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Abstract: The generalized pooling problem is involved in many planning and scheduling
problems in the petrochemical industry. Compared to the standard pooling problem where
the blenders (or pools) are not allowed to be connected to one another, the generalized pooling
problem has a more complex network structure and allows more types of problem formulations.
The state-of-the-art generalized pooling formulations adopt a multi-commodity flow (MCF)
strategy that was first proposed by Alfaki and Haugland (2013a) and proved to be stronger than
the classical p-formulation. This paper proposes two new MCF formulations for the generalized
pooling problem, using mixing and split fractions of blenders rather than the commodity flow
fractions. The case study results show that, for some cases, the proposed formulations perform
better than the existing MCF formulations, but none of the formulations dominates others for
all cases. The results also show that formulations which have similar sizes and similarly tight
linear programming relaxations may have dramatically different performance.

Keywords: Pooling problem; Multi-commodity flow; Global optimization; Blending; Network
flow optimization.

1. INTRODUCTION

The pooling problem is a special type of network flow
optimization problem, which was originally studied for
gasoline blending in oil refineries (Haverly (1978)). In a
pooling network, flows from different supply tanks are
blended at blenders (or pools) and then sent to demand
tanks to form final products. Since blending operation
changes the flow qualities and it needs to be described
with bilinear functions, the pooling problem is a nonconvex
nonlinear programming (NLP) problem. The generalized
pooling problem is an extension of the standard pooling
problem where at least two blenders are connected to each
other. The pooling problem has been recognized as an
important class of optimization problems in the petro-
chemical industry (Bodington and Baker (1990)), because
blending appears in many petrochemical processes.

Due to the nonconvexity of the pooling problem, the
pooling problem is usually solved by a branch-and-bound
based global optimization method, and the efficiency of the
branch-and-bound search is known to be largely dependent
on how tight the linear programming (LP) relaxation of
the formulation is. Many pooling problem formulations
have been studied in the literature (Gupte et al. (2017)).
Well-known formulations for the standard pooling problem
include P-, Q-, PQ-, and TP- formulations (Tawarmalani
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and Sahinidis (2002), Alfaki and Haugland (2013b)). The
P-formulation models the blending operation using the
flow rates and the flow qualities, while the Q-formulation
replaces the flow qualities with the fractions of flows
that come from the supply tanks. The PQ-formulation
comprises the Q-formulation and extra strengthening con-
straints, and it is known to be stronger than the P- and
Q-formulations. The TP-formulation is similar to the PQ-
formulation but it uses the fractions of flows that go to the
demand tanks. The TP-formulation sometimes performs
better than the PQ-formulation and sometimes does not.

Recently, more attention has been paid to strong formula-
tions of the generalized pooling problem. Alfaki and Haug-
land (2013a) proposed a multi-commodity flow (MCF) for-
mulation, where the material in a supply tank is viewed as
a monolithic commodity rather than a mixture of multiple
components. They have shown that the MCF formulation
reduces to the PQ-formulation for the standard pooling
problem. Based on a similar idea, Boland et al. (2016) pro-
posed a different MCF formulation that extends the TP-
formulation for the generalized pooling problem, where a
commodity is defined to be the product in a demand tank.
They also proposed some other MCF formulations that
combine the supply commodities, demand commodities,
and commodity paths in different ways, and in their ex-
tensive case studies the supply commodity and the demand
commodity based formulations performed better than the
other formulations. On the other hand, a rather different
modeling strategy has been used in the field of process sys-
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tems engineering (e.g., Quesada and Grossmann (1995)).
In this strategy, the blending operation is modeled with
individual components in the flows and the blender split
fractions. Based on this strategy, Lotero et al. (2016) pro-
posed a multi-commodity based split fraction formulation
for multi-period blending problem, and they proved that
this formulation leads to tighter LP relaxations than the
component based split fraction formulation. Note that the
multi-period blending problem in their work differs from
the generalized pooling problem considered in this paper,
because it considers the fractions of tank inventories rather
than the fractions of tank throughputs.

