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Abstract: When data are collected sequentially from a chemical process, consecutive observations are 

correlated resulting in serial dependence. Such dependence (or autocorrelation) would violate the 

assumption of sample independence when carrying out most statistical process control schemes, such as 

Shewhart charts for individual measurements. In this paper, a model-free Shewhart individuals control 

chart for autocorrelated data is proposed to reduce/eliminate the effect of autocorrelation on chart 

performance. The modified Shewhart chart, based on the true mean and variance, is used as the 

benchmark chart for comparison. A single skipping chart (SSC) and a combined skipping chart (CSC) are 

established in the proposed Shewhart control scheme. The control performances of CSC, modified 

Shewhart chart and conventional Shewhart chart are compared in terms of their mean shift detection 

ability using an AR (1) process. The advantages of CSC are illustrated as a model-free approach and 

having a performance consistent with that of the benchmark, modified Shewhart chart. A practical 

application of CSC is illustrated using data from an industrial chemical process. 

Keywords: Shewhart chart; Autocorrelation; Skipping strategy; Control performance; Average run length; 

AR(1) process; Industrial application. 



1. INTRODUCTION 

In chemical process industries, Statistical Process Control 

(SPC) is widely used to implement online process monitoring 

strategies that ensure quality control over key process 

variables. The primary objective of SPC is to reduce process 

variability, which can manifest itself in the individual 

observations of quality characteristics (Montgomery, 2007). 

Traditional control charts for a single quality characteristic 

(i.e., the monitored process variable) such as the Shewhart, 

cumulative sum (CUSUM) and exponential weighted moving 

average (EWMA) charts, are often implemented based on the 

assumption that measured data are identically and 

independently distributed (iid). In practice, however, variable 

measurements are collected automatically at high sampling 

rates and their consecutive values are serially correlated, 

invalidating the independence assumption. Under these 

circumstances, the traditional control charts would find it 

difficult to distinguish between the common cause and the 

special cause (Alwan & Roberts, 1988), producing a large 

number of false alarms and compromising effectiveness of 

the charts for fault detection (Lin et al., 2012; Reynolds & Lu, 

1997). The detection capability and run length distributions 

of traditional control charts for autocorrelated data sets have 

been discussed in previous studies (Alwan, 1991; Prybutok et 

al., 1997; Knoth & Schmid, 2004; Padgett et al., 1992; 

Wardell et al., 1994; Schmid & Schone, 1997; Harris & Ross, 

1991; Johnson & Bagshaw, 1974). A common conclusion is 

that the traditional control limits established for independent 

data are no longer suitable when data is serially correlated. 

As individual measurements are common in chemical process 

systems, individuals control charts are more practical than 

sample control charts. This paper focuses on a model-free 

control scheme based on the Shewhart individuals chart 

(Montgomery, 2007) to improve shift-detection ability when 

data is serially correlated. The remainder of the paper is 

organized as follows: We introduce the time series models, 

especially autoregressive (AR) models, briefly in Section 2. 

The conventional Shewhart and the modified Shewhart chart 

are reviewed in Section 3. A model-free Shewhart control 

scheme is proposed to accommodate autocorrelation in the 

data using a skipping strategy. The methodology is outlined 

in Section 4 and two control charts, i.e., combined skipping 

chart (CSC) and single skipping chart (SSC), are designed. In 

the following section, the performance of the proposed 

Shewhart control chart is illustrated using simulated AR (1) 

process data and a practical application is discussed using an 

industrial chemical process. Finally, conclusions are drawn 

and possible future directions are outlined. 

