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Abstract: This paper concerns the input-output model identification and zone model predictive
control of an agro-hydrological system modeled by a partial differential equation. The primary
control objective is to maintain the soil moisture within a desired range which is suitable for grass
grow. There is also a secondary control objective which is to reduce the total irrigation amount.
First, a linear parameter varying (LPV) model is identified for controller design purpose using
a maximum likelihood gradient-based iterative estimation method. Then, based on the LPV
model, a zone model predictive control (MPC) is designed which uses an output disturbance
and state observer to reduce model-plant mismatch and an asymmetric target zone to reduce
irrigation amount under weather uncertainties while maintaining the soil moisture within the
target range. Simulation studies show that the LPV model is a good approximation of the
original nonlinear model and effectively reduces the online computational load of the MPC, and
that the proposed zone MPC can lead to significant water conservation.

Keywords: Agro-hydrological system; Linear parameter varying model; Model predictive
control; Zone control

1. INTRODUCTION

The increasing population and adverse climate change are
escalating fresh water scarcity globally. Since irrigated
agriculture consumes a large portion of fresh water, it is
important to improve the efficiency in irrigation [1]. It
is well recognized that if irrigators made more efficient
use of water then there would be more water for environ-
mental uses and for cities [2]. Among different approaches
to improve the water usage efficiency in irrigation, one
important approach is to close the loop in irrigation con-
trol systems to have closed-loop irrigation. In closed-loop
irrigation, the amount of water supplied to the field is
determined based on real-time field feedback signals com-
prising of measured soil water content, evapotranspiration
rate and other on-line sensors.

Though most of the irrigation worldwide still operates
under open-loop conditions, there are more and more
research results on closed-loop irrigation [3, 4, 5]. In [3], an
irrigation controller based on the fuzzy-logic methodology
was presented to decide on how far to open the water
valve and how much water to be added to the soil, by
considering the temperature, air humidity, wind speed and
water budget as the fuzzy variables. In [4], a constrained
integral proportional-integral-derivative (PID) controller
was proposed. In [5], an automated closed-loop irrigation
control system was developed and tested with a self-

1 Corresponding author: Jinfeng Liu. Tel.: +1-780-492-1317. Fax:
+1-780-492-2881. Email: jinfeng@ualberta.ca.

propelled lateral-move sprinkler irrigation system that was
set up for site-specific variable-rate water applications.
Besides the above results, closed-loop irrigation results
were also reported in [6, 7, 8].

Recently, model predictive model (MPC) has also been
used in the control of irrigation systems. MPC is a very
flexible optimal control framework based on solving con-
strained optimal control problem online repeatedly, and
has been widely used in modern manufacturing industries
due to its abilities to handle multivariate processes and
to address state and input constraints [9, 10]. In [11, 12],
Park and co-workers used MPC to incorporate sensor mea-
surements, predictive models and optimization algorithms
to drive field conditions to a desired environmental state
(e.g. soil moisture, salt levels or contaminant propagation).
In [13], McCarthy and co-workers implemented MPC to
determine irrigation timing and site-specific irrigation vol-
umes based on the crop production models. In [14], Del-
goda and co-workers proposed to use MPC for irrigation
control to minimize both root zone soil moisture deficit and
irrigation amount under limited water supply. In the above
MPC-based studies, due to the use of a prediction model
in the controller, it is possible to incorporate the weather
forecast along with other environmental and crop factors
and hence control irrigation amount more accurately with-
out hampering crop yields. The main objective in all these
studies was to maintain the soil moisture in the root zone
at a pre-determined set-point considering different factors
such as weather forecast, irrigation type and crop types.
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However, a more natural control target in irrigation should
be to maintain the soil moisture of the root zone within a
range instead of a point. It will be demonstrated later in
this work that a zone target can lead to further significant
water conservation.