This paper is concerned with strong formulations for the
generalized pooling problem. There are two major contri-
butions of the paper. One contribution is the proposal of
two new MCF formulations, where the first one is similar
to the one proposed by Lotero et al. (2016) for multi-period
blending, and the second one is a new formulation based
on mixing fractions and demand commodities. The other
contribution is to show through case studies that, the two
new MCF formulations sometimes perform better than the
MCF formulations in the literature, but no formulation
is always better than the others. In addition, the formu-
lations can have significantly different performance even
when their sizes are similar and their LP relaxations (at
root nodes) are similarly tight.

The remaining part of the paper is organized as follows:
Section 2 provides a descriptive problem statement with
a list of symbols. Section 3 introduces two representative
MCF formulations in the literature. Section 4 proposes
two new MCF formulations that use blender mixing and
split fractions, respectively. Section 5 compares the perfor-
mance of the four MCF formulations through three case
study problems. The paper ends with concluding remarks
in Section 6.

2. PROBLEM STATEMENT

The generalized pooling network can be viewed as a acyclic
graph G = (N,A). The set of nodes N consists of three
subsets S, B, D, which include supply tanks, blenders,
and demand tanks, respectively. The set of arcs A includes
all allowable connections between two tanks. In operation
of the pooling network, material flows leave the supply
tanks, and they are blended once or multiple times before
entering the demand tanks. The goal of optimization is to
determine the flow rates along all arcs of the network such
that the total profit is maximized. Since the operation is
assumed to be at a steady state, the inventory levels of
the tanks are not considered in the problem. A general
descriptive optimization formulation is given below:

min. Negative profit
s.t. (1) Flow quality change through blenders;

(2) Mass balance around blenders;
(3) Bounds on product qualities;
(4) Bounds on total flows going through tanks;
(5) Bounds on individual variables.

In the above formulation, constraint (1) restricts how flow
qualities change through blending; constraint (2) enforces
mass balance for the inlet flows and outlet flows of each
blender; constraint (3) observes quality specifications of

Table 1. Notation for the pooling formulations

Sets

S Set of supply tanks
B Set of blenders
D Set of demand tanks
N Set of all tanks in the network
A Set of allowable arcs in the network
K Quality of interest
Si Set of supply commodities in tank i
Di Set of demand commodities in tank i

Parameters

βs Unit cost of material in supply tank s
βd Unit price of product in demand tank d
λs,k Quality k in supply tank s
λUd,k Upper bound on quality k for demand tank d

µUi Upper bound on capacity of tank i

Variables

fi,j Flow rate along arc (i, j)
fi,j,l/zi,j,l Commodity flow l along arc (i, j)
zi,b,j,l Commodity flow l along path (i, b, j)
xi,l/xj,l Commodity l fraction of throughput of tank i/j
xib/xbj Mixing/split fraction at blender b

products in the demand tanks (such as concentration of a
key chemical component); constraint (4) represents bounds
on total flow rates through each tank, which result from
the availability of materials, the blending capacity, and
the costumer demands; constraint (5) imposes bounds on
individual variables, such as non-negativity bounds of flow
rates. Table 1 shows a list of symbols are will be used for
the mathematical formulations in the subsequent sections.

The existing generalized pooling formulations differ pri-
marily in the way to model constraint (1) (and accordingly
constraint (2) as well). The classical P-formulation explic-
itly includes flow qualities as variables, and the change
of flow qualities can be described by bilinear equations
involving flow qualities and flow rates. The MCF formu-
lations use a different idea, where the flow qualities are
not defined as variables explicitly. In these formulations,
each physical flow is logically disaggregated into several
parts, and each part is called a commodity flow that is
defined to originally come from a supply tank or eventually
go to a demand tank. The quality of a physical flow can
be calculated from the composition of the flow (in terms
of the commodities). It has been proven that the MCF
formulations lead to tighter LP relaxations than the P-
formulation and therefore favor branch-and-bound based
global optimization (Alfaki and Haugland (2013a), Boland
et al. (2016)).

