered modeling data may not be representative enough 
to include all possible operation conditions. However, in 
(Zhao and Huang, 2017), potential benefits of the full-
condition fault detection method for CPM of nonstationary 
processes, have not been fully considered and will be 
addressed in this article. 

The orientation of this study is then towards a data-driven 
monitoring of control performance for nonstationary 
processes subject to time variant conditions on the basis of 
process temporal behaviors. The designed CPM strategy is 
applicable to a much broader scope and allows performance 
monitoring at different working points as well as the dynamic 
shifts between different steady statuses. It can work even if 
the process is undergoing some new normal operation 
conditions, resulting in new process statuses and shifts. 
Control performance indices are based on dissimilarity 
analysis of temporal distribution of both long-term 
equilibrium features and specific slow features to quantify 
how fast the process varies. They allow a real-time 
monitoring of control performance whenever a new 
observation is available. An important step is to elaborately 
quantify the changes of temporal variations from both fast 

and slow aspects, which furnishes useful information for 
further controller maintenance. 

2. METHODOLOGY 

2.1  Motivation 
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Fig. 1. Static and temporal distributions for two processes (t1 
and t2 are two static/temporal features). 

For time-variant processes, a frequent change of operating 
condition can be observed. It results in regulation of 
controllers and thus changes of control performance which 
necessitates the performance monitoring at different 
operation points. The proposed method is based on the 
following consideration. (1) Since the changes in system 
performance is reflected from changes in process dynamics, 
we can monitor control performance by evaluating the 
temporal distribution of process data. (2) Considering that the 
temporal distribution is free from specific steady-states, the 
analysis of temporal distribution allows performance 
monitoring at different working points which is separated 
from the static process distribution. (3) Both increased and 
decreased temporal variations point to changes of control 
performance and an elaborate analysis should embrace both 
types of variations for indication of control performance 
changes. 

Based on the above considerations, hence, the control 
performance change can be determined by investigating the 
temporal distribution of process data. The proposed method 
takes into account of changes among the hyper-ellipsoids 
defined by different temporal covariance matrices based on 
extraction of temporal features from nonstationary processes. 
Dissimilarity analysis is conducted to quantify the difference 
of temporal distribution by considering not only the volume 
of the hyper-ellipsoid defined by the temporal features, but 
also the direction of the hyper-ellipsoid. Besides, both the 
increased and decreased temporal variations are evaluated. 
For clarity, a simple illustration is shown in Fig. 1 to show 
distribution difference for static and temporal features (t1 and 
t2) respectively which are extracted from the process data 
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using SFA. Comparing the two processes (F1 and F2), they 
share similar static distribution. In contrast, they have 
different temporal distribution. The temporal variations of F2 
are obviously smaller than those of F1 as indicated by the 
smaller ellipsoids, revealing that F1 is changing slower than 
F2. It means that the control performance may be different 
between the two processes. If the conventional monitoring 
statistics, such as T2 and SPE, are used for monitoring, the 
results will show that F2 lies in the normal region defined 
based on F1, which can not reveal the difference of temporal 
distribution. The critical problem is how to quantify the speed 
that the process varies including both faster and slower 
temporal changes. 

2.2  CA-SFA temporal feature extraction 

Assume that J  process variables are measured online over N 
time instances subject to time variant conditions. It forms the 
regular data analysis unit, denoted as  N JX  , where J is 

the number of variables (i.e., time series), the subscript j 
denotes the variable index, and N is the number of samples. 
The variables are normalized to have zero mean. They 
prepare the normalized data set X . Here for simplicity, the 
centered data sets are denoted by the same symbols. 

First, apply the Augmented Dickey-Fuller (ADF) test for 
stationarity test to separate all nonstationary variables 

 1 1N JX  from those stationary variables  2 2N JX , 

where J=J1+J2. For simplicity, only integrated variables of 
order 1 will be discussed in the paper. 

Second, CA algorithm is applied on the identified 
nonstationary variables 1X . The cointegration model and the 

temporal equilibrium features are calculated, 
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denotes the number of past vectors (i.e., the number of past 
lags) included into the regressor matrix and the optimal value 
can be determined by the Akaike information criterion (AIC). 
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. eB  are the weight matrix for E  calculated 

by performing canonical correlation anlaysis between E  
and F  (Engle and Granger, 1987). The temporal equilibrium 
features ( eT ) are computed for the error matrices, E . Note 

that i j  , , ,, 0e i e jt t  . Besides, they have unit length for 

each temporal feature. Choose Rc most stationary static 
sequences to determine the dominate temporal equilibrium 
features. 

Third, a new analysis unit (  N JX


) is constructed by 

putting the stationary variables 2X  that were separated 

before and the remaining data 1X  together, 1 2= ,  X X X


 . 