In this work, we propose a zone MPC framework for
irrigation control. In zone MPC, the target is to track
a target set (zone) instead of a point. Zone MPC may
be used when the aim is to maintain the system out-
puts within specified ranges or zones, or when multiple
control objectives or process uncertainty (e.g. plant-model
mismatches or noises) exist. Interested readers may refer
to [15, 16, 17, 18, 19] for some existing results on zone
MPC theory and applications. Specifically, we consider a
field represented by an agro-hydrological model that de-
scribes the water movements between soil, atmosphere and
the crop (grass in this work). Since the agro-hydrological
model is nonlinear and complex, the direct use of such a
model in MPC poses substantial computational difficul-
ties. To address the computational difficulties, we propose
to identify a simpler input-output model to approximate
the water dynamics for controller design purpose. Based on
the identified model, a zone MPC algorithm is developed
accounting for explicitly model-plant mismatch. The main
contributions of this paper lie in:

• A systematic approach to identify a linear parameter
varying (LPV) model to describe the dynamics be-
tween the irrigation amount and the root zone soil
moisture.

• An approach to overcome the model-plant mismatch
through an output disturbance and state observer.

• A zone MPC algorithm with asymmetric cost func-
tion for effective root zone soil moisture management.

• Extensive simulations comparing the proposed zone
MPC with a set-point tracking MPC which indicates
significant irrigation water saving by the proposed
zone MPC design.

The rest of this paper is organized as follows. Section 2
introduces the agro-hydrological system and gives the
problem formulation. Section 3 identifies an LPV model
for the agro-hydrological model. Section 4 describes the
proposed zone MPC algorithm for the agro-hydrological
system including model transformation, output disurbance
observer design and objective function design. In Section 5,
simulation results are given to demonstrate the effective-
ness of the proposed methods under two irrigation scenar-
ios. Finally, concluding remarks are given in Section 6.

2. MODEL DESCRIPTION AND PROBLEM
FORMULATION

2.1 Model description

We consider an agro-hydrological system that character-
izes the hydrological cycle between the soil, the atmo-
sphere and the crop (see Fig. 1). The inputs considered are
the water flow to the soil by the means of rain, irrigation,
drainage, evaporation and root water extraction by the
crop. The crop considered in this work is grass. Moreover,
only vertical hydrological dynamics are considered and
horizontal homogeneity is assumed.
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Fig. 1. A schematic of the agro-hydrological system.

In this system, the soil water flux is computed using the
Darcy’s law [20]

q = −K(h)
∂(h+ z)

∂z
(1)

where q (cm/hour) is soil water flux density, K(h)
(cm/hour) is hydraulic conductivity, h (cm) is soil water
pressure head , z (cm) is the vertical coordinate inside
soil matrix. Under the assumption of continuity and using
the above Darcy’s equation, the soil moisture movement in
variably saturated soil can be described by the following
Richards’ equation [21]:

∂ϑ

∂t
=

∂
[
K(h)(∂h∂z + 1)

]
∂z

− S(h) (2)

where ϑ (cm3/cm3) is soil moisture content, S(h) (hour−1)
is a sink term which characterizes the root water extrac-
tion.

The Richards’ equation is discretized in both time and
space. The time is discretized with equally spaced nodes
and the length is discretized with unequally spaced nodes.
At the top much finer discretization relative to the bottom
is used to capture the faster dynamics at the top. The
implicit backward, finite difference method with explicit
linearization of hydraulic conductivities will be used to
discretize the Richards’ equation at each node.

2.2 Model parameters and control problem formulation

In this paper, the soil type we considered is Coachella,
which is a combination of mainly sand and small amount of
loam. The field capacity of this type of soil is 0.35 cm3/cm3

and permanent wilting point is 0.15 cm3/cm3. The plant
available water is 0.20 cm3/cm3.

The soil is covered by grass whose roots usually lie between
10 cm and 15 cm below the soil surface. We assume that
the primary water intake by grass takes place around
13 cm below the surface and it corresponds to the 6th
discretization node. The agro-hydrological model will be
used as a simulator of the actual field. The external inputs
to the agro-hydrological system include irrigation and
weather conditions (precipitation, temperature, humidity,
solar radiation and wind speed). Some of the important
parameters are listed below:
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Soil layer Ksat ϑres ϑsat α n

1 8 0.03 0.50 0.016 2.68

2 10 0.02 0.47 0.016 2.68

3 10 0.01 0.47 0.016 2.68

4 8 0.01 0.50 0.016 2.68

For irrigation management, a natural control target is to
maintain the soil moisture in the root zone within the
range in which the root water uptake is maximal (0.20
cm3/cm3 ∼ 0.35 cm3/cm3), instead of maintaining the
soil moisture at a constant set-point. The primary control
objective of this work is to design a control system to
maintain the soil moisture at the center of the root zone
in the desired range considering model-plant mismatch
and different operation constraints. The secondary control
objective is to minimize the use of irrigation water.