2. AUTOCORRELATED PROCESS DATA 

Traditional control charts operate with the assumption that 

data in statistical control is collected from a random process, 

which means that the observations of quality characteristics 

are serially independent. An in-control observation 
t

x  from a 

random process can be represented as 
t t

x    , where   

is a constant and 
t

  is a sequence of random errors with 

mean 0 and variance 
2

0
 . Time series from this model have a 

random variation around a constant mean,  . This 

assumption, however, is rarely met in practical industrial 

processes and the observed process variables often exhibit 

serial dependence, a.k.a. autocorrelation. Due to system 
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dynamics and sampling frequency, it is reasonable that a real 

process is autoregressive, i.e., an observation of a process 

variable is correlated with previous observation(s) (Pan and 

Jarrett, 2012). An autoregressive model can then be used as a 

representation of a certain set of actual observed series (Box 

et al., 2015, Montgomery et al., 2015). If an observation at 

time t is only correlated with the last observation at time t-1, 

data can be represented as a “first-order autoregressive 

model” (denoted as AR (1)). An AR (1) time series can be 

generated from the following model: 
1t t t

x x  


   . 

Here,  , autocorrelation coefficient, can be interpreted as the 

carryover effect of the last observation on the current 

observation. 

Autocorrelation function (ACF) (Box et al., 2015, Bisgaard 

and Kulahci (2011)) is used in this work to identify the 

“amount” of autocorrelation in a time series. The 

autocorrelation function, i.e., the correlation between 
t

x and 

x
t+k

 of a stationary process is defined as, 

r
k
=
E x

t
-m( ) xt+k -m( )é

ë
ù
û

s 2
 . 

where m  and s 2  are the mean and variance of the stationary 

time series 
t

x . Similarly the sample ACF is given as, 
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where x  is the sample mean of the stationary time series, x
t
.  

3. SHEWHART INDIVIDUALS CONTROL CHART 

3.1 Conventional Shewhart Individuals Chart 

The Shewhart chart for individual observations is commonly 

used in process industries. After estimating the process mean 

and standard deviation, the control limits of Shewhart 

individuals chart are calculated with an expected false alarm 

rate. The lower control limit is LCL x c S    and upper 

control limit is UCL x c S   , where x  and S  are the 

estimated mean and standard deviation, respectively. When 

3c  , 3-sigma limit is used, which corresponds to a false 

alarm rate of 0.0027 under the normality assumption. 

As mentioned by Li (2004), the Shewhart individuals chart is 

robust with respect to serial dependence when the sample 

standard deviation is calculated from a long series of 

observations. This was also shown by Alwan (1991) who 

tested the influence of data autocorrelation on the Shewhart 

individuals chart and using 3-sigma control limits, he noted 

minimal false alarms in the chart for autocorrelated data. 

Apart from using the false alarm rate and the run lengths for 

the whole series, run rules are also often used in conjunction 

with the Shewhart control chart to identify abnormality of 

short sequences. The commonly recommended one, the 

Western Electric rules (Western Electric Company, 1956) 

have proven to be ineffective for non-random data, with 

increasing false alarm rates. As a chart performance measure, 

run length is defined as the number of samples before the 

chart gives the first signal. The average run length (ARL) 

under normal process conditions is denoted as ARL0, while 

that under abnormal process operation is represented by 

ARL1. Knoth and Schmid (2004) compared the ARLs of 

Shewhart, EWMA and CUSUM charts for individual 

observations. They found that the Shewhart individuals chart 

is more robust to low and moderate autocorrelation in data 

than the other two charts in terms of ARL. As revealed in the 

above tests on individuals Shewhart chart, data 

autocorrelation does not theoretically influence the false 

alarm rate and the run length of signal is less likely to be 

highly influenced by low to moderate autocorrelation. 

However, in practice, one does not use a long series of 

measurements to estimate process mean and standard 

deviation if data autocorrelation is ignored. In that case, the 

control limits calculated may lead to considerable false 

alarms and make control chart misleading, when process data 

is highly autocorrelated. 

3.2 Modified Shewhart Chart 

If the process model is known or can be estimated, modified 

control limits using a model-based mean and standard 

deviation can be used. The modified chart for autocorrelated 

data is expected to have a larger or equal ARL0 compared to 

the conventional chart for independent data, when they use 

the same critical value c (Knoth and Schmid, 2004).   

For an AR(1) process 
1t t t

x x  


   , the true mean 

1


  

and standard deviation 0

2
1




 are used in the 

modified Shewhart chart, where 
2

0
  is the variance of error 

t
 . It should be noted that, in reality, the modified chart will 

suffer from estimation issues caused by number of 

observations and also model mismatch. 