1X  is calculated by performing an orthogonal decomposition 

to the data space of 1X  as 1 1 f
X X B  where, f

B  denotes 

the space orthogonal to columns of fB  calculated as 

  1T T
f f f f f

  B I B B B B  and I  is a 1J -dimensional 

identity matrix. 

Fourth, apply SFA algorithm on X


 to get the temporal slow 
features 

   S XV
                                  (2) 

where, the derived slow features S  and the temporal slow 

features S  are directly calculated from the combined data set 

X


. The SFA model V  can carry out dimension reduction 
and denoising simultaneously. All slow features (denoted as 
Rs) are retained here except those with zero variances. 

Based on the low-dimensional CA model and SFA model 
given in the preceding subsection, temporal features are 
extracted with reference to two different types of temporal 
distribution. For temporal equilibrium features( eT ), they can 

reveal one equilibrium relation that extends beyond the 

current time. For temporal slow features ( S ), they can reveal 
the other dynamic relation that stays invariant under different 
normal operating conditions. Control performance indices are 
based on temporal distribution of both long-term equilibrium 
features and specific slow features to quantify how fast the 
process varies. 

2.3  Dissimilarity analysis for temporal features 

According to Fig. 1, it can be seen that different hyper-
ellipsoids correspond to different temporal distribution. 
Meanwhile, the change in the shape of hyper-ellipsoids 
indicates a change in temporal distribution and thus a change 
in control performance, i.e., the process varies either faster or 
slower. Hence, the performance change can be determined by 
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analyzing the dissimilarity among the hyper-ellipsoids 
defined by different temporal covariance matrices. Based on 
the extraction of temporal features, dissimilarity analysis is 
conducted on them to quantify the changes of temporal 
distribution for CPM. 

The analysis focuses on the temporal features extracted from 
two data sets, which share the same number of features but 
may have different number of samples. One data set is 
referred as the reference. The other is the current data set. 
The difference of distributions between the two data sets is 
evaluated for modeling. The details of DISSIM algorithm can 
refer to the work by Zhao et al. (Zhao and Gao, 2017). The 
distribution difference between two data sets which can be 
evaluated by defining the following index D, 
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where, j
c  and j

s  denote the eigenvalues of the covariance 

matrices of the transformed data matrices from two different 

types of temporal features ( eT  and S ) respectively. Dc and 

Ds represent the dissimilarity values for eT  and S  

respectively. The subscript r and c denote the reference data 
and the current one. 

When the two sets share similar temporal distribution, they 
should present similar eigenvalues along the same 
eigenvectors. That is, the eigenvalues must be near 0.5 from 
Eq. (3) along the same directions, and then D should be near 
zero. On the other hand, when data sets temporally distribute 
quite differently from each other, D should be near one. 
Therefore, the index D quantifies the temporal distribution 
dissimilarity between two data sets which covers both 
increased and decreased process dynamics. 

2.4  The outline of the performance monitoring strategy 

Based on the above mentioned temporal feature extraction 
and dissimilarity analysis, the offline modeling and online 
monitoring are depicted as below. 
For offline modeling, two types of temporal features are 
extracted for the training samples. Then use time-window to 
generate multiple temporal data sets from the data, each 
composing of L samples. Then, a reference temporal feature 
set is chosen from the time-windows as the benchmark for 

eT  and S , respectively. Calculate the index D to evaluate the 

distribution difference between the moving windows and the 
reference one, and determine the control limit. 

For on-line process monitoring, first, the new sample newx  is 

normalized using the mean information obtained from 
training data. Then, the nonstationary variables ,1newx  are 

picked up and the temporal equilibrium feature is calculated 
similarly as shown in Eq. (1), 
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The remaining information is calculated and then combined 
with the original stationary variables, ,2newx , 
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Then temporal slow features are extracted from newx


, 

 T T
new news x V

    (6) 

With the new temporal features available, the current moving 
window representing the actual operating status is then 
updated continuously by moving the time-window forward 
step-wise. The dissimilarity index D is calculated for the two 
temporal features respectively to evaluate the temporal 
distribution difference between the actual and the reference 
data sets. Compare the values of two monitoring statistics 
calculated at each time with the predefined control limits 
respectively. If both monitoring statistics stay well within the 
predefined normal regions, the current sample can be deemed 
to be operating according to the reference temporal 
distribution. In contrast, if any of the two indices is 
consistently outside the control limit, the current temporal 
covariance structure is judged to be different from the 
reference one, revealing that the controlled dynamics may 
have changed, resulting in different control performance. 

3. RESULT AND DISCUSSION 

3.1  Three-phase flow facility description 

The Three-phase Flow Facility, which is widely used in 
petrochemical industry, has been designed by Cranfield 
University to provide a controlled and measured flow rate of 
water, oil and air to a pressurized system(Ruiz-Cárcel, 2015). 
For simplicity, the specific description of process mechanism 
is not presented here. Readers can refer to (Ruiz-Cárcel, 2015) 
for more details. 

