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Abstract: In this paper, a framework is proposed for integrating a Biologically-Inspired Optimal
Control Strategy (BIO-CS) with Multi-Agent Optimization (MAO) algorithms for process systems
engineering applications. In this framework, the BIO-CS employs gradient-based optimal control solvers
in an intelligent manner to simultaneously control multiple outputs of the process at their desired
setpoints. Also, the MAO uses the capabilities of nonlinear heuristic-based optimization techniques
such as Efficient Ant Colony Optimization (EACO), Efficient Genetic Algorithm (EGA) and Efficient
Simulated Annealing (ESA) by sharing process information to obtain as an upper layer optimal
operating setpoints for the controller that satisfy the overall process objective. The resulting approach
is a unique combination of control and optimization methods that provide optimal solutions for
dynamic systems. The applicability of the proposed framework is demonstrated using a nonlinear,
multivariable fermentation process. In particular, a multivariable control structure associated with the
first-principles-based model derived from mass and energy balances of the fermentation process is
addressed. The performance of the proposed approach for each step is compared to Sequential Quadratic
Programming (SQP) and a classical Proportional-Integral (PI) controller in terms of optimization and
control, respectively. The proposed approach improves the overall performance of the process in terms
of cumulative production rate by approximately 10-15%, resulting in economic benefits. The obtained
results illustrate the capabilities of this novel integrated framework to achieve desired nonlinear system
performance considering scenarios associated with setpoint tracking and plant-model mismatch.
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1. INTRODUCTION

Biomimetic methods are the human-made designs that mimic
biological systems. This area has gained a lot of attention
in recent years from researchers in various disciplines. These
methods are also emerging in chemical engineering applica-
tions, including process systems engineering. For example, a
Biologically-Inspired Optimal Control Strategy (BIO-CS) has
been recently proposed and illustrated via examples including
a nonlinear fermentation process (Lima et al., 2016; Li et al.,
2016; and Mirlekar et al., 2017) and a hybrid energy system
that integrates different process components (Mirlekar et al.,
2017). This approach has shown to have unique features for
handling process model nonlinearities as well as flexibility of
employing different optimal control solvers and termination
criteria when compared to traditional control methods. In case
of optimization, techniques that imitate ant colony optimization
with improved efficiency have recently been studied under the
name of Efficient Ant Colony Optimization (EACO) for molec-
ular design and solvent selection case studies (Gebreslassie
and Diwekar, 2015). In addition, the abilities of heuristic-based
methods such as EACO, Efficient Genetic Algorithm (EGA)
and Efficient Simulated Annealing (ESA) were used to develop
homogenous Multi-agent Optimization (MAO) techniques by
? This work is supported by DOE Grant No.: DE-FE0012451

establishing communication protocol between the algorithm
procedures and the global information sharing environment
(Gebreslassie and Diwekar, 2015). However, the combination
of biomimetic control strategies and agent-based optimization
methods for nonlinear systems have not yet been addressed in
an integrated fashion. In particular, in the context of process
systems engineering, control studies are necessary to address
setpoint tracking, disturbance rejection and plant-model mis-
match challenges associated with process dynamics. Addition-
ally, optimization plays an important role in identifying the
optimal steady states or operating conditions for the processes
that will satisfy the overall process objective (e.g., economic,
productivity). To fill this gap and combine process control and
optimization techniques, in this article, BIO-CS is integrated
with MAO to design a novel framework that leads to optimal
dynamic process operations. The proposed combination results
in a unique biomimetic framework for optimal control of non-
linear chemical processes. In summary, the developed frame-
work yields optimal setpoints or a trajectory of setpoints for a
nonlinear, multivariable system considering an overall process
objective by employing MAO. This system is then optimally
controlled by BIO-CS to achieve the desired output setpoints.

The applicability of the proposed method is demonstrated using
a fermentation process model (Li et al., 2016) for bioethanol
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production. The presence of steady-state multiplicities and non-
linearities in this process model poses major challenges for
process control and optimization. In particular, in this multi-
variable system, finding the optimal setpoint associated with
production rate (or profitability) and the simultaneous control
of product concentration and temperature of the fermentor are
critical for optimal performance. The proposed framework is
implemented for the fermentation process to address these chal-
lenges. Specifically, scenarios of setpoint tracking and plant-
model mismatch are considered. The results of the developed
method are compared to a gradient-based Sequential Quadratic
Programming (SQP) technique (Diwekar, 2008) and a classical
proportional-integral (PI) controller in terms of optimization
and control studies, respectively.