4. A MODEL-FREE SHEWHART INDIVIDUALS 

CONTROL CHART FOR AUTOCORRELATED DATA 

To guarantee the performance of control charts when 

autocorrelation in data cannot be ignored, a new model-free 

approach to running the Shewhart individuals control chart is 

proposed that takes advantage of an iterative skipping 

strategy. This method divides the data set into several 

subgroups by considering every other R observations, thereby 

assuring the assumption of independence in each subgroup. 

Control charts are then designed for each subgroup in Phase I. 

A new observation in the phase of online monitoring, i.e., 

Phase II, is projected onto its corresponding chart according 

to the skipping time lag R. 

4.1 Phase I 
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A historical time series under normal operating conditions 

with a specific length is chosen to determine the control 

limits of the chart. 

Step 1: Choice of skipping lag R. ACF limit is defined as an 

autocorrelation level where the influence of autocorrelation 

on the control performance is minimal. Time lag R is found 

as the first lag where the value of ACF is below the limit. 

Step 2: Creation of subgroups. The Phase-I time series is 

skipped by R time points (lags) to create R subgroups. For 

example, if 100 observations are used in Phase I and R is 5, 

one would obtain 5 subgroups as shown in Table 1. 

Step 3: Determination of control limits. R sets of control 

limits are calculated using the traditional limit formulas, after 

critical parameter c is predetermined. The value of c is 

directly related to the expected percentage of false alarms. 

Table 1.  Illustration of Step 2. 

 Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 

Phase I 
t-4 t-3 t-2 t-1 t 

 
X1 X2 X3 X4 X5 

 
X6 X7 X8 X9 X10 

 
X11 X12 X13 X14 X15 

 
… … … … … 

 
X96 X97 X98 X99 X100 

Phase 

II 
X101 X102 X103 X104 X105 

 X106 X107 X108 X109 X110 

4.2 Phase II 

After the range of common cause is estimated in Phase I 

through R sets of control limits of the monitored variable, the 

new observations are then monitored using the control chart.  

To maintain the iid assumption in each subsample, new 

observations are monitored in their corresponding charts. As 

shown in Table 1, if Phase II begins at the 101
th

 observation, 

the first observation would be projected onto the control chart 

of the first subgroup and the second one would be onto the 

chart of the second subgroup and so on. The control chart of 

each subgroup is hereby named as the single skipping chart 

(SSC), and the combined skipping chart (CSC) is defined by 

merging the R control charts in time sequence to monitor 

Phase-II data points. This will be illustrated in the following 

section. 

Two charts are established in the proposed Shewhart 

individuals control scheme. SSC can be considered as a 

conventional Shewhart individuals chart applied to 

observations collected at a low sampling rate. CSC is an 

improved Shewhart chart, monitoring every observation 

collected at a high sampling rate. The analyst can alternate 

between these two charts according to the process conditions. 

When the process runs at steady-state, SSC would be 

preferred to monitor the process less frequently. As soon as 

SSC detects an abnormal trend, SSC should be switched to 

CSC to pay close attention to the changing process 

conditions. In this way, one can filter out redundant 

information and meaningful structural information, such as 

the variable trends, would be more likely to be noticed by 

operators. 

5.  CASE STUDIES 

We denote the subgroup size as L and the number of 

subgroups as R in the skipping Shewhart control scheme. 

Two conventional Shewhart charts are constructed based on 

different length of Phase-I data. In the following case studies, 

conventional Shewhart chart (a) refers to the conventional 

chart based on a consecutive Phase-I data of length L, while 

conventional Shewhart chart (b) is based on a consecutive 

Phase-I data of length L*R. The modified Shewhart chart is 

constructed based on the known process model and only used 

in the case study of an AR (1) process. ARL is taken as the 

average run length of control chart in Phase II of the same 

simulations. 

