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Abstract: Multiple phases with transitions from phase to phase are important characteristics of many 

batch processes. The linear characteristics of batch processes are usually taken into consideration in the 

traditional algorithms while the nonlinearity is neglected. However, to monitor batch processes more 

accurately and efficiently, such process features are needed to be considered carefully. In this paper, a 

new similarity index based on KECA (kernel entropy component analysis) is defined for batch processes 

with nonlinear characteristics. A new phase division and monitoring method based on the proposed 

similarity index is brought forward simultaneously. First, nonlinear characteristics can be extracted in 

feature space via performing KECA on each preprocessed time-slice data matrix. Then phase division is 

achieved with the similarity change of the extracted feature information. By establishing a series of 

KECA models for transitions and steady phases, it reflects the diversity of transitional characteristics 

objectively and can preferably solve the stage-transition monitoring problem in multistage batch 

processes. Finally, in order to overcome the problem that the traditional contribution plot cannot be 

applied to the kernel mapping space, a nonlinear contribution plot diagnosis algorithm is proposed. Both 

results of simulation study and industrial application clearly demonstrate the effectiveness and feasibility 

of the proposed method. 
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1. INTRODUCTION 

It is acknowledged that the multiplicity of operation stages is 

an inherent nature of many batch processes and each stage 

exhibits significantly different underlying behaviours. Up to 

now, multivariate statistical methods such as principal 

component analysis (PCA) and partial least square (PLS) 

have been successfully used in modelling multivariate 

continuous processes (Jiang et al.(2016)). However, it is 

difficult for PCA to reveal the changes of process correlations 

because it takes the entire batch data as a single object in 

modelling, neglecting the local behaviours within batch 

process stages. Thus, the unique process correlation 

information is not reflected. Furthermore, PCA is a kind of 

modelling method dealing with linear data sets, essentially. 

However, in industries, most batch processes possess 

nonlinear characteristics. Therefore, PCA is unsuitable for 

monitoring those nonlinear processes. Lu et al. (2004) 

developed a stage-based sub-PCA modelling method based 

on the fact that changes of the process correlations may relate 

to its stages diversity in multistage batch processes, which 

does not require fulfilling missing process observations and 

preserves the dynamic relationships. 

However, their strict stage partition algorithm neglects the 

stage-to-stage transiting characteristics, which compromises 

the accuracy of sub-stage representative monitoring models. 

As a complement of sub-PCA method, Zhao et al. (2008) 

proposed a soft-transition multiple PCA (STMPCA) method 

which can identify and model both process phases and 

transitions between two neighboring stages. Wang et al. 
(2016) used fuzzy pattern recognition method calculating the 

proximity degree of centre-of-gravity between two adjacent 

time-slice loading matrices along variable direction to 

achieve sub-stage division. Since changes of the process 

correlations may relate to its stages diversity in multistage 

batch processes, all these aforementioned methods do deep 

researches on this changing trend to figure out the changes in 

the internal operating mechanism of a process. In a word, 

these methods perform PCA on time slices to extract process 

features, generating time-slice loading matrices which are fed 

as the input to the existing clustering algorithms, or achieve 

the division and modelling of sub-stages, according to the 

similarity between two adjacent loading matrices. But 

methods based on PCA can only extract linear characteristics 

of processes, ignoring the nonlinear correlations among 

variables. Therefore, these methods mentioned above are not 

applicable to complex batch processes with nonlinear 

characteristics. Kernel entropy component analysis (KECA) 

method can extract nonlinear characteristics of batch 

processes effectively via performing nonlinear mapping with 

Renyi entropy. However, kernel mapping needs nonlinear 

functions which are commonly unknown, and most clustering 

algorithms require information about the loading matrix itself 

during the process of clustering, especially when calculating 

class centers. This means that in the sub-stage division of 

nonlinear batch processes, loading matrices cannot be fed as 

the input to the clustering algorithm directly. Therefore, a 

novel similarity index based on KECA is defined in the 

present article, and a nonlinear clustering algorithm based on 

KECA similarity is proposed simultaneously. 

PCA is widely used in fault modelling and monitoring for 

batch processes. However, this kind of method is based on a 
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linearity assumption, which shows poor performance when 

utilized in batch processes involving complex nonlinearities. 

Scholkopf et al. (1998), therefore, proposed kernel principal 

component analysis (KPCA), where nonlinear data in the 

input space were equivalently transformed into linear data in 

the high-dimensional feature space via a nonlinear mapping. 