3. TWO REPRESENTATIVE MCF FORMULATIONS
FROM THE LITERATURE

This section introduces two representative MCF formu-
lations, proposed by Alfaki and Haugland (2013a) and
Boland et al. (2016) respectively. They are called supply
based MCF formulation (SMCF) and demand based MCF
formulation (DMCF) in this paper. According to the ex-
tensive simulations studies by Boland et al. (2016), SMCF
and DMCF formulations usually outperform other MCF
formulations in the literature.

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

163



b  fib  
fbj

 xbl

(Fraction of the throughput 
of blender b that eventually 
goes to demand l)  

(b) The DMCF formulation strategy 

b  fib  
fbj

 xbl

(Fraction of the throughput 
of blender b that originally 
comes from supply l) 

(a) The SMCF formulation strategy 

(ith inlet flow) (jth outlet flow) 

(ith inlet flow) (jth outlet flow) 

Fig. 1. Illustration of SMCF and DMCF strategies

3.1 The Supply Based MCF Formulation

In the SMCF formulation, a commodity flow l in a physical
flow is the part of the flow that originally comes from
supply tank l (∈ S), and it is called supply commodity
flow in the paper for convenience. The ratio of the supply
commodity flows to the physical flow are defined as frac-
tional variables, and the composition of a physical flow
can be calculated from the supply commodity fractions
in that flow. Obviously, the supply commodity fractions
in flow (i, j) equal to those in tank i. For a blender, the
inlet flows may have different supply commodity fractions
but the outlet flows must have the same fractions to each
other. This strategy to model the flow composition change
is illustrated by Figure 1(a). The mathematical SMCF
formulations is shown below:

Objective:

min
∑

(s,j)∈A

βsfsj −
∑

(i,d)∈A

βdfid (SMCF-1)

Supply commodity fraction:

zijl = fijxil, ∀(i, j) ∈ A, l ∈ Si (SMCF-2)∑
l∈Sb

xbl = 1, ∀b ∈ B (SMCF-3)

Mass balance:∑
(i,b)∈A

zibl =
∑

(b,l)∈A

zbjl, ∀b ∈ B, l ∈ Sb (SMCF-4)

Quality bounds:∑
(i,d)∈A

∑
l∈Si

zidlλsk ≤
∑

(i,d)∈A

∑
l∈Si

zidlλ
U
dk, ∀d ∈ D, k ∈ K

(SMCF-5)

Node capacity:∑
(i,j)∈A

fij ≤ µU
i , ∀i ∈ N\D (SMCF-6)

∑
(i,d)∈A

fid ≤ µU
d , ∀d ∈ D (SMCF-7)

Variable bounds:

0 ≤ xbl ≤ 1, ∀b ∈ B, l ∈ Sb (SMCF-8)

fij ≥ 0, ∀(i, j) ∈ A (SMCF-9)

Strengthening constraints:∑
l∈Sb

zbjl = fbj , ∀b ∈ B, (b, j) ∈ A (SMCF-10)

∑
(b,j)∈A

zbjl ≤ µU
b xbl, ∀b ∈ B, l ∈ Sb (SMCF-11)

In the SMCF formulation, xil denotes the fraction for
supply commodity l in tank i. The bilinear equation
(SMCF-2) enforces the same xil for the outlet flows of
tank i. When i = s (i.e., i is a supply tank), xsl is a
parameter, which is 1 when l = s and 0 when l 6= s;
in this case, (SMCF-2) reduces to a linear equation. If the
problem contains only one supply tank (i.e., |S| = 1), then
the problem reduces to a LP problem. The unity equation
(SMCF-3) states the fact that any part of a flow through
a blender must come from one of the supply tanks.

The strengthening constraints (SMCF-10) and (SMCF-11)
are obtained via the reformulation-linearization technique
(RLT) (Sherali and Alameddine (1992)). They are redun-
dant for modeling the problem but can tighten the LP
relaxation of the formulation for efficient global optimiza-
tion. Specifically, (SMCF-10) comes from multiplying both
sides of (SMCF-3) by fbj , and (SMCF-11) from multiply-
ing both sides of (SMCF-6) by xbl.