5.1 AR (1) process 

In this section, four charts, i.e., CSC, the modified Shewhart 

chart, the conventional Shewhart chart (a) and the 

conventional Shewhart chart (b), are tested in terms of their 

detection performances. The ACF limit is chosen as 0.4, 

which is considered as a low magnitude of autocorrelation. 

An AR (1) process is simulated with the autocorrelation 

coefficient of 0.8. While the direct comparison may not be 

truly meaningful, a study of these various charts still provides 

significant insight towards their use. The critical values of c 

of the conventional charts (a) and (b) are adjusted as 2.987 

and 2.997, respectively, to maintain their ARL0’s close to the 

modified chart which acts as the benchmark. The control 

limits of the CSC do not need adjustment, because its ARL0 

is approximately the same as that of the modified chart with 

the default value of c = 3. 

Five kinds of mean-shift cases are simulated and the out-of-

control ARL1s of the four charts are averaged based on 

10,000 simulations (Table 2). The CSC is able to signal right 

after the modified Shewhart chart signals for every simulated 

mean-shift case. It means that the CSC is effective in 

detecting faults and performs very close to the benchmark 

modified Shewhart chart. The adverse effect of 

autocorrelation on the conventional chart (a) is significant 

and the detection delay of this chart is remarkable especially 

for the cases of small mean shift and large data 

autocorrelation. After slightly adjusting the control limits, the 

conventional chart (b) can yield a comparable performance 

with the CSC. However, we must note that it may not be 

practical to adjust the control limits of the conventional chart 

and select a ‘long enough’ time series in Phase I.  

In summary, there are two alternatives to the modified 

Shewhart chart when the process model is not available or 

not easy to estimate, i.e., the conventional Shewhart chart 

using a long enough Phase-I data and CSC. For the former it 

may be difficult to determine the data length in phase I that is 

enough for a correct estimation of process mean and standard 

deviation and it varies with the magnitude of autocorrelation 
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and underlying model. The CSC is a totally model-free and 

data-driven method. In its Phase I, the subgroup size can be 

constant and R is the only free parameter, which is based on 

the autocorrelation function estimated from a Phase-I time 

series. Both charts are able to achieve a similar performance 

to the modified chart. However, the conventional Shewhart 

chart is sensitive to the Phase-I data length, while the CSC 

performs consistently well. Considering that, we can state 

that the CSC can be a general method of accommodating data 

autocorrelation in a Shewhart chart and it is a reliable and 

valid alternative to the modified Shewhart chart. 

Table 2.  Comparison of ARL1 in mean-shift cases. 

Autocorrelation coefficient 0.8 

Mean 

Shift 

CSC   Modified   

chart 

Adjusted 

conventional   

chart (a) 

Adjusted 

conventional   

chart (b) 

0 556 557 550 555 

0.5 275 272 296 277 

1 93.6 93.2 98.9 93.9 

1.5 36.8 36.3 37.3 36.6 

2 15.9 16 16.2 15.9 

3 4.04 4.06 4.04 4.03 

 

It should be noted that, in industrial chemical processes, 

variables are measured at high sampling rates often measured 

in seconds. This creates serial dependence in data as system 

dynamics is usually slower than the measurement rate, 

resulting in highly serially correlated variables. If the 

skipping strategy is applied directly on the original 

observations, a large R would have to be chosen to reduce the 

autocorrelation to a reasonable level. A large number of SSCs 

would be constructed and the control scheme becomes 

complicated. As the observations are highly autocorrelated, it 

means that the measured values for adjacent few samples are 

nearly constant. Thus, a data preprocessing step becomes 

necessary before monitoring the process. The mean filter is a 

way of denoising and condensing data (Davies, 1992). It can 

reduce the complexity of control charts and also take 

advantage of the observations collected at a high sampling 

rate. The output of a mean filter is the mean value of a data 

window and it is then monitored in the skipping control 

scheme. The width of the data window is chosen as W, the 

maximum time lag where the autocorrelation remains at a 

level near 1. This adjusted control strategy seems analogous 

to the Shewhart chart for subgrouped data with a sample size 

W but the way of choosing the sample size is different. 

