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Abstract: In this paper, we consider state estimation of wastewater treatment plants based on
model approximation. A wastewater treatment plant described by the Benchmark Simulation
Model No.1 (BSM1) is used. We use the proper orthogonal decomposition approach with re-
identification of output equations to obtain a reduced-order model for the original system and
then use the reduced-order model in state estimation. An approach on how to determine an
appropriate minimum measurement set is also proposed. A continuous-discrete extended Kalman
filtering algorithm is used to design an estimator based on the reduced-order model with re-
identified output equations. The estimator gives good state estimates for the actual process.
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1. INTRODUCTION

Wastewater treatment plants (WWTPs) have been widely
used to minimize the environmental impacts of wastewater
and to recycle water (Han and Qiao (2013)). The inlet flow
rate and the composition of the wastewater to a WWTP
vary dramatically, which pose great challenges to the con-
trol and monitoring for WWTPs. Various model predic-
tive control (MPC) algorithms were used for WWTPs.
Set-point tracking MPC was used to control the effluent
quality (Shen et al. (2008)). In Zeng and Liu (2015), an
economic MPC algorithm was proposed to improve the
effluent quality while minimizing the operating cost.

Most existing control approaches for WWTPs were pro-
posed based on an assumption that all the states are
measurable. This limitation can be relaxed by using state
estimation. There are already some results on state estima-
tion for WWTP related problems. In Kiss et al. (2011), a
state estimator was designed for biological process models
containing no more than ten state variables. Extended
Kalman filter (EKF) and moving horizon estimation have
been used to handle the state estimation of WWTPs based
on a simplified model (Busch et al. (2013)). A distributed
EKF scheme comprising two local estimators was devel-
oped based on the same simplified model (Zeng et al.
(2016)). However, BSM1 which provides better descrip-
tion of the WWTP dynamics has not been systematically
considered in state estimation. In this work, we will focus
on state estimation of the BSM1 Alex et al. (2008).

The challenges are threefold: (1) state estimation problems
are much more challenging when higher order models are
considered (Busch et al. (2013)); (2) the future synthesis
of state estimation and MPC/EMPC in one integration
can be very computationally demanding based on a large-
scale model (Christofides et al. (2013)); (3) by choosing

1 Corresponding author: Jinfeng Liu. Tel.: +1-780-492-1317. Fax:
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measurements following Alex et al. (2008), the BSM1
model is not locally observable. The above limitations may
be bypassed if we are able to find a reduced-order model
which accurately approximates the dynamics of a large-
scale WWTP model and then design a state estimation
scheme based on the reduced-order model (Daoutidis et al.
(2016)). In addition, state estimation based on a reduced-
order model may require much less measurements, which
is favorable for implementation and maintenance.

In this work, we propose a systematic state estimation
approach for WWTPs based on model approximation.
The BSM1 model is considered. Specifically, the proper
orthogonal decomposition (POD) approach is applied to
obtain a reduced-order model which approximates the
dynamics of the WWTP. Then, we use ordinary least
squares to re-identify the output equations of the reduced-
order model. The updated reduced-order model is then
used in state estimation. An approach to determine a
minimum set of measurements is also developed. Based
on the obtained reduced-order model with selected mea-
surements, we design a state estimation scheme using a
continuous-discrete extended Kalman filtering algorithm.
The simulation results show that our proposed approach
can provide good state estimates of the actual dynamics
of the WWTP based on only three measurements. More-
over, the computational load of the proposed scheme is
substantially reduced.

2. PRELIMINARIES

2.1 Notation

DH represents the conjugate transpose of a matrix D.
Λ(D) represents the set which contains all the eigenvalues
of a matrix D. λi (D) indicates the i-th eigenvalue of a
matrix D. ‖D‖2 is the spectral norm of matrix D. K+

represents a set that contains all non-negative integers.
diag (v) is a diagonal matrix in which the elements of the
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Fig. 1. A schematic of the BSM1 wastewater treatment
plant

vector v are on its main diagonal. For two matrices (or
vectors) A and B of the same dimension, the operator
A ◦ B denotes the Hadamard product which is calculated
element by element as (A ◦B)i,j = Ai,j × Bi,j . A ◦ A is

called the Hadamard power of A and is denoted by A◦2.