Robert Jenssen et al. (2010) proposed a new spectral data 

transformation method termed kernel entropy component 

analysis (KECA), which reveals angular structure related to 

the Renyi (quadratic) entropy of the input space data set and 

does not necessarily use the top eigenvalues and eigenvectors 

of the kernel matrix. Results demonstrate that PCs selected 

with KECA method show distinct angular structure. Thus, 

KECA shows better performance of fault detection than other 

methods. In our work, a new Cauchy-Schwarz (CS) 

divergence measurement used to describe the angular 

structure revealed by KECA is brought forward, which can 

preferably depict the similarity between different probability 

density distributions and distinguish the anomalies effectively. 

When a fault is detected, further diagnosis is needed. There 

are different methods available for detection and diagnosis of 

batch processes, such as contribution plot and fault 

reconstruction. Yoon et al. (2001) proposed fault diagnosis 

method using contribution plot. Since the traditional 

contribution plot represents the percent contribution of the 

original measurement variables to the monitoring statistics, 

different monitoring methods need to derive the 

corresponding contribution quantity expressions. As for 

complex fault monitoring methods, such as kernel entropy 

learning method, it is difficult to construct a corresponding 

formula to calculate the contribution plot, which limits the 

application of the contribution plot method to a great extent. 

Yue et al. (2001) proposed a fault diagnosis method based on 

fault reconstruction. However, various history fault data are 

needed for this method while fault process variables can be 

located without fault data using contribution plot method.  In 

view of the limitation of the contribution plot and the fault 

reconstruction methods, a novel Standard Vector Kernel 

Contribution Diagram (SV-KCD) method based on standard 

vector is introduced in the present article. The proposed 

method reconstructs the monitoring samples at fault time 

directly. This method is described quantitatively with 

histogram, being more intuitive and practical. 

The article is organized as follows. Phase division algorithm 

based on KECA similarity index is outlined in Section 2. 

Fault monitoring for each phase/stage and SV-KCD fault 

diagnosis based on KECA are designed in Section 3. 

Simulation and Industrial application results are presented in 

Section 4. In Section 5, the conclusion is drawn ultimately. 

2. PHASE DIVISION BASED ON KECA SIMILARITY  

2.1  KECA 

Assuming that the data set S: x1, …, xN are generated from an 

underlying probability density function p(x), the Renyi 

quadratic entropy is defined as 
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Where K is the (N×N) kernel matrix and I is an (N×1) 

vector where each element equals one. To the end, the Renyi 

entropy estimator may be expressed in terms of eigenvalues 

and the corresponding eigenvectors of the kernel matrix, 

which may be eigen-decomposed as K=EDET with D being a 

diagonal matrix storing the eigenvalues λ1, …, λN and E being 

a matrix with the eigenvectors e1, …, eN as columns. 

Rewriting (3), yields 
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Eq. (4) demonstrates that each eigenvalue and eigenvector 

makes different contributions to the Renyi quadratic entropy. 

Therefore, in the kernel entropy component analysis, the l 

number of eigenvalues which make the first l largest 

contributions to the Renyi entropy and their corresponding 

eigenvectors are selected, forming the PC matrices which are 

defined as  iieca ED 2

1

 . Then the inner product of the data in 

the feature space is obtained ecaecaecaK  . 

2.2  A new similarity index based on KECA 

Assuming that data set 
NRX   is projected onto the feature 

space F with KECA, yielding },...,{ )(xM1
 ）（x . Set Eq. (4) 

as the guideline of the direction of the KECA projection and 

the projection vector P is defined as 

i
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To quantify the similarity of the two projection vectors, the 

similarity is defined as follows 
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Where P1 and P2 represent two different kernel entropy 

loading matrices. When λi
j approaches to 0.5, consider two 

loading matrices as similar whereas when λi
j approaches to 1 

or 0, two matrices show a great difference. 

2.3  Phase division and transition identification 

Multiphase/multistage are divided into steady phases and 

transitions with the proposed similarity index. Since the 
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process characteristics are similar in each phase, a unified 

model can be established for the data in the same period. 

The procedure is plotted in Fig.1 and the detailed description 

is given below. 

1) Unfold three-way batch process data matrix along batch 

direction, and normalize the unfolded data matrix. 

2) Perform KECA on each time-slice data matrix yielding 

loading matrix Pi which characterizes the correlation 

information between process variables. 

3) For each Pi= (I×J), i =1, 2,...,K, calculate the similarity 

index             ),()(1 jii
PPdisskD                               (7) 

where D1i is fed as input samples to clusters. 