5.2 An industrial process 

In this section, CSC is applied to the monitoring of an 

industrial process. A depropanizing column of a gas 

fractionation unit in an industrial chemical plant located in 

China is being monitored. The process variables are collected 

every 5 seconds. In order to demonstrate how the CSC works 

in an industrial application, the column pressure and level 

variables are monitored.  

Historical measurements of around 6 days are chosen in this 

case (Fig. 1). It is obvious in the pressure chart that the 

process drifts into another mode in the second half of the 

observations, while the level variable stays in normal 

condition. The autocorrelation of these two variables are 

estimated based on the first half of the data, plotted in Fig. 3. 

Both variables present high order autocorrelations. The width 

of the mean filter is chosen as 45, at which lag both 

autocorrelation functions start declining slowly. The data set 

is then condensed and the sample size is taken as 45. The first 

half of the data is chosen as the Phase-I data set, while the 

rest is assigned in Phase II. The Phase-I data set is condensed 

as in Fig. 2. The autocorrelation functions of the two 

variables are estimated according to the condensed data in 

Fig. 3. ACF limit is chosen as 0.4 and the CSC can be 

constructed with the skipping lag as 5 and 12 for the pressure 

and level variables, respectively. The monitored point in 

Phase II is updated every 3.75min in the CSC and the CSCs 

for these two variables in phase II are shown in Fig. 4 using 

the 3-sigma control limits. In the CSC of the pressure 

variable, drifted points can be detected in time, while the 

observations of the level variable, free from the disturbance, 

stays within the control limits with no false alarm. 
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Fig. 1 The original measurements for reactor pressure and 

level the industrial case study. 
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Fig. 2 Phase-I data chosen for the two variables in forms of 

original observations and condensed observations. 
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Fig. 3 Autocorrelation functions of the two variables 

estimated from original observations and condensed 

observations through a mean filter. 

 

Fig. 4 CSCs of the variables of reactor pressure and level in 

the industrial application. 

6. CONCLUSIONS 

The estimation of the true mean and variance of quality 

characteristics in the Shewhart chart for individual 

observations is challenging especially when the quality 

characteristics are autocorrelated. A model-free Shewhart 

individuals control scheme for autocorrelated data is 

proposed. Two control charts, i.e., SSC and CSC, are 

designed to offer a flexible approach to monitoring individual 

observations. An alternative to the modified Shewhart chart is 

presented based on an iterative skipping strategy. The in-

control and out-of-control performances of CSC are obtained 

using simulated data. Results show that CSC can achieve 

similar performance to the modified Shewhart chart. 

Meanwhile, conventional Shewhart charts based on different 

Phase-I data lengths are also carried out to monitor the same 

variables. Under the assumption of independence, 

conventional chart (a) is least sensitive to abnormality in all 

faulty cases. Although CSC and the conventional chart (b) 

work with different control limits, they seem to perform 

similarly in terms of run length. 

After the verification in the case study of AR (1) process that 

the CSC is a reasonable alternative to the modified chart, 

which is difficult to construct in practice, CSC is constructed 

to monitor variables in an industrial process to demonstrate 

its practical application.  

As the ACF limit is the only free parameter in the proposed 

skipping Shewhart control scheme, a sensitivity analysis 

should be carried out to determine an appropriate value for 

the ACF limit.  

When the Shewhart individuals chart is extended to the 

multivariate case as in Hotteling’s T
2
 chart, the effect of 

autocorrelation would become even more complicated. In this 

paper, the univariate charts provided a straightforward 

medium to clearly articulate the salient features of the 

proposed methodology. As multivariate SPC approaches 

exploit cross-correlation among variables, they may perform 

better than univariate SPC approaches by detecting the 

correlation abnormalities among variables. The skipping 

strategy proposed in this work may also be an effective way 

for multivariate SPC charts to reduce the effect of data 

autocorrelation, which will be addressed in our future work. 

This goal of this paper has been to lay down the groundwork 

to illustrate the capability of the skipping strategy by 

applying it to a univariate SPC chart.  
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