2.2 Wastewater treatment process description

A schematic of the WWTP based on BSM1 is presented
in Fig. 1 (Alex et al. (2008)). The process comprises a
multi-chamber biological activated sludge reactor and a
secondary settler. The biological reactor has two sections:
the non-aerated section containing the first two anoxic
chambers and the aerated section consisting of the remain-
ing three chambers. The dynamics of the settler is modeled
based on mass balances of the sludge considering solid flux.
A detailed description of the model of WWTPs and the
process parameters can be found in (Alex et al. (2008)).

In this model, eight basic biological reaction processes
are considered, and 13 major compounds are taken into
account in these reactions. The concentrations of the 13
compounds in the five chambers are the state variables of
the model of the biological reactor.

2.3 Available measurements for state estimation

For the WWTP, we consider that there are in total 49 mea-
surements available for state estimation. In each chamber
of the reactor, eight states/state-related variables are mea-
surable (Busch et al. (2013); Alex et al. (2008)), including
the oxygen concentration, the concentration of free and
saline ammonia (i.e., NH3 and NH4+), nitrate and nitrate
nitrogen concentration, alkalinity concentration, COD, fil-
tered chemical oxygen demand (denoted as CODf ), BOD.
In the secondary settler, the concentrations of oxygen,
free and saline ammonia, nitrate and nitrate nitrogen, and
alkalinity in the top and the bottom layers, as well as the
filtered chemical oxygen demand in the bottom layer are
considered to be measurable.

2.4 Compact form of the WWTP model

The WWTP model can be described by a compact non-
linear state-space model as follows:

ẋ(t) = f (x(t), u(t))

y(t) = Cx(t)
(1)

where x ∈ R145 denotes the state vector, y ∈ R49 repre-
sents the vector of all the measurements, u ∈ R3 denotes
the input vector consisting of both the manipulated inputs

and the uncontrolled input to the WWTP plant. In the
present work, we will derive a reduced-order model to
approximate the dynamics of the model (1). Then, we
will find an appropriate minimum set of measurements
used for state estimation. Based on the obtained reduced-
order model and the measurements from the appropriate
minimum set, we design an EKF estimator to provide state
estimates for the WWTP.

3. PROPER ORTHOGONAL DECOMPOSITION AND
ITS APPLICATION TO WWTP

There are 145 state variables in the BSM1 model, and
49 measurements available for state estimation. However,
by checking the rank of the observability gramian at each
point along a typical state trajectory, the WWTP system
is not always locally observable based on the 49 mea-
surements. Using a reduced-order model to approximate
the actual dynamics of the process and designing a state
estimator based on the reduced-order model may help us
bypass the observability issue.

3.1 Proper orthogonal decomposition

For nonlinear systems described by ordinary differential
equations, a POD-based model approximation approach
is introduced as follows (Antoulas and Sorensen (2001)).

Let us take into account general nonlinear systems de-
scribed by Eq.(1). Based on a typical input trajectory, the
corresponding state trajectory is captured and sampled
every time interval δ. Accordingly, a matrix of the sampled
process states from t0 to tN is obtained as:

X = [x(t0) x(t1) . . . x(tN )] (2)

where X ∈ Rn×(N+1) is called a snapshot matrix of the
actual state. In (2), n represents the number of state
variables, while N is the number of sampling intervals.
For the snapshot matrix X , we require that the number
of samples should be sufficiently large such that N � n.
At the next step, singular value decomposition (SVD) is
performed on the matrix X as:

X = UΣV H (3)

where U is a n × n unitary matrix, Σ is an n × (N + 1)
rectangular matrix with non-negative real values on its
main diagonal, V is an (N + 1)× (N + 1) unitary matrix.
The entries σi, i ∈ {1, . . . , n}, on the main diagonal of
Σ are the singular values of matrix X . Commonly, σi,
i ∈ {1, . . . , n}, are arranged in a descending order on the
main diagonal of Σ. Subsequently, we should check if these
values decrease rapidly. If yes, then do the following steps:

(1) Select an appropriate positive integer r < 145, such
that the first r singular values σi, i ∈ {1, . . . , r} are
much larger than the remained singular values;

(2) Obtain a reduced-order square matrix Σr by truncat-
ing the matrix Σ at the r-th column and row;

(3) Select the first r columns of U to form a matrix Ur;
(4) Select the first r rows of V H to form a matrix V H

r .