3.2 The Demand Based MCF Formulation

While SMCF is an extension of the PQ-formulation for the
generalized pooling problem, DMCF is an extension of the
TP-formulation. In the DMCF formulation, a commodity
flow l is defined to be the part of a flow that eventually
goes to demand tank l (∈ D), and for convenience,
it is called a demand commodity flow in this paper.
Consequently, the ratio of the demand commodity flows
to the physical flow are expressed as fractional variables.
In contrast to the supply commodity fractions, the demand
commodity fractions in flow (i, j) equal to those in tank
j. For a blender, the inlet flows must have the same
demand commodity fractions but the outlet flows may
have different fractions. This strategy is illustrated by
Figure 1(b), and the DMCF formulation is shown below:

Objective:

min
∑

(s,j)∈A

βsfsj −
∑

(i,d)∈A

βdfid (DMCF-1)

Demand commodity fraction:

zijl = fijxjl, ∀(i, j) ∈ A, l ∈ Dj (DMCF-2)∑
l∈Db

xbl = 1, ∀b ∈ B (DMCF-3)

Mass balance:∑
(i,b)∈A

zibl =
∑

(b,j)∈A

zbjl, ∀b ∈ B, l ∈ Db (DMCF-4)

Quality bounds:∑
s∈S

∑
(s,j)∈A

zsjlλsk ≤
∑
s∈S

∑
(s,j)∈A

zsjlλ
U
lk, ∀l ∈ D, k ∈ K

(DMCF-5)
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Node capacity:∑
(i,j)∈A

fij ≤ µU
j , ∀i ∈ N\D (DMCF-6)

∑
(i,d)∈A

fid ≤ µU
d , ∀d ∈ D (DMCF-7)

Variable bounds:

0 ≤ xbl ≤ 1, ∀b ∈ B, l ∈ Db (DMCF-8)

fij ≥ 0, ∀(i, j) ∈ A (DMCF-9)

Strengthening constraints:∑
l∈Db

zibl = fib, ∀b ∈ B, (i, b) ∈ A (DMCF-10)∑
(i,b)∈A

zibl ≤ µU
b xbl, ∀b ∈ B, l ∈ Db (DMCF-11)

Here xil stands for the fraction for demand commodity
l in tank i. When i = d, xdl is a parameter, which is 1
when l = d and 0 when l 6= d, and the bilinear equation
(DMCF-2) reduces to a linear equation. The strengthen-
ing constraints are obtained by the RLT technique from
constraints (DMCF-3) and (DMCF-6).

4. THE NEW MCF FORMULATIONS

The new MCF formulations are motivated by the multi-
component flow strategy that was originally proposed in
the process systems engineering community (Quesada and
Grossmann (1995)). The main idea of this strategy is to
disaggregate a physical flow into flows of the involved
chemical components. At a blender, all inlet chemical
component flows are split to different outlets with the
same split fractions. Lotero et al. (2016) proposed a similar
strategy that disaggregate the physical flows into supply
commodity flows rather than chemical component flows,
and applied the strategy to multi-period blending (where
the split fractions are fractions of tank inventories rather
than the tank throughputs). In this section, the formula-
tion by Lotero et al. (2016) is modified for the generalized
pooling problem, and the resulting formulation is called
the supply and split fraction (SSF) based formulation.
After that, a new formulation is proposed based on the
demand commodity flow and the mixing fractions at the
blenders. This formulation is called demand and mixing
fraction (DMF) based formulation.