4) Fuzzy C-means clustering (FCM) algorithm is used for 

phase division in the present article. According to the 

principle of maximum membership degree, the process is 

initially divided into C stages. A univariate control plot is 

used to monitor outliers of the maximum membership value 

for each stage. Since the samples detected as outliers mainly 

appears at the beginning and end of each phase, the starting 

and ending moments of a transition phase can be identified 

accordingly. Then, remove the transition process and the 

retaining part of the phases is identified as the corresponding 

stable stage. Here, the transition identification makes use of 

univariate statistical monitoring method to identify the 

transitions as outliers.  

5) To set the control limits reasonably with the existence of 

outliers, the iterative calculation can be performed. In each 

iteration run, the control limits can be calculated, and the 

outliers are detected and removed from the reference set. 

Then in next run, the control limits can be re-calculated based 

on the updated reference set. Such steps are repeated until the 

control limits converge to a certain values.  Since the control 

limits are calculated statistically instead of user-defined, the 

determination of the ranges of transitions is more reasonable 

and objective. 

3. KECA BASED  MONITORING AND DIAGNOSIS 

3.1  CS statistic 

It has been known that a distinct angular structure among the 

data set is led by KECA, where different clusters are 

distributed more or less in different angular directions. 

Therefore, an appropriate statistic is a must for fault 

monitoring. The CS divergence measurement between 

probability density functions corresponds to the cosine of the 

angle between kernel feature space mean vectors, which is 

able to express the angular structure. 

The CS divergence is a measure of the “distance” namely 

similarity between two probability density functions p1(x) and 

p2(x), given by  
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matrix for batch i at sample time k, whereas Mk is the mean 

value of PC matrices of the total I batches at sample instance 

k and l is the number of PCs.  

Monitoring models show high similarity under normal 

operating conditions and the value of CS statistic has been 

kept under control limit. Once the faults occurred, the value 

of CS statistic will increase above the control limit rapidly, 

whereas the similarity between two models will drop 

dramatically. The control limit R of CS statistic is calculated 

with kernel density estimation. 

 

Fig. 1. Procedure of phase division  

3.2  Steady phase modelling 

Since the phase division is achieved, KECA models can be 

built for both steady phases and transitions. Now, the steady 

phase modelling procedure can be summarized as follows. 

1) Reorganize the normalized data into a three-way data 

matrix and split it into K number of time-slice loading 

matrices. For each steady phase, unfold the 2-D time-slice 

loading matrix to ）（ JIkX cc  where ck is the number of 

samples included in phase C. 

2) The kernel matrix K is calculated for the preprocessed 

time-slice matrix followed by the eigen-decomposition of 

each matrix K. Calculate the Renyi entropy corresponding to 

each eigenvalue with Eq.(4), and the l number of eigenvalues 

which make the first l largest contributions to Renyi entropy 

and their corresponding eigenvectors are selected, forming 

PC matrices. 

3) Calculate CS statistics for each time interval k with Eq. (8) 

and R1, the control limit of CS statistics, is calculated with the 

kernel density estimation. 

3.3  Transition periods modelling 

1) For each transition regions, unfold the preprocessed 2-D 

time-slice loading matrices along variable direction to matrix 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

829



 

 

     

 

)( JIkX mm   where km represents the number of samples 

included in phase m. 

2) Build sliding weighted KECA models for input sample Xm. 

From the overall trend, process characteristics are usually 

similar to the previous steady phase at the beginning of 

transition periods. Then by going through some trajectories, 

processes transit to the next steady phase gradually. Thus, the 

weighted KECA model can be built for Xm and the PC matrix 

M is obtained as follows.  

21 )1( MMM  
                                                           (9) 

In which λ is weighting coefficient, M1 and M2 represent the 

PC matrix of the steady phases before and after transition 

period, respectively. 

3) Calculate CS statistics for each time interval k with Eq. (8) 

and R2, the control limit of CS statistics, is calculated with the 

kernel density estimation. 

3.4  Fault diagnosis based on SV-KCD 

Since it is impossible to find an inverse mapping from high-

dimensional feature space to low dimensional input space, 

the contribution formulation of the corresponding statistic 

cannot be deduced. Therefore, the traditional contribution 

plot cannot be applied in this paper. 

To solve the problem above, a kernel space contribution plot 

method based on standard vectors (SV-KCD) is proposed in 

our work. This method not only preserves the advantage of 

simplicity and intuition of traditional contribution plot, but is 

free of the deduction of contribution formulation of the 

corresponding statistic. What’s more, the fault samples are 

also not required. In a word, this method can be applied to 

any kernel mapping methods, such as KPCA, KICA etc. 