Then, a lower-order approximation of the actual process
data is formed as

X ≈ UrΣrV H
r (4)

Let us use ξ ∈ Rr to denote the state vector of the reduced-
order model, and define ξ(t) := UH

r x(t). By considering the
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original nonlinear model in Eq.(1), a reduced-order model
of order r is expressed in the following state-space form:

ξ̇(t) =fr
(
ξ(t), u(t)

)
(5a)

y(t) = CUrξ(t) (5b)

where fr denotes a vector field which is defined as
fr (ξ, u) := UH

r f
(
Urξ, u

)
. Based on the evolution of ξ(t)

in model (5), the actual state trajectory of the original
nonlinear process can be approximated through the map-
ping x(t) ≈ Urξ(t).

3.2 Model reduction of the WWTP

For WWTP, Q0 (and Z0) is an input that is primarily
determined by the current weather condition; Qa and
KLa5 are two manipulated inputs that are usually used
in control system designs. When the weather conditions
are different, the values of Q0 and Z0 are much different.
Note that a different model should be identified for each
weather condition accordingly to accurately approximate
the dynamics under different weather conditions.

To perform model order reduction, the three inputs are
used to excite the WWTPs. The input sequence of Q0

and the associated concentration information Z0 are ob-
tained from real data under the dry-weather condition.
We consider that the input Qa is a periodic (with a
period of 1 day) RBS taking a value of either 5.5338 ×
104 m3 · d−1 or 1.6601 × 105 m3 · d−1; the input KLa5
is also a RBS which takes a value of either 84 d−1 or
252 d−1. The initial condition of the process is selected
as the steady-state which is corresponding to constant

inputs [Q0 Qa KLa5]
T

= [18446 55338 84]
T

. The input
signals are applied to the WWTP process to generate
the state trajectories which are sampled every 1 min (i.e.,
δ = 1 min). The sampled states within the first 28 days are
used to construct the snapshot matrix X for POD analysis.
In this case, the number of sampling intervals is 40320 and
the requirement N � n is satisfied.

Then, SVD is performed on the matrix X of a dimension
145 by 40321 and a unitary matrix U used for coordinate
transformation is obtained. The next step is to select a
proper order for the reduced model. When determining
the order of the reduced-order model, we strike a balance
between the size of the model and the accuracy of the
model, the latter of which cannot be directly checked by
examining the singular values.

To evaluate the reduced-order model accuracy, we resort
to the criterion based on the H2 norm of the model errors.
The H2 index (denoted by |emodel|H2

) which serves as an
indicator of the model mismatch is defined as follows:∣∣emodel

∣∣
H2

:=

√√√√ N∑
k=0

145∑
i=1

(
xi(tk)− x̄i(tk)

xi(tk)

)2

(6)

where xi represents the i-th state involved in the state
vector x, x̄ := Urξ is the approximated state obtained
from a reduced order model, and x̄i is the i-th element in
x̄ which is associated with xi, i ∈ {1, . . . , 145}.
To determine the accuracy of a reduced-order model, we
simulate the actual process over a period of 14 days with
Qa and KLa5 determined by two PI controllers as specified

30 40 50 60 70 80 90

Order of the reduced model

0

0.01

0.02

H
2 in

de
x

Fig. 2. The values of the H2 index at different orders

in Zeng and Liu (2015). The trajectories of Qa and KLa5
are recorded. The same Qa, KLa5 trajectories as well
as the same weather condition Q0 are applied to each
reduced-order model in an off-line manner to obtain the
corresponding state trajectories.

Based on the actual process state trajectories and reduced-
order model state trajectories, the H2 index is calculated
for each model. The values of the H2 index at different
orders r = 30, . . . , 90 are shown in Fig. 2. In general, the
degree of model mismatch increases with the decrease in
the model order. Moreover, the H2 index remains at a
comparatively low level when the order is no less than 40.
By further examining the values of this index with respect
to different orders, we determine to use the reduced model
with order 45 for state estimation. That is, the leading
45 columns of the matrix U are used to constitute the
coordinate transformation matrix Ur in reduced model (5).

4. OUTPUT EQUATION RE-IDENTIFICATION AND
MEASUREMENT SELECTION

In this section, we propose to re-identify the output equa-
tion of the reduced-order model for improved model accu-
racy and propose an approach to determine the measure-
ment set used in estimation.