4.1 The Supply and Split Fraction Based Formulation

The SSF formulation involves the supply commodity flows
along all arcs but not the physical flows (except for the
supply tank outlet flows that contain only one commodity
by definition). In order to model the flow composition
change, the split fractions of the blenders xbj are defined.
This strategy is illustrated by Figure 2(a), and the SSF
formulation is shown below:

Objective:

min
∑
s∈S

∑
(s,j)∈A

βsfsj −
∑
d∈D

∑
(i,d)∈A

∑
l∈Sd

βdfidl (SSF-1)

Blender split fraction:

zibjl = fiblxbj , ∀b ∈ B, (i, b), (b, j) ∈ A, l ∈ Sb (SSF-2)

b  fibl  
fbjl

 
xbj

Split fraction for 
the jth outlet flow 

(a) The SSF formulation strategy 

Inlet supply 
commodity flows 

b  fibl  
fbjl

 xib
Mixing fraction for 
the ith inlet flow  

(b) The DMF formulation strategy 

Outlet supply 
commodity flows 

Inlet demand 
commodity flows 

Outlet demand 
commodity flows 

Fig. 2. Illustration of SSF and DMF strategies∑
(b,j)∈A

xbj = 1, ∀b ∈ B (SSF-3)

Mass balance:

fbjl =
∑

(i,b)∈A

zibjl, ∀b ∈ B, (b, j) ∈ A, l ∈ Sb (SSF-4)

Quality bounds:∑
(i,d)∈A

∑
l∈Si

fidlλdk ≤
∑

(i,d)∈A

∑
l∈Si

fidlλ
U
dk, ∀d ∈ D, k ∈ K

(SSF-5)

Node capacity:∑
(i,j)∈A

∑
l∈Si

fijl ≤ µU
i , ∀i ∈ N\D (SSF-6)

∑
(i,j)∈A

∑
l∈Si

fidl ≤ µU
d , ∀d ∈ D (SSF-7)

Variable bounds:

0 ≤ xbj ≤ 1, ∀b ∈ B, (b, j) ∈ A (SSF-8)

fijl ≥ 0, ∀(i, j) ∈ A, l ∈ Si (SSF-9)

Strengthening constraints:∑
(b,j)∈A

zibjl = fibl, ∀b ∈ B, (i, b) ∈ A, l ∈ Sb (SSF-10)

∑
(i,b)∈A

∑
l∈Si

zibjl ≤ µU
b xbj , ∀b ∈ B, (b, j) ∈ A (SSF-11)

In the above formulation, the bilinear equation (SSF-2)
enforces the same split fraction for all inlet commodity
flows, and zibjl actually represents the rate of demand
commodity l that comes from tank i to tank j through
blender b. (SSF-2) states that the sum of the split fractions
is one. The strengthening constraints are obtained from
constraints (SSF-3), (SSF-6).

4.2 The Demand and Mixing Fraction Based Formulation

The DMF formulation uses the demand commodity flow
rather than the supply commodity flow. Note that at a
blender, the fraction of an inlet demand commodity flow
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that goes to an outlet does not equal to the blender split
fraction. For example, the fraction of an inlet demand
commodity flow l that goes to an outlet is 0 if the outlet
is not on a path to demand tank l, no matter what the
split fraction for the outlet is. On the other hand, the
inlet demand commodity flows contribute to any outlet
demand commodity flows with the same fractions, which
equal to the mixing fractions of the inlets. For example,
assume xib to be the fraction for the ith inlet flow in the
total inlet flow. Then for any outlet demand commodity
flow fbjl (i.e., the part of outlet flow fbj that eventually
goes to demand tank l), xib of it comes from the ith inlet.
This strategy is illustrated in Figure 2(b), and the DMF
formulation is as follows:

Objective:

min
∑
s∈S

∑
(s,j)∈A

∑
l∈Ds

βsfsjl −
∑
d∈D

∑
(i,d)∈A

βdfid (DMF-1)

Blender mixing fraction:

zibjl = fbjlxib, ∀b ∈ B, (i, b), (b, j) ∈ A, l ∈ Db (DMF-2)∑
(i,b)∈A

xib = 1, ∀b ∈ B (DMF-3)

Mass balance:

fibl =
∑

(b,j)∈A

zibjl, ∀b ∈ B, ∀(i, b) ∈ A, l ∈ Db (DMF-4)

Quality bounds:∑
s∈S

∑
(s,j)∈A

fsjlλsk ≤
∑
s∈S

∑
(s,j)∈A

fsjlλ
U
sk, ∀l ∈ D, k ∈ K

(DMF-5)