The rest of the article is organized as follows: Section II
presents the proposed concepts including the algorithm de-
tails; Section III describes the fermentation process application;
Section IV contains the optimization and control results; and
Section V presents the conclusions.

2. BIOMIMETIC CONTROL STRATEGY INTEGRATED
WITH MULTI-AGENT OPTIMIZATION

2.1 Proposed Integrated Framework

The proposed framework for the integration of the BIO-CS
controller with the multi-agent optimizer considering process
systems applications is shown in Fig. 1. As depicted in this
figure, for a given process, the MAO acts in a supervisory
layer that considers the minimization or maximization of an
overall objective for the whole process. As a result of this
optimization, the optimal setpoints or trajectory of setpoints are
obtained for the controlled/output variables in different control
loops that represent sections of the process simulation. After
this optimization, BIO-CS controllers are designed for the cou-
pled control loops to take the process to these desired/optimal
operating setpoints. In the particular case of optimization, the
MAO search for decision variables in a solution space and then
implement those solutions on the process. Note that the process
model in this step is only employed to simulate the process
and calculate the objective function values. The interaction
between the MAO and the process simulation is depicted in
Fig. 1 (upper part). The same model, or a reduced version
of it, may be used for the design of the model-based BIO-
CS controllers. Specifically, as shown in Fig. 1 (lower part),
the BIO-CS compute and implement optimal control laws on
the process simulation for simultaneously tracking the multiple
outputs of the process to their desired setpoints. For a given
dynamic system model, it is assumed that the process control
loops have been already identified through control structure
selection techniques. These control loops or islands are thus
simultaneously controlled using BIO-CS and integrated opti-
mally through the MAO approach. The proposed framework is
developed in MATLAB by employing in-house MAO and BIO-
CS algorithms. Also, the MATLAB function ode15s is used for
process simulation purposes. A schematic with the algorithm
details associated with this integrated framework is depicted in
Fig. 2. The two main components of the proposed framework
(MAO and BIO-CS) are discussed in the next subsections.

2.2 Multi-agent Optimizer

The design of the multi-agent optimization approach for pro-
cess systems applications is explained here in details. In partic-

Fig. 1. Schematic of the overall integrated framework of BIO-
CS with multi-agent optimization

ular, homogeneous MAO techniques are considered for imple-
mentation purposes in this paper. Inside homogeneous MAO,
multiple agents compute solutions for the optimization prob-
lem. The developed MAO routine involves the following steps
(depicted in Fig. 2, inside red dotted rectangle):

(i) Select MAO algorithm from the available pool (EACO,
EGA, ESA, SQP) based on the user’s choice (e.g., EACO);

(ii) Define parameters for the algorithm initialization;

(iii) Generate multiple agents (1, 2, ..., z) of the selected
algorithm to obtain solutions for the decision variables by
exploiting the capabilities of the chosen algorithm representing
each agent;

(iv) Simulate the process using the solution of the decision vari-
ables obtained from previous step for each agent and compute
objective function values;

(v) Share the information among the agents globally for coor-
dination and comparison of the obtained solutions;

(vi) Check the optimality criteria (e.g., tolerance for the objec-
tive function value difference at consecutive iterations);

(a) If satisfied, then the MAO converged to an optimal
solution;

(b) If not satisfied, then repeat steps (ii)-(vi) by defining
different parameters for the agents.