4.1 Re-identification of the output equation

The use of a reduced-order model to approximate the
actual process dynamics leads to model mismatch. To
improve the accuracy of the reduced-order model, we re-
identify the output model. This is based on the fact that
the output model was derived from (5a) and the actual
system measurements were not used, which makes (5b)
not a very good approximation of the relation between the
actual measurement and the reduced-order model states.
To improve the accuracy of the output model, we can
re-identify the output equation using the actual output
measurements and the reduced-order model states.

We examine the trajectories of the actual measurements
and the approximations of the measurements based on
POD. While most approximations are close to the true
values of the measurements, the approximations for a few
measurements of CODf at different locations (denoted by
y31 to y36) do not track the trends of the corresponding
true values very well. In Fig. 3, we present the trajectories
of the true measurements with respect to CODf (blue
dash-dot lines) and their approximations given by the
reduced-order model (orange dashed lines). The discrep-
ancy is not negligible.
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Fig. 3. The trajectories of the true measurements with
respect to CODf , the approximations based on POD
and the approximations based on least squares

One way to reduce the mismatch of the model (5b)
is to re-identify the output functions for the six mea-
surements using least squares. Let us denote by Y (tk)
the vector of the six considered measurements at tk
(i.e., Y (tk) = [y31(tk) . . . y36(tk)]

T
) and denote by ξ(tk)

the vector of the reduced system states (i.e., ξ(tk) :=

[ξ1(tk) . . . ξ45(tk)]
T

) for k = 0, . . . , N . Further, let Y =
[Y (t0) . . . Y (tN )] and Ξ = [ξ(t0) . . . ξ(tN )]. A linear
model is established as:

YT = ΞTβ + ε (7)

where β is a 45 by 6 matrix consisting of unknown pa-
rameters to be identified, ε contains unobserved random
variables accounting for the discrepancy between the true
observations and the corresponding approximations pro-
vided by the linear functions. Based on least squares, an
estimate of the unknown parameter matrix β is given by
the Moore-Penrose pseudo-inverse of matrix ΞT as:

β̂ =
(
ΞΞT

)−1
ΞYT (8)

The simulation is implemented under the same condition
considered in model reduction. Specifically, using the same
input signals to stimulate the reduced-order model, the
corresponding state trajectory Ξ is generated. The tra-
jectories of the six measurements under this condition are
also used. Using the data Y and Ξ sampled from the above

trajectories, an estimate β̂ is obtained based on (8). Then,
the identified output functions are validated. Let us take
the dry weather condition for example. As seen from Fig. 3,
the output functions for the six considered measurements
updated based on least squares (red solid lines) are more
accurate compared to the output functions generated from
POD (orange dashed lines).

Therefore, the matrix βT is used to replace the 31-rd row
to the 36-th row of the matrix CUr in Eq.(5b) such that
an updated reduced-order model is generated:

ξ̇(t) =fr
(
ξ(t), u(t)

)
(9a)

y(t) = Crξ(t) (9b)

4.2 Measurement selection

There are in total 49 measurements that can be used for
state estimation. However, the use of more measurements
will lead to higher economic investment and more main-
tenance efforts. In this section, we discuss how to find
a minimum configuration of measurements which ensures
the local observability of the process. Then, we propose to
select an appropriate configuration of measurements which
provides improved degree of observability.

Assessment criteria for quality of observability We first
introduce the following criteria that have been proposed
for assessing the quality of observability of linear systems.
These criteria provide scalar measures by using the ob-
servability gramian Wo.

Consider an imbedding set of scalar functions depending
on a (semi-)positive definite matrix D described in the
following form (Müller and Weber (1972)):

ms = ms

(
Λ(D)

)
=

(
n∑
i=1

1

n
λsi,D

) 1
s

(10)

with a proper order s ≤ 0 which is to be specified and
n being the dimension of the matrix D. In Eq.(10), λi,D,
i ∈ {1, . . . , n}, represents the i-th eigenvalue of matrix D.
The form in (10) that is evaluated based on the observ-
ability gramian Wo at different orders of interest leads to
three evaluation criteria for the quality of observability
(Müller and Weber (1972)): µ1 = lims→−∞ms

(
Λ(Wo)

)
=

min
{
λi(Wo)

∣∣i = 1, . . . , nx̃
}

, µ2 = ms

(
Λ(Wo)

)∣∣
s=−1 =

nx̃
trace(W−1

o )
and µ3 = lims→0ms

(
Λ(Wo)

)
= n
√

det (Wo).