Node capacity:∑
(i,j)∈A

∑
l∈Dj

fijl ≤ µU
i , ∀i ∈ N\D (DMF-6)

∑
(i,d)∈A

∑
l∈Dd

fidl ≤ µU
d , ∀d ∈ D (DMF-7)

Variable bounds:

0 ≤ xib ≤ 1, ∀b ∈ B, (i, b) ∈ A (DMF-8)

fijl ≥ 0, ∀(i, j) ∈ A, l ∈ D (DMF-9)

Strengthening constraints:∑
(i,b)∈A

zibjl = fbjl, ∀b ∈ B, (b, j) ∈ A, l ∈ Db (DMF-10)

∑
(b,j)∈A

∑
l∈Db

zibjl ≤ µU
b xib, ∀b ∈ B, (i, b) ∈ A (DMF-11)

The above strengthening constraints are obtained from
constraints (DMF-3), (DMF-6). Note that the left-hand-
side of quality constraint (DMF-5) represents the total
quality k (contributed by demand commodities from all
supply thanks) entering demand tank l, and the right-
hand-side of the constraint represents the maximum qual-
ity k allowed to enter the same tank.

5. SIMULATION STUDIES

The purpose of the simulation study is to demonstrate
that the four MCF formulations, especially the last three
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that have not attracted much attention form the process
systems engineering community, have significant compu-
tational advantages for certain problem instances. Due
to the page limit of the paper, only three examples are
presented and discussed here. Examples 1 and 2 are de-
picted in Figures 3 and 4 respectively, where the values
of parameters used are also labeled. Example 3 is adapted
from a natural gas production network operation problem
that was originally developed in Selot (2009). The basic
problem information can be found in Li et al. (2011), but
in addition to CO2, five more components are considered,
including N2, C2 , C3, C4, C5+. The quality constraints are
the upper bounds of the six components, given in Table 4.1
in Selot (2009). In addition, gas price (i.e., βd) is changed
into 0.00536417 ($/mol) and the gas costs (i.e., βs) are
also updated and shown in Table 2.

The case studies were performed on a virtual machine with
a 3.40 GHz CPU, 4GB memory, and Ubuntu 16.02 operat-
ing system. The case study problems were formulated on
GAMS 24.8.5 (Bussieck and Meeraus (2004)) and solved
by BARON 17.4.1 Tawarmalani and Sahinidis (2005). For
all cases, the relative termination tolerance is 10−3.

Table 3 provides the topological information, number of
qualities, and the optimal objective values of the example
problems (where | · | denotes the cardinality of a set). The
computational results with the four MCF formulations are
shown in Table 4, from which we can have the following
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Table 2. Cost (βs) information for Example 3