This process has typical nonstationary characteristics subject 
to time variant conditions by deliberately varying the set 
points of two process inputs including air and water flow rate. 
Three data sets (T1, T2 and T3) are obtained representing 
normal working status under time variant operation 
conditions. In each one of them, the flow conditions were 
changed in order to obtain a good variety of fast and slow 
process changes happening at different operation conditions. 
This provides a good platform to verify our method for full-
condition CPM for nonstationary processes subject to time 
variant conditions. In the present work, 23 measured 
variables which cover CVs and MVs from five control loops 
are used for control performance analysis and monitoring 
purpose. 

3.2  Results and discussions 

First, CA-SFA is used to extract two types of temporal 
features from the first normal data (T1). For temporal 

equilibrium features ( eT ) and temporal slow features ( S ) 

respectively, DISSIM index is calculated to quantify the 
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difference of process dynamics between any two steady 
operation conditions. The temporal features are selected for 
each steady operation condition based on the indication of 
trajectories of air flow rate and water flow rate. The time 
regions in which the trajectories are stable are chosen to 
represent steady operation status. From the first normal data 
set (T1), we can choose nine steady operation statuses. Then 
DISSIM index is evaluated to quantify whether the process is 
varying similarly as shown in Fig. 2 using different temporal 
features respectively. Clearly, some steady statuses are 
changing with a similar speed while others are more different. 
Besides, it is clear that the temporal equilibrium features are 
more similar between different operation conditions, 
revealing that this part of dynamics is more similar. In 
contrast, the temporal slow features are more different 
between different operation conditions, revealing that this 
part of dynamics is quite different from each other. Therefore, 
the temporal slow features more focus on revealing the 
difference of process dynamics after the extraction of 
temporal equilibrium features. 
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Fig. 2. DISSIM index between any two operation conditions 
for (a) temporal equilibrium features and (b) temporal slow 
features. 
Besides the offline control performance comparison, online 
performance monitoring is conducted based on the two types 
of temporal features. Using the eighth operation condition as 
the reference one, DISSIM monitoring model is developed 
based on two types of temporal features in which the length 
of moving window is set to be 50 and different moving 
windows are available with the new samples updated along 
the time. Then the monitoring model is used for online 

monitoring. The DISSIM monitoring results are calculated 
and shown in Fig. 3 for two types of temporal features 
extracted from T1 data set. It is clear that the temporal 
equilibrium features are more stable among different 
operation conditions than temporal slow features. For 
temporal equilibrium features, the results indicate that the 
process dynamics do not change significantly since all 
DISSIM monitoring values stay well within the normal 
region. For temporal slow features, the process dynamics are 
more different along time among different operation 
conditions, in particular for the switchings between different 
operation conditions. 
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Fig. 3. Online CPM for training data (T1) based on two types 
of temporal features. 
Then the designed CA-SFA model is used to extract temporal 
features for testing data. For T2 data set, after the extraction 
of two types of temporal features, the DISSIM index is online 
calculated by comparing the current moving window with the 
benchmark. As shown in Fig. 4, the temporal equilibrium 
features indicate that the control performance has changed 
more or less before 3500th sample. For the temporal slow 
features, the process dynamics have changed significantly 
with DISSIM index out of control throughout the process. 
Therefore, even for normal process with multifarious steady 
states and dynamic switchings, the control performance may 
change owing to the regulation of controller. For the third 
normal data set (T3), the similar phenomenon is observed 
which is not shown here for brevity. 

Then one fault case is chosen to present how the control 
performance changes after the disturbances happen. For Fault 
#1 (Case #1), the operation conditions are time variant for 
both water and air flow rates and the fault starts from the 
1566th sample. Using the proposed method, the temporal 
variations are significantly disturbed as shown in Fig. 5. Both 
the dynamic equilibrium relation and the dynamic slow 
relation are broken. In particular, the DISSIM index shows a 
gradual increase and goes out of control after the 3000th 
sample. It may result from the effects of some controllers 
which are working to bring the process back to normal. In 
contrast, using the conventional monitoring statistics, like T2 
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and SPE, the temporal variations did not indicate significant 
changes as shown in our previous work (Zhao and Huang, 
2017). It may result from the fact that only the increased 
variations were counted for monitoring. Using DISSIM index 
for temporal features, the inherent temporal information can 
be elaborated considering both fast and slow temporal 
changes which indicate that the controllers begin to work, 
resulting in changes of control performance. 
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Fig. 4. Online CPM for testing data (T2) based on two types 
of temporal features. 
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Fig. 5. Online CPM for one fault case (data set 1.1) based on 
two types of temporal features 
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