Basically, for each scalar function µi, i = 1, 2, 3, a larger
value for the investigated system indicates a better qual-
ity of observability of the system with the corresponding
configuration of measurements.

In addition, two more criteria effective for determining
the quality of observability are introduced. One is the
condition number of the observability gramian (Dochain
et al. (1997)). In particular, based on the observabil-
ity gramian Wo , the index is calculated as: γ (Wo) =
max {σi : i = 1 . . . , nx̃}
min {σi : i = 1 . . . , nx̃}

where σi, i ∈ {1, . . . , nx̃}, is the

i-th singular value of the matrixWo. Unlike the other crite-
ria, a larger condition number implies that the system has
weaker observability, which brings difficulty in designing a
successful state estimation scheme.

The last adopted measure is the spectral norm of ob-
servability gramian Wo (Van den Berg et al. (2000)):

ρ (Wo) = ‖Wo‖2 =
√

max {σi : i = 1 . . . , nx̃} A larger
ρ(Wo) is associated with a better observability result.

Note that when the above measures are used to compare
the quality of observability of a system with different
measurement configurations, this is no guarantee that the
five quality indices (i.e., µ1, µ2, µ3, γ and ρ) will give
strictly consistent result. Based on this consideration, an
index (denoted by OQOI) that combines the five indices
via weighting coefficients is proposed to assess the overall
quality of observability of a system.

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

569



OQOI =
µ1

c1
+
µ2

c2
+
µ3

c3
+

1
γ(Wo)

c4
+
ρ (Wo)

c5
(11)

where ci, i = 1, . . . , 5, are pre-determined constant weight-
ing coefficients. When the five individual indices cannot
provide a consistent recommendation, we calculate the
indices of OQOI and select the best configuration with
the largest OQOI value among candidates.

Selection of a minimum measurement configuration
First, we linearize the reduced-order model (9) successively
at different points along its operating trajectories and find
the minimum number of measurements that give local ob-
servability of the reduced-order model. Then, the measure
OQOI is used to determine the set of minimum measure-
ments that gives the highest degree of observability. The
detailed procedure is summarized as follow.

Algorithm 1. Determine the minimum measurement set

1. Generate a trajectory of the state ξ from t0 to tN
based on the reduced model (9).

2. Sample the state trajectory every sampling period ∆.
3. At each sampling time tk, linearize the reduced

system model (9a) at the point (ξ(tk), u(tk)) and
obtain the system matrices (denoted by Aξ,k :=
∂fr(ξ,u)

∂ξ

∣∣∣
(ξ(tk),u(tk))

, k = 0, . . . , N).

4. Set m = 1, and perform the following steps:
4.1. Find all the possible measurement configurations

in each of which there is(are) m measurement(s),
and form the corresponding output matrices.

4.2. At tk, k = 0, . . . , N , calculate the observability
gramian Wo(tk) for the linearized system under
each possible measurement configuration.

4.3. For each configuration, calculate the ranks of the
associated observability gramian matrices along
the trajectory and do:
if the gramian matrices at tk, ∀k = 0, . . . , N ,
are full-rank for only one configuration of mea-
surement(s), then

choose this configuration as the minimum con-
figuration for state estimation, end .
else if the gramian matrices at tk, ∀k =
0, . . . , N , are full-rank with respect to at least one
configuration of measurement(s), then

go to Step 5.
else

set m=m+1 and go to Step 4.1.
end

5. Select each measurement configuration which
leads to full-rank Wo(tk), ∀k = 0, . . . , N , calcu-
late the mean value of OQOI along the trajec-
tory.

6. Among the measurement configurations found in
Step 5, choose a minimum configuration for state
estimation with the largest average OQOI .

The weighting coefficients ci, i = 1, . . . , 5, in OQOI in
(11) are determined on a case-by-case basis. In this work,
each ci, i = 1, . . . , 5, is selected to be the largest value
that the corresponding quality index can reach at m = 3.
The results suggest that the minimum number of process
measurements required to ensure local observability at all
the sampling instants is 3. More than one configuration of

measurements is found. To select the best configuration,
the indices of µ1, µ2, µ3, γ and ρ are further calculated
based on the observability gramian for all the possible
configurations within a 14-day period. OQOI are calcu-
lated for all the 18424 possible measurement configura-
tions within a 14-day period. The 15200-th configuration
with measurements y22, y25 and y26 is recommended. In
this set of simulations, for each candidate configuration,
we calculate the observability gramian and calculate the
corresponding indices of the quality of observability every
2 hours (i.e., ∆ = 2h) due to high computational burden.