3. LPV MODEL IDENTIFICATION AND
VALIDATION

In this section, we propose to identify an input-output
LPV model to approximate the dynamics between the
irrigation amount (the manipulated input) and the soil
moisture at the center of the root zone (the controlled
output) for control design purpose.

3.1 LPV model for the agro-hydrological system

It is found through extensive simulation that using only
one linear time invariant (LTI) model cannot adequately
describe the its dynamics of the agro-hydrological system.
Therefore, we choose to use an LPV model.

For the agro-hydrological model, the soil moisture at
the 6th node (the center of the root zone) is picked as
the scheduling variable, and an LPV model is built to
approximate the soil moisture dynamic of the 6th node in
the operating region. Let us assume thatM working points
are selected in the operating region. For each working
point, the soil moisture at the 6th node is approximated
by a local LTI model. The global LPV model that describe
the soil moisture at the 6th node can be expressed as:

y(k) =

M∑
i=1

αi(s(k − 1))xi(k) (3)

where y(k) is the output (soil moisture) of the LPV model,
s(k) := y(k) is the measurement of the scheduling variable
at the kth sampling instant, αi is the associated weighting
coefficient of xi(k). Specifically, the output at ith working
point is described as follows:

xi(k) =−
na∑
j=1

aijxi(k − j) +

nb∑
j=1

biju(k − j) + di =: φT
i (k)βi

where u(k) is the input (irrigation amount) of the model,
aij , b

i
j and di are the parameters of the ith local model,

βi and φi are the parameter vector and information
vector and defined as φi(k) := [−xi(k − 1), · · · ,−xi(k −
na), u(k − 1), · · · , u(k − nb), 1]

T ∈ Rna+nb+1 and βi :=
[ai1, · · · , aina

, bi1, · · · , binb
, di]T ∈ Rna+nb+1.

To achieve smooth transitions between operating regions
of the M local models, exponential weighting functions are

employed and the normalized weighting factor for the ith
local model is calculated by the following equations:

αi(s(k)) =
ωi(s(k))∑M
i=1 ωi(s(k))

(4)

ωi(s(k)) = exp

(
−(s(k)− Si)

2

2σ2
i

)
(5)

where σi denotes the validity width of the ith local model,
Si denotes the ith pre-specified working point.

3.2 Model identification and validation

The identification of the LPV system is to estimate all
the unknown parameters θ := [βi, σ

2
i ], (i = 1, 2, · · · ,M)

based on the input-output data and scheduling variable
data. There are many ways to estimate the global LPV
model [22, 23, 24], In this paper, the maximum likelihood
optimization approach introduced in [24] will be used to
estimate the parameters. In the model identification, the
precipitation is also treated as irrigation. Other weather
factors such as temperature, humidity, solar radiation
and wind are treated as disturbances. By simulating the
agro-hydrological model with varying weather conditions
and changing irrigation input, input-output data can be
collected for model identification.

To determine the optimal number of working points M ,
different numbers of working points are tested. Specifically,
M = 2, 3, 4 and 5 are considered. In the simulations, the
sampling time is 1 hour, the input signal is the binary input
signal with average switching time of 15 hours. During the
transition period between two different operating points,
the irrigation amount changes as ramp signals.

After obtaining the input-output data of each case, we
identify LPV models based on the input-output data sets.
By performing the residual analysis, the orders na and
nb of the local ARX models were both determined to be
1. We compare the prediction performance of these LPV
models (M = 2, 3, 4 and 5) using the training data set
(self-validation) and a new data set generated using a
stochastic input signal (cross-validation). Table 3.2 shows
the root mean square errors of self-validation (SV RMSE)
and cross-validation (CV RMSE) of the identified LPV
and LTI models. From Table 3.2, we can see that both