The obtained optimal solution corresponds to the setpoints or
trajectory of setpoints for the outputs of the process that can
then be used in the implementation of the BIO-CS controllers.
Note that in this framework the agents/algorithms involved in
the optimization are only dependent on the process model for
the calculation of the objective function values. The MAO pa-
rameters are independent of the process simulation. The model
dependency particularly associated with step (iv) of the algo-
rithm is further described next. The mathematical formulation
of the optimization problem for process applications is given
by,

minimize J =
k

∑
i=1

h(yi,ui)

subject to, ulb ≤ ui ≤ uub

in which, xi+1 = f (xi,ui)

yi = g(xi,ui)

in which u ∈ Rm, x ∈ Rn and y ∈ Rp are the input, state and
output variables, respectively. f and g represent the nonlinear
models relating the state, output and input/decision variables of
the process in consideration. In the definitions of the inequality
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Fig. 2. Schematic of the algorithm details for the integrated BIO-CS with MAO framework

constraints, lb and ub stand for lower and upper bounds, re-
spectively. J denotes the objective function that consists of the
summation of the function of the i discrete controlled/output
variables over the predefined time horizon with k symbolizing
the number of discretization points. The solution of this non-
linear optimization yields the values of the y variable that are
feasible to satisfy the optimized objective function for a given
time horizon. The first step in the implementation for a process
model consists of the selection of decision variables (u) and the
number of intervals for discretization (k) for the time horizon.
The number of intervals is chosen based on the tradeoff between
desired computational efficiency and accuracy. The next step
is to discretize the selected decision variable ranges based on
the number of intervals. Then, the decision variable values at
the discretization points are computed by the optimizer agents
based on the algorithm capabilities. Subsequently, the values
of the variables involved in the objective function are obtained
from the process simulation by implementing the decision vari-
able values computed by the agents at each discretization point.
The objective function values at each discretization point are
then added together to provide a cumulative J value which
is further used in subsequent steps of the algorithm for in-
formation sharing and checking the optimality criteria. The
mathematical details on the homogeneous MAO that utilizes
the potential of multiple agents in terms of coordination, par-
allelization and diversity by global information sharing can be
found in the literature (Gebreslassie and Diwekar, 2017).

2.3 BIO-CS Controller

In this subsection, the BIO-CS algorithm employed for process
control applications is discussed. This model-based controller
mimics the ants’ rule of pursuit idea by combining gradient-
based optimal control and agent-based concepts in an intelli-

gent manner. In this control strategy, the agents follow simple
rules of interaction that result in optimal control trajectories.
The BIO-CS involves the following steps (also depicted in Fig.
2, inside black dotted rectangle):

(i) Start with initial conditions for a given dynamic process
model and generate an initial feasible input trajectory (corre-
sponding to an initial guess for agent0). Then select the BIO-
CS agents’ interaction parameters such as pursuit time (4),
discretization time (δ ) and sampling time (T );

(ii) Specify the obtained trajectory as the leader agent trajec-
tory;

(iii) Generate the follower agent trajectory by employing opti-
mal control solvers (e.g., gradient-based solver) in an intelligent
manner. The follower agent communicates with the leader by
predefined algorithm parameters to compute its own trajectory;

(iv) Compute the Integrated Time Absolute Error (ITAE) for
the follower trajectory over a user defined period of time and
then check if this ITAE value lies within a certain threshold (ε);

(a) if yes, the BIO-CS converged to an optimal control
solution;

(b) If no, then specify current follower trajectory as the next
leader and repeat steps (ii) - (iv).

(v) Retain the optimal control/input profile from BIO-CS for
implementation over a predefined sampling time horizon;

(vi) Simulate the process by employing the obtained control
laws for a sampling time horizon and then send the feedback
signal containing current outputs (y(t)) from the process to
update the conditions for the next sampling period and close
the loop.
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For the implementation of BIO-CS on multivariable control
loops, the optimal control problem is defined as follows:

minimize
u(t)

ϕ =
∫ t f

ti
‖(y(t)− ysp)‖2 +‖(u(t)−u−(t))‖2dt

such that, ẋ(t) = f (x(t),u(t))
y(t) = g(x(t),u(t))

subject to, x(t)lb ≤ x(t)≤ x(t)ub

u(t)lb ≤ u(t)≤ u(t)ub

in which the optimal control objective function, denoted by
ϕ , is minimized over a period of time. Here, ti and t f are
the initial and final times, respectively. The descriptions of
the other symbols are mentioned in the previous subsection.
The objective function (ϕ) generally consists of simultaneously
maintaining multiple outputs at their desired setpoints, ysp,
with the addition of the input suppression term that considers
past input moves, u−(t). These terms are minimizations of
the squared errors between the variables and their desired/past
values. Thus, the solution of this optimal control problem
provides optimal trajectories for each input of the Multi-Input-
Multi-Output (MIMO) system addressed to satisfy the objective
function and constraints. More details on the design of this
controller can be obtained from the literature (Mirlekar et al.,
2017). Next, the case study for the implementation of the
integrated framework on a nonlinear system considering a
fermentation process as an example is explained.