5. STATE ESTIMATION BASED ON
REDUCED-ORDER MODEL

In this section, we design a centralized EKF estimator
based on the reduced-order model.

Let us consider a stochastic version of the reduced system
model in (5) described as in the following form:

ξ̇(t) = fr
(
ξ(t), u(t)

)
+ w(t) (12a)

y(t) = Crξ(t) + v(t) (12b)

where w ∈ Rnξ denotes the vector of process disturbances
and v ∈ Rny represents the vector of measurement noise.
We further assume that the process disturbances w and
measurement noise v are two mutually uncorrelated Gaus-
sian noise sequences and are with zero-mean and covari-
ance matrices Qw and Rv, respectively.

The reduced-order model is featured by continuous-time
dynamics, yet only sampled measurements. Based on the
above consideration, a continuous-discrete EKF estimator
is designed follwing Frogerais et al. (2012). Within a
sampling period t ∈

(
tk−1, tk

]
, in the predictor-update

step, a prediction (i.e., ξ̂ (t|tk−1)) is given in an open-loop
manner based on the reduced-order model (5a) and initial

condition ξ̂ (tk−1|tk−1). Then, at each sampling instant tk,
a state estimate of the actual dynamics of the reduced

system (denoted as ξ̂ (tk, tk)) is obtained by performing
the measurement-update step. By taking advantage of the

discrete state estimate given by EKF (denoted as ξ̂) and
the linear mapping Ur, the state estimate of the actual
state of the WWTPs (denoted by x̂) is obtained following

x̂(tk) = Ur ξ̂(tk), k ∈ K+.

6. SIMULATIONS

6.1 Simulation settings

The data for different weather conditions were obtained
from the International Water Association website. The
values of the process parameters are selected to be the
same as given in Alex et al. (2008).

The measurements are sampled synchronously at tn≥0
where tn = t0 + n∆s with t0 = 0 the initial time instant,
∆s = 15min the sampling period and n ∈ K+. At each
sampling instant, the measurements are immediately avail-
able to the estimator. Each process disturbance sequence
associated with the i-th state xi is generated following
normal distribution with zero mean and standard devia-
tion 0.1xi,s where xi,s is the steady-state value of xi corre-
sponding to specific constant inputs. Random noise to each
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Fig. 4. The trajectories of the actual states (blue dash dot
lines) and the state estimates based on 3 measure-
ments (red dashed lines) in dry weather

measurement yi is Gaussian white noise with zero mean
and standard deviation 0.08yi,s, in which yi,s is the value
of yi at steady-state. The tuning parameters in the EKF
are Qw = diag

(
v◦2w
)

where vw = 0.1 × UH
r [x1,s . . . x145,s]

and Rv = diag
(
v◦2v
)

where vv = 0.08× UH
r [y1,s . . . y49,s].

6.2 Results of dry weather condition

We consider state estimation with the minimum mea-
surement set in dry weather for illustration. Some of the
trajectories of the state estimates and the actual states
are shown in Fig. 4. The proposed estimation scheme with
three measurements can give good estimates.

We also compare the proposed scheme with a central-
ized EKF scheme directly designed based on the BSM1
model in terms of computational efficiency. The average
computation time required by the proposed EKF scheme
with 3 measurements and the EKF explicitly based on the
BSM1 model is 780.46 sec and 3345.62 sec, respectively.
The proposed approach is more computationally efficient
due to the use of the reduced-order model.

7. CONCLUDING REMARKS

State estimation for WWTP was addressed via POD-
based model approximation. The output functions in the
reduced model were updated using least squares for im-
proved accuracy. We also proposed an algorithm to deter-
mine a minimum set of measurements for state estimation.
An EKF-based state estimation scheme was developed
using the reduced model and the formed measurement set.
Simulations were carried out under the dry weather condi-
tion. The good estimates of the actual WWTP dynamics
demonstrated the effectiveness the proposed approach.
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