The schematic diagram of the SV-KCD method is shown in 

Fig.2. Supposing that the original data space is a 3-D space. 

Project the original data space to the high-dimensional 

feature space. Assuming three principal components are 

retained after projection. As Fig.2 (a) shows, at any sample 

time k, assuming normal data set is transformed into feature 

space. The projection data are gathered in a sphere with 

radius of r. After calculating CS statistics for new data set, 

one can readily realize that CS statistics located under the CS 

control limit.  

Assuming that there is a central vector in the feature space, 

which is located at the centre of the sphere. The 

corresponding point of this vector in the original data space is 

depicted at point O in Fig.2. Set vector O as the standard 

vector. When a fault occurs at time K, each variable of the 

standard vector O is replaced by the corresponding variable 

of fault sample in the original data space at time K in turn. 

Then, fed as a new input sample, each vector with replaced 

variable is utilized in process monitoring. Thus, the 

contribution of each variable to the CS statistic can be 

described quantitatively, and whether the contribution is 

within a reasonable range can be known through the control 

limit, which provides more reasonable evidence for fault 

identification. As the Fig.2 (b) shows, it is readily to know 

whether the CS statistic goes beyond the control limit when 

variable x and y are replaced, respectively. 

Now, finding out the standard vector at point O comes first. 

Since the inverse mapping of feature space to the original 

space cannot be obtained, it is impossible to find the standard 

vector O in the original space. However, from Eq. (8), it is 

transparent that the sample with the smallest CS value lies 

closer to the centroid vector O than any other sample. 

Therefore, the corresponding data sample in the original 

space can be regarded as standard vector at time k. 

x
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Fig. 2. Schematic diagram of SV-KCD method 
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(a) FCM clustering result          (b) membership grades      (c) Transition ranges identification   (d) Sketch map of the similarity 

Fig.3 Phase division result using the proposed method

 

Fig.4 Monitoring results using MPCA for fault 5 

 

Fig.5 Monitoring results using sub-PCA for fault 5 

 

Fig.6 Monitoring and diagnosis results using KECA method 

4. IILLUSTRATION AND DISCUSSION 

4.1  Simulation validation 

In the present simulation experiment, a total of 35 reference 

batches are generated using a simulator developed by the 

monitoring and control group of the Illinois Institute of 

Technology. A total of 10 process variables are selected to be 

monitored in this work. The duration of each batch is 400h, 

consisting of a preculture phase of about 45h and a fed-batch 

phase of about 355h. Fig.3 (a) shows the clustering result of 

the fed-batch phase using the proposed method, where the 

real fed-batch phase is sub-divided roughly into three main 

stages. So the whole process is divided into four primary 

stages as well as corresponding transition regions. The more 

elaborate stage partition results emphasize the changes of 

process correlations rather than the physical operation, which 

will benefit making more detailed analyses of underlying 

process behaviours and establishing more appropriate 

monitoring models. It is clear that the phase division is 

consistent with the process nature. In fed-batch penicillin 

cultivation process, process nature changes with operation 

time. Such changes can be indicated with the trends of the 

similarity values Sim(k, phase c), as shown in Fig.3(b). 

Sim(k,c) is the membership grade between the kth time-slice 

data matrix and the cth cluster-centre KECA model. The 

values of Sim(k,c) changes gradually with the process 

operation. It becomes larger when the process approaching to 

phase c. During phase c, Sim(k,c) keeps large values which 

indicate high similarities between the time-slice data matrices 

and the current cluster-centre. When process operates far 

away from phase c, the similarities become small again. The 

gradual changes of Sim(k,c) values at the beginnings and 

ends of phases confirm the existence of transitions from 

phase to phase. The univariate statistical process control plots 

are utilized to identify the transition ranges. For each steady 

phase, the values of dissimilarity 1-Sim(k,c) ( )k c are 

plotted in Fig.3(c). As introduced in Section 3, the successive 

outliers at the beginning and the end of each phase indicate 

the transition ranges. After transition identification, each 

steady phase and transition range are modelled with the 

method described in Section 3. The membership grades are 

plotted in Fig. 3(d). Again, the transition attributes from 

phase to phase are shown clearly. Here are the results: steady 

phases (1~48), (70~188), (215~400), transition regions 

(49~69), (189~214). The models constructed using traditional 

MPCA, sub-PCA and the proposed method are then tested 

against monitoring of three different operating states batches. 

For Fault 5, a linear decrease of slope 0.2% is imposed on the 

agitator power from time 100h until the end of the batch. Fig. 