Gas Field D35 BY SC E11 F6 F23SW
βs ($/mol) 0.001 0.001 0.001 0.003 0.001 0.002

Gas Field F23 BN B11 HL SE M3
βs ($/mol) 0.003 0.002 0.004 0.001 0.002 0.001

Gas Field M4 M1 JN
βs ($/mol) 0.001 0.002 0.001

Table 3. Case study problem characteristics

|S| |B| |D| |A| |K| Obj

Ex. 1 5 3 3 13 4 -549.8
Ex. 2 6 3 4 16 4 -570.7
Ex. 3 15 13 3 34 6 -22.9924

Table 4. Results for the four MCF formulations

Cases Formulations Bilinear equ. Time Rel. gap at
z f x (s) root node

Ex. 1 SMCF 25 8 10 24.2 55.67%
DMCF 19 7 8 1.1 55.74%
SSF 59 23 8 3.5 55.74%
DMF 53 22 7 1.2 55.74%

Ex. 2 SMCF 48 10 15 4.7 96.73%
DMCF 28 8 10 20.6 98.22%
SSF 132 39 10 314.5 98.22%
DMF 104 36 8 0.3 98.11%

Ex. 3 SMCF 79 14 58 31.8 4.46%
DMCF 60 30 23 2.1 1.11%
SSF 186 93 8 1.0 5.32%
DMF 81 29 28 23.7 5.32%

interesting observations. First, none of the formulations
dominates the others for all examples. Second, for certain
example (i.e., Example 2), the solution times with different
formulations can differ by three orders of magnitude. This
indicates the importance of formulation selection for the
generalized pooling problem, even when the formulations
to be selected from are all believed to be stronger than
the P-formulation. Third, the number of bilinear terms
and/or the number of variables involved in the bilinear
terms do not tell whether the formulation is favorable.
For example, the two new MCF formulations have more
bilinear terms for all the examples, but they do outperform
the SMCF and DMCF formulations significantly for some
of the examples. Finally, the tightness of the LP relaxation
does not tell whether the formulation is favorable. In Ex-
amples 1 and 2, the four formulations have similar relative
optimality gaps at the root node (in the branch-and-bound
tree), but their performance can be dramatically different.
In Example 3, the best formulation actually has the largest
relative gap at the root node.

6. CONCLUDING REMARKS

According to the best of our knowledge, the DMCF, SSF,
DMF formulations have not attracted much attention for
the generalized pooling problem within the process sys-
tems engineering community. The case study results indi-
cate that one may consider using these formulations when
the classical P-formulation and the SMCF formulation do

not work well. The case study results also show that,
the LP relaxation and the problem size, which are widely
accepted criteria to assess the generalized pooling formula-
tion, are not the only factors determining the performance
of the formulation. A rigorous theoretical explanation for
our findings is an open question for the future research.

REFERENCES

Alfaki, M. and Haugland, D. (2013a). A multi-commodity
flow formulation for the generalized pooling problem.
Journal of Global Optimization, 56(3), 917–937.

Alfaki, M. and Haugland, D. (2013b). Strong formulations
for the pooling problem. Journal of Global Optimization,
56(3), 897–916.

Bodington, C.E. and Baker, T.E. (1990). A history of
mathematical programming in the petroleum industry.
Interfaces, 20(4), 117–127.

Boland, N., Kalinowski, T., and Rigterink, F. (2016).
New multi-commodity flow formulations for the pooling
problem. Journal of Global Optimization, 66(4), 669–
710.

Bussieck, M.R. and Meeraus, A. (2004). General Alge-
braic Modeling System (GAMS), 137–157. Springer US,
Boston, MA.

Gupte, A., Ahmed, S., Dey, S.S., and Cheon, M.S. (2017).
Relaxations and discretizations for the pooling problem.
Journal of Global Optimization, 67(3), 631–669.

Haverly, C.A. (1978). Studies of the behaviour of recursion
for the pooling problem. ACM SIGMAP Bulletin, 25,
29–32.

Li, X., Armagan, E., Tomasgard, A., and Barton, P.I.
(2011). Stochastic pooling problem for natural gas
production network design and operation under uncer-
tainty. AIChE Journal, 57(8), 2120–2135.

Lotero, I., Trespalacios, F., Grossmann, I.E., Papageor-
giou, D.J., and Cheon, M.S. (2016). An MILP-MINLP
decomposition method for the global optimization of a
source based model of the multiperiod blending prob-
lem. Computers & Chemical Engineering, 87(Supple-
ment C), 13 – 35.

Quesada, I. and Grossmann, I. (1995). Global optimization
of bilinear process networks with multicomponent flows.
Computers & Chemical Engineering, 19(12), 1219 –
1242.

Selot, A. (2009). Short-term Supply Chain Management
in Upstream Natural Gas System. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Sherali, H.D. and Alameddine, A. (1992). A new
reformulation-linearization technique for bilinear pro-
gramming problems. Journal of Global Optimization,
2(4), 379–410.

Tawarmalani, M. and Sahinidis, N.V. (2002). Convexifi-
cation and global optimization in continuous and mixed-
integer nonlinear programming. Kluwer Academic Pub-
lishers, Dordrecht, the Netherlands.

Tawarmalani, M. and Sahinidis, N.V. (2005). A polyhedral
branch-and-cut approach to global optimization. Math-
ematical Programming, 103(2), 225–249.

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

167