3. NONLINEAR PROCESS CASE STUDY

To demonstrate the applicability of the proposed framework
to a nonlinear chemical system, an extension of the fermen-
tation process example presented in reference (Mirlekar et al.,
2017) was employed as the implementation case study. For the
model extension, to prevent ethanol (end-product) inhibition
and improve the productivity and efficiency of the fermentation
process, an in situ ethanol-removal membrane is used so that the
ethanol is removed as it is being produced. The extended math-
ematical model also takes into consideration the temperature
effect on kinetics parameters, mass and heat transfer, in addition
to the kinetic equations modified from the indirect inhibition
structural model developed in the literature. In summary, the
fermentation process model comprises of seven Ordinary Dif-
ferential Equations (ODE) and two Algebraic Equations (AE)
(see details in Li et al., 2016). The main challenge of this system
lies in the nonlinearities for control and optimization studies.
For implementation purposes, a MIMO control structure that
consists of a two-input-two-output system is chosen from this
process. Selected model equations showing the input-output
relationships relevant to this paper are given below:

dCP

dt
=

P( f (T ))(CSCe)

YPX (Ks +CS)
+mpCX +DinCP0−DoutCP

−α(CP−CPM)

VF

(1)

dCPM

dt
=

AMPM(CP−CPM)

VM
+Dm,inCPM0−Dm,outCPM (2)

dTr

dt
= Din(Tin−Tr)+ f (CX ) f (Tr)−KF(Tr−Tj) (3)

dTj

dt
= D j,in(Tw,in−Tj)+K j(Tr−Tj) (4)

Dm,out = Dm,in +
AMPM(CP−CPM)

VMρr
(5)

Fig. 3. Schematic of the integrated framework with BIO-CS and
multi-agent optimization for the fermentation process

in which, equations (1) and (2) represent the mass balances
for the product concentration on the fermentor side (CP) and
membrane side (CPM), respectively. These equations also relate
concentrations of other species involved in the reaction system
in the fermentor, such as biomass (CX ), key component (Ce)
and substrate (CS). Equations (3) and (4) show the energy
balance in terms of temperature of the fermentor (Tr) and
the jacket (Tj), respectively. The remaining equation (5) is
the algebraic equation considered in this fermentation process
model in which the parameter α = AMPM . The definitions of all
the constants and parameters involved in this model and their
nominal values were obtained from the literature (Li et al.,
2016) and are summarized in Table 1.

Table 1. Base case set of constants and parameters
used for the fermentation process model

Parameter Description Value
CP0 Inlet fermentor product concentration (kg/m3) 0.01
CPM0 Inlet membrane product concentration (kg/m3) 0.01
Din Inlet fermentor dilution rate (h−1) 0.1
Dout Outlet fermentor dilution rate (h−1) 0.1
Dm,in Inlet membrane dilution rate (h−1) 0.5
Dm,out Outlet membrane dilution rate (h−1) 0.5
D j,in Inlet cooling water dilution rate (h−1) 0.5
Tin Inlet temperature of reactants (oC) 30
Tw,in Inlet temperature of cooling water (oC) 28
Ks Monod constant (kg/m3) 0.2
KF Heat transfer constant (h−1) 1.8324
K j Heat transfer constant (h−1) 0.0714
mp Maintenance factor based on product (kg/kgh) 1.1
YPX Yield factor based on product (kg/kg) 0.0526
VF Fermentor volume (m3) 0.003
VM Membrane volume (m3) 0.0003
P Maximum specific growth rate (h−1) 1.0
ρr Reactants density (kg/m3) 1080
PM Membrane permeability (m/h) 0.1283
AM Area of membrane (m2) 0.24