Table 3.2 The prediction performance of the identified
LTI and LPV models

Model type SV RMSE CV RMSE
LTI (M = 1) 0.0222 0.0397
LPV (M = 2) 0.0086 0.0163
LPV (M = 3) 0.0078 0.0135
LPV (M = 4) 0.0054 0.0056
LPV (M = 5) 0.0053 0.0056

the SV RMSE and the CV RMSE of the LPV models are
much smaller than those of the LTI model and decrease as
the working pointsM increases. However, the performance
improvement from M = 4 to M = 5 is negligible.
Therefore, we choose the LPV model with M = 4. Fig. 2
shows the cross-validation of the identified LPV model
with M = 4. Further, we investigated the steady-state
diagram of the LPV model and compared it with the
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steady-state diagram characterized by Richards’ equation.
The results are shown in Fig. 3. It is seen that the identified
LPV model with M = 4 effectively captures the dynamic
and steady state characteristics of the agro-hydrological
model.
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Fig. 2. The corss-validation of the identified LPV model
with M = 4. The dashed line is the output of the
agro-hydrological system, the solid line is the output
of the identified LPV model.
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Fig. 3. Steady-state diagram of the Richard’s equation
(dashed line), the LPV model with M = 4 (solid line)
and LTI model with M = 1 (dash-dotted line)

4. ZONE MODEL PREDICTIVE CONTROL DESIGN

In this section, we present the proposed zone MPC de-
sign based on the identified LPV model. First, an aug-
mented state observer is designed which estimates sub-
model states of the LPV system as well as an augmented
output disturbance state. The output disturbance state
is introduced to account for model mismatch (between
the LPV model and the original model) and unknown
external disturbances due to changing weather condition.
Then, based on the estimated states and disturbance,
a zone MPC with asymmetric cost function is designed
to maintain the soil moisture within a target zone. The
asymmetry in the cost reflects a more urgent need to avoid
the soil moisture falling below the withering point than
the need to save irrigation water when the soil moisture is
high.

4.1 Augmented state observer design

To proceed, we rewrite the LPV model in the following
state-space form:

x(k + 1) =Ax(k) +Bu(k) + d

y(k) =C(s(k − 1))x(k)
(6)

where x(k) ∈ R4, u(k) ∈ R and y(k) ∈ R are the
system state, input and output respectively. A, B, d
and C are matrices and vectors of appropriate forms
based on the LPV model in (3) - (5). Specifically,
A = diag(−a11,−a21,−a31,−a41), B = [b11, b

2
1, b

3
1, b

4
1]

T , d =
[d11, d

2
1, d

3
1, d

4
1]

T , C(s(k − 1)) = [α1(s(k − 1)), α2(s(k −
1)), α3(s(k− 1)), α4(s(k− 1))]. To account for model mis-
match and unknown disturbances, we introduce an output
disturbance state p(k) to the above state-space model.
Similar approaches has been used in [25, 26, 27, 28] to
result in the so-called offset free MPC. The augmented
state-space model is expressed as follows:

x(k + 1) = Ax(k) +Bu(k) + d

p(k + 1) = p(k)

y(k) = C(s(k − 1))x(k) + p(k)

(7)

The proposed observer for the above augmented system
has the following form:

x̂(k|k) = x̂(k|k − 1) + Lx(k)(y(k)− ŷ(k|k − 1)) (8)

p̂(k|k) = p̂(k|k − 1) + Lp(k)(y(k)− ŷ(k|k − 1)) (9)

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) + d, (10)

p̂(k + 1|k) = p̂(k|k) (11)

ŝ(k) = y(k) (12)

ŷ(k + 1|k) = C(s(k))x̂(k + 1|k) + p̂(k + 1|k) (13)

where x̂, p̂ and ŷ denotes the predicted state, output
disturbance and output respectively. The filter gain Lx, Lp

can be computed using Kalman filtering techniques [28].

4.2 Zone MPC design

In the zone MPC design, the primary control objective
is to maintain the soil moisture in a range which is ideal
for grass grow. There is also a secondary objective to save
irrigation water. Due to the uncertainties in the changing
weather condition (precipitation, humidity, etc.), the tar-
get zone employed in the zone MPC is made smaller than
the actual ideal soil moisture range. This leaves a margin
for handling the uncertainties of the system. Moreover,
since the risk cost of the soil moisture dropping below
the withering point is higher than the risk cost of wasting
irrigation water, we introduce asymmetric penalties on the
output trajectories that violate the zone tracing objective.
The target zone and asymmetric tracking penalty is illus-
trated in Fig. 4. The proposed zone MPC is based on the
augmented system model in (7). At a sampling time k, the
following optimization is solved:

min
u(i),ϵ̄(i),ϵ(i)