4 to 6 display the comparison of the detection results for 

Fault 5 using MPCA, sub-PCA and the proposed method, 

respectively. As depicted in Fig.6, the values of CS statistics 

increase sharply beyond the confidence limit right at time 

47h when the fault is introduced, which is about 21h and 15h 

earlier than that of MPCA method and the sub-PCA method 

in SPE control plots, respectively, which also enables the 

operator to respond rapidly as soon as the abnormality occurs. 

Although the fault ends at 220h, the process correlation has 

been deteriorated and cannot return to the normal trajectory. 

So the CS values yield the decreasing trend around 220h but 
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still outside the normal boundary until the end of the batch. In 

T2 control plots, the fault detection is achieved at 100h with 

sub-PCA method, which is about 55h slower than the result 

of proposed method in CS control plot. In addition, no 

abnormality in T2 control plot is found with MPCA method. 

Analysis shows that the fault happened in the transition stage 

1. Since the sub-PCA method divides phases into several sub 

phases with a kind of hard partition, ignoring the transition 

characteristics from phase to phase, faults are detected with 

an obvious time delay.  

Once the abnormal condition is detected by the monitoring 

charts, the contribution plot obtained by using SV-KCD 

method is utilized to analyse the fault cause, which can 

indeed enhance the process understanding and improve the 

ability to fault detection and diagnosis, as exhibited in Fig.6. 

It transparently shows that the primary fault cause variable is 

variable 2 (Agitator power), which is well agreed with the 

real state. The comparison of fault detection performance 

with these 3 kinds of fault monitoring methods is exhibited in 

Table 1, the proposed method shows high efficiency to detect 

all kinds of faults and reaches the lowest false alarm rate 

among three methods which demonstrates that the proposed 

method can improve the reliability of the monitoring process 

to a certain extent. 

4.2  Industrial data validation 

The proposed method is applied to penicillin fermentation 

process monitoring of a pharmaceutical company in Hebei 

province, as is shown in this section. The fermentation 

system adopts SIEMENS PLC control system which can both 

detect and implement the control of temperature, pH, 

Aeration rate, agitator power etc. in real time. The duration of 

each batch is 212h, with a sampling interval of 4h. A total of 

9 primary variables are monitored to reflect the cell growth 

and product synthesis in penicillin fermentation. 24 normal 

batches are selected as the initial modelling reference 

databases and a three-way data matrix X (24×9×53) is 

obtained, simultaneously. The identification of steady phases 

and transition regions is achieved with the proposed method. 

There are three steady phases in total including sampling 

intervals (1-5), (9-21), (26-53). The transition range from 

phase I to II includes sampling interval 6-8, the transition 

range from phase II to phase III includes sampling interval 

22-25. 

Table 1.  Monitoring results for three methods 

Error rate of type I (%) Error rate of type II (%) 

MPCA sub-PCA KECA MPCA sub-PCA KECA 

5.81 2.52 1.87 — — — 

1.54 0.79 0.67 10.46 45.08 6.6 

5.71 1.43 1.67 6.97 0 0 

7.71 2.8 4.1 12.33 0.9 0.78 

3.84 1 1 22.4 40.7 12 

3.13 1.36 1 7.9 39.9 2 

Fig.7 depicted the monitoring result of fault batch 198. Due 

to mechanical reasons, aeration rate is reduced. However, the 

process returned to normal conditions with the timely 

adjustment of the operator. Since the final product is in line 

with the production requirements, the batch satisfies the final 

product quality. In CS control plots, the proposed method is 

able to detect the fault at time 100h, which shows the 

effectiveness of detecting abnormalities and objectively 

reflect the efforts made by the operators to eliminate the 

faults after the failure occurs, and accurately reflect the 

quality of the final products, avoiding false alarms. Figure 7 

shows the SV-KCD diagnosis results at steady phase III with 

the proposed method, which clearly demonstrates that the 

primary fault cause variable is variable 6 (Aeration rate). 

   

Fig. 7. Monitoring and diagnosis results using KECA method 

5. CONCLUSIONS 

To overcome the irrationality of boundary data division 

between two adjoining clusters and nonlinear problems of 

transition processes, and improve the reliability and 

sensitivity of process monitoring, a novel multiphase KECA 

monitoring strategy has been proposed in our work. False 

alarm rate and missing alarm rate of online monitoring 

transitional data can be decreased with the proposed method, 

when processes transit from one stage to another. Both 

simulation and industrial application demonstrate that the 

diversity of characteristics in each phase is preferably 

reflected using our strategy. It also shows great values in 

solving fault detection problems widely existing in batch 

processes. 
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