In this paper, the membrane dilution rate, Dm,in, as well as the
cooling water dilution rate in the jacket, D j,in, are chosen as
the manipulated variables for the regulation of ethanol con-
centration, CPM , and fermentor temperature, Tr, respectively.
The bound constraints on the manipulated variables are placed
as 0 ≤ Dm,in,D j,in ≤ 1.5. The selected control loops for the
fermentation process representing multiple islands along with
their integration using multi-agent optimization is depicted in
the schematic in Fig. 3. In the next section, the MAO analysis
and the BIO-CS implementation results for setpoint tracking
and plant-model mismatch scenarios are discussed.
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4. IMPLEMENTATION RESULTS

4.1 Multi-agent Optimization Results

For the implementation of the multi-agent optimizer to address
the fermentation process, the manipulated variables associated
with the control loops, i.e., Dm,in and D j,in are selected as the
decision variables. Also, the time horizon for the optimization
is chosen to be 20 h with the length of intervals of 4 h each.
This results in 5 discretization points for each of the decision
variables excluding the initial point. Inside the optimizer, agents
are employed to calculate the values of these decision variables
at each discretization point and implement those values in the
process simulation using ode15s in MATLAB. From this pro-
cess simulation, the objective function values as a function of
the controlled and decision variables are computed for each
corresponding discretization point. These discrete values are
then combined to calculate the cumulative objective function
value. For the implementation of the homogeneous MAO, an
optimization problem is formulated considering an overall ob-
jective of maximization of production rate, J, which is related
to the system profit, defined as follows,

maximize J =CPDoutVF +CPMDm,outVM

It is important to note that J is a function of three variables that
are associated with state/decision variables of the system (CP,
CPM and Dm,out ). The implementation results of the homoge-
neous MAO technique with EACO, EGA and ESA as the se-
lected algorithms for the fermentation process are summarized
in Table 2. Note that each selected homogeneous MAO only
considers agents with similar features, i.e., agents differ only
in terms of the algorithmic parameters and the initialization.
These results are also compared to the gradient-based SQP
(employing f mincon with its default parameters in MATLAB)
considering the same parameters and the result is also given
in Table 2. The cumulative J values in case of heuristic-based

Table 2. MAO implementation results

Outputs EACO EGA ESA SQP
CPM (kg/m3) 36.87 37.00 36.90 37.01
Tr (oC) 28.66 28.84 28.84 28.67
J (kg/h) 0.1252 0.1252 0.1252 0.1183
CPU time (s) 332.14 4941.82 6086.31 24.94

MAO approaches are on average 5.5% higher than their SQP
counterpart, which could result in significant economic benefits
in the long run. The agents of each MAO technique search
the solution space for decision variables extensively using their
own capabilities that leads to the optimal value for the objective
function. However, the computational time efficiency of the
SQP implementation is higher due to the probabilistic sampling
used for the solutions in case of heuristic-based methods vs.
the directional search method employed in the gradient-based
approach (SQP). Such longer computational time should not be
an issue if the MAO is running offline multiple times or period-
ically during process operation, especially for this biochemical
system with a time scale in order of hours. Given the perfor-
mance vs. computational time tradeoff, the obtained optimal
setpoint values from homogeneous MAO with multiple EACO
as algorithmic agents are selected. Specifically, the controlled
variable values obtained at the end of the optimization time
horizon as shown in Table 2 are supplied as setpoints for the
control studies. Next, the closed-loop controller implementa-
tion results with these setpoints are discussed.

Fig. 4. BIO-CS simulation for setpoint tracking: (a) output (y1);
(b) output (y2); (c) input (u1); and (d) input (u2) trajectories