N∑
i=1

(
Q̄ϵ̄(i)2 +Qϵ(i)2

)
+

N−1∑
i=0

Ru(i)2 (14a)

s.t. x(i+ 1) = Ax(i) +Bu(i) + d (14b)

p(i+ 1) = p(i) (14c)

y(i) = C(s(i− 1))x(i) + p(i) (14d)

x(0) = x̂(k|k), p(0) = p̂(k|k) (14e)

W 3 − ϵ(i) < y(i) < W̄3 + ϵ̄(i) (14f)

u(i) ∈ U (14g)

ϵ(i) ≥ 0, ϵ̄(i) ≥ 0 (14h)
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the desired soil moisture range. The tracking cost is
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In the above zone MPC design, the objective function
(14a) consists of two parts. The first part corresponds to
the asymmetric soil moisture zone tracking penalty and
the second part corresponds to penalty on the irrigation
amount. The asymmetric zone tracking penalty is realized
by introducing slack variables ϵ̄ and ϵ to relax the target
zone in (14f). W 3 and W̄3 correspond to the lower and
upper bound of the tracking zone respectively. Q and Q̄
are the cost associated with violating the lower and upper
bound of the target zone respectively, with Q > Q̄ > 0.
(14e) specifies the initial condition where the initial system
state x and disturbance p are obtained by the augmented
observer in Section 4.1. The input constraint set U specifies
the allowed irrigation amount within one sampling time.

5. RESULTS AND DISCUSSION

In this section, the performance of the state and distur-
bance observers will be tested and the performance of
the proposed zone MPC will be compared with a set-
point tracking MPC under different irrigation cases. The
sampling time is 1 hour, We choose a control horizon
N = 5. The weighting matrices are Q̄ = 50, Q = 4000
and R = 20.

To ensure that the grass has enough moisture supply,
the ideal range is set as Z = [0.20 cm3/cm3, 0.35
cm3/cm3]. The zone MPC tracks a target zone of W3 =
[0.22 cm3/cm3, 0.34 cm3/cm3], and the set-point tracking
target is 0.28 cm3/cm3.

5.1 Unrestricted irrigation time

First, we compare the performance of the set-point track-
ing MPC with the zone-MPC in the case without restric-
tion on irrigation time. Here, a logistic function 1/(1 +
exp(−u) is added to the cost function to reduce the number
of on-off switches. The output trajectories of the set-point
tracking MPC and the zone MPC are shown in Fig. 5. The
total irrigation amount of the two MPC configurations are
169 cm and 136.3 cm. It is seen that the zone MPC leads
to significant irrigation water savings compared to set-
point tracking MPC while maintaining the soil moisture

within the target zone. This is because the proposed zone-
MPC provides larger admissible output range than the set-
point tracking MPC, so that more degrees of freedom in
the controller can be released to minimize the irrigation
amount.

5.2 Restricted irrigation time

Second, we compare the performance of the set-point
tracking MPC with the zone-MPC in the case with re-
striction on irrigation time. Specifically, the irrigation is
restricted to take place only the following time of the
day: 4:00am–6:00am, 12:00am–14:00pm and 18:00pm–
20:00pm. The simulation results are shown in Fig. 6. The
total irrigation amount of the two MPC configurations are
211.7 cm and 144.0 cm. From these results, we can see
that zone MPC results in less irrigation amount and zone
tracking violation compared with the set-point MPC in
different irrigation cases.
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Fig. 5. Closed-loop soil moisture trajectories under the set-
point tracking MPC (dash-dotted line) and the zone-
MPC (solid line): unrestricted irrigation time.
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Fig. 6. Closed-loop soil moisture trajectories under the set-
point tracking MPC (dash-dotted line) and the zone-
MPC (solid line): restricted irrigation time.

6. CONCLUSIONS

This work aims at control system design for agro-
hydrological systems. First, an LPV model was identified
based on the first-principle agro-hydrological model. Then,
a zone MPC was designed based on the LPV model. An
augmented state and output disturbance observer was
employed to account for the model mismatch and uncer-
tainties in the changing weather condition. The proposed
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zone MPC minimizes an asymmetric cost to lay heavier
penalty on the soil moisture dropping below the withering
point than on water consumption. Simulation results show
that the proposed zone MPC may lead to considerable
irrigation water saving as compared to the conventional
set-point tracking MPC.
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