4.2 Closed-loop Control Results: Setpoint Tracking

The implementation results of the BIO-CS controllers that are
designed for the selected control loops are discussed here. The
goal of the BIO-CS controllers is to take the system to the
optimal setpoints obtained from the MAO calculations. The
BIO-CS implementation results for the chosen control structure
are shown in Fig. 4. The BIO-CS parameters considered for this
implementation are: pursuit time (4) of 1 h, discretization time
(δ ) of 0.1 h and threshold value (ε) of 0.1. The setpoints for
CPM of 36.87 kg/m3 and Tr of 28.66 oC are selected from the
results of homogeneous MAO with EACO as multiple agents.
As depicted in Fig. 4, BIO-CS provides optimal control tra-
jectories that reach the desired output setpoints within 9 h for
CPM and 4 h for Tr successfully with smooth input profiles. The
comparison of the obtained results with classical PI controllers
are considered next. The PI controller results (obtained by ex-
tensive trial and error tuning) depicted in Fig. 5 display slower
and oscillatory response with slightly higher overshoot for CPM
compared to the BIO-CS implementation. In particular, the
product concentration on the membrane side reach the steady-
state shortly after the simulation time horizon of 20 h. The
observed oscillations translate to production rate losses due to
operation away from the optimal conditions. Specifically, the
cumulative production rate calculated is approximately 15%
higher for the BIO-CS implementation when compared to the
PI controller. Thus, the BIO-CS implementation brings the sys-
tem to its desired setpoints in an optimal manner with reduced
overshoot when compared to the PI controller performance.

4.3 Closed-loop Control Results: Plant-Model Mismatch

The next case is simulated considering a plant-model mismatch
scenario. In particular, the constant YPX is changed in the plant
model, but not in the controller model thus affecting the process
outputs as depicted in equation (1). Specifically, the value of
YPX is increased from 0.0526 to 0.0631 kg/m3 which is approx-
imately a 20% change from its original value. This scenario
essentially simulates the effect when increasing the yield factor
based on product, affecting the product concentration of the
fermentation process. Initially, without re-running the MAO,
the BIO-CS controller with plant-model mismatch is imple-
mented by using the setpoints from the previous case study.
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Fig. 5. PI simulation for setpoint tracking: (a) output (y1); (b)
output (y2); (c) input (u1); and (d) input (u2) trajectories

Fig. 6. BIO-CS simulation for plant-model mismatch: (a) out-
put (y1); (b) output (y2); (c) input (u1); and (d) input (u2)
trajectories

For this scenario, the cumulative production rate now consid-
ering the mismatch over the given time horizon is calculated
to be approximately 0.1001 kg/h. Due to such mismatch, this
production rate of the system is no longer optimal. Therefore,
the MAO is re-run to obtain the optimal operating conditions
that maximize the system production rate and then the BIO-CS
is implemented to mitigate the effect of the model mismatch
for providing optimal system performance for the new condi-
tions. In practice, MAO would run periodically or even online
depending on the process time scale. For homogeneous MAO
with EACO agents, the values of the optimal setpoints for CPM
and Tr are obtained as 33.13 kg/m3 and 28.67 oC, respectively,
with maximum cumulative production rate of 0.1109 kg/h. The
optimal cumulative production rate obtained from MAO is on
average 10% higher than the case without re-running MAO,
which would result in loss of productivity that translates into re-
duced profit. The BIO-CS implementation results shown in Fig.
6 illustrate the successful performance. Therefore, the proposed
integrated framework of BIO-CS with MAO is able to tackle the
additional challenges imposed on the process successfully.

5. CONCLUSIONS

In this article, the BIO-CS algorithm was integrated with MAO
for implementation on nonlinear, multivariable processes to ob-
tain optimal system performance. Specifically, a multivariable
control structure derived from a nonlinear fermentation process
example was addressed. The results of the homogeneous MAO
considering an agent pool of heuristic-based algorithms such
as EACO, EGA and ESA were compared to a gradient-based
SQP method in terms of objective function value and compu-
tational time efficiency. In addition, BIO-CS control studies
using the outcome of MAO were performed for the process
considering setpoint tracking and plant-model mismatch sce-
narios. The BIO-CS controller showed superior performance
to that of the classical PI controller in terms of improved and
faster responses. The performed studies provide an integrated
approach for biomimetic agent-based control with optimization
methods that can be employed in a variety of process systems
engineering applications. The proposed framework provides an
alternative for the typical Real-time Optimization (RTO) com-
bined with Model Predictive Control (MPC) setup considering
different optimization algorithms. The fundamental compari-
son of BIO-CS with MPC in terms of how BIO-CS is cast
as an MPC will be subject of future investigation. Also, the
implementation of BIO-CS for other energy systems will be
investigated.
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