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Abstract: A parameterized network topology based distributed model predictive control (DMPC) 

framework is proposed in this work, it is mainly applied in system reconfiguration and sensor fault-tolerant 

control. The Lyapunov stability condition for DMPC with a parameterized network topology is derived. 

Regarding to system reconfiguration, the parameterized network topology is served as the explicit 

reconfiguration model. Furthermore, for fault-tolerant control with sensor bias, the parameterized network 

topology is used to compensate the sensor fault, and a residual generator is designed by states of predictor 

and consider a time varying threshold for fault detection. The proposed approach is able to handle the 

system reconfiguration and fault-tolerant control without backup controllers or controllers redesign, and 

there is no need of the information of fault because of the using of predictor.  

Keywords: model predictive control, senor faults, distributed fault-tolerant control, reconfigurable control, 

cooperative control 

 

1. INTRODUCTION 

Model predictive control (MPC) is widely used in process 

control, because its ability to explicitly deal with input and 

output constraints while doing optimization online (Mayne et 

al. (2000)). Facing with the larger-scale systems and stronger 

interconnections in modern industry, traditional centralized 

MPC cannot guarantee good control performance for there are 

large quantities of coupling variables and constraints. 

Additionally, if large-scale systems are controlled by 

centralized MPC, the calculation load will increase 

dramatically (Tippett et al. (2015)). Distributed model 

predictive control is developed to decentralize one centralized 

controller into several local controllers based on the 

decentralized subsystems. In recent years, DMPC has 

attracted more and more attentions (Negenborn et al. (2014)). 

According to optimization objects, DMPC is catalogued into 

two classes: cooperative DMPC (Liu et al. (2009); Jokic and 

Mircea (2009); Liu et al. (2014); Conte et al. (2016)) and non-

cooperative DMPC (Negenborn et al. (2014)). This paper 

concerns the cooperative DMPC which optimizes a global 

cost function utilizing distributed optimization algorithms, 

moreover, a parameterized topology network for distributed 

control is considered for both processes and controllers.  

Compared with the single process, a number of more 

challenging problems arise in large-scale processes, 

especially for distributed control structure. The increasing 

need of personalized and intelligent production have led to 

interests on the field of system reconfiguration and 

distributed flexible control, allowing the configurations 

among some subsystems can be changed, for example, 

components of raw materials or material concentration are 

various. Subjecting to it, some results have been published, 

from the view of holonic manufacturing and supply chain 

management, Nirav gave the reconfigurable distributed 

control framework in continuous process control (Chokshi et 

al. (2008)). Using the idea of hierarchical architectures, Tony 

Wauters implemented the reconfiguration production in food 

industry (Wauters et al. (2012)). Tippett and Bao introduced 

changeable network topologies into dissipativity based 

distributed model predictive control to realize reconfigurable 

controller (Tippett et al. (2015)). Research on system 

reconfiguration flexible control is still limited, more efforts 

are needed. 

System reconfiguration is also used in fault tolerant control 

(FTC), while different the changeable processes, the 

reconfiguration for FTC is often for controller constructions 

but not process constructions. General control laws in DMPC 

are under the condition that there is no fault in actuators or 

sensors, but actually in many cases, there may be some faults 

or bias on them, which will affect stability and performances 

of system quickly through the interactions among subsystems. 

So fault-tolerant control has been studied to adapt the change 

in the system, existing FTC strategies can be concluded into 

two kinds: the passive FTC and activate FTC. Passive FTC 

considers all the possible faults as disturbances or 

uncertainties in controller designing so that it has strong 

conservative. While the active FTC first need to detect the 

faults and design controller to compensate the residuals, 

relying on fault diagnosis and control reconfiguration. Most 

existing distributed FTC studies are concentrated on handling 

actuator faults. David et al. (2010) dealt with the actuator 
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faults in distributed model predictive control by designing 

Lyapunov based back up controllers to reconfigure the 

distributed controller. Alexey similarly used different 

reconfigurable alternative controllers, and choose the suitable 

one by comparing the performances for compensation 

(Zakharov et al. (2015)). While for the case that there is a 

sensor bias in distributed control systems, little work has been 

reported before (He et al. (2017)). Some previous work 

considered sensor bias including in estimation and system 

control (He et al. (2017); Xu et al. (2017); Han et al. (2017); 

Manimozhi et al. (2017); Boem et al. (2017); Yin and Liu 

(2017)). In Xu et al. (2017), an active FTC with robust 

estimation and MPC was proposed for bounded sensor faults. 

Assuming that the sensor bias models are known, a Riccati 

matrix based network FTC controller was derived (Han et al. 

(2017)). Backup controllers are set in He et al. (2017) with 

amplitude of sensor bias is estimated by least-square method. 

There is no sensor fault tolerant control in distributed model 

predictive control system of my knowledge, and because of 

the prediction property of MPC, it can provide extra 

information for fault tolerant. 

This work considers a parameterized network topology, and 

both controllers for distributed system reconfiguration and 

sensor FTC can be concluded as problems that this method is 

applicable. Replace fixed values in topology with variable 

parameters, then the parameterized network topology forms. 

The main contributions of this paper are: (1) derive the 

Lyapunov based distributed model predictive controller with 

parameterized network topology; (2) The controller with 

parameterized network is applied for system reconfiguration 

without redesign; (3) For FTC strategy, a time varying 

threshold is set according to actual situation to improve 

sensitivity of fault detection and sensor bias is compensated 

by parametrized topology. 

The remaining part of this paper is organized as follows: The 

problem is formulated in Section 2, the reconfiguration 

DMPC is stated in Section 3, the FTC algorithm is introduced 

in Section 4 and Section 5 shows numerical examples, Section 

6 concludes this paper. 

2. LYAPUNOV BASED DISTRIBUTED MODEL 

PREDICTIVE CONTROL 

A large-scale system containing M linear subsystems is 

stated as: 

 

     

   
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where 
i

 represents the neighbor subsystems of i th 

subsystem which have effect on i th subsystem, in

ix   is 

the state of each subsystem, ip

iu   is the control variable 

of ith system, and iq

iy   is the output of each subsystem 

effected by interconnected states of neighbor systems. The 

matrices 
ijA ,

iB , and 
ijC  are constant matrices. 

For model predictive control, the model for prediction can be 

derived as: 
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where       1 , 2 , ,i i i ix x k x k x k N     represents 

the predicted states according to system model in optimal 

domain N . Similarly, 

      , 1 , , 1i i i iy y k y k y k N    . ijA , iB , and iC  

are written as: 
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The cost function of cooperative DMPC is defined by (3). 
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where J  is the global cost function of cooperative 

distributed model predictive control problem constructed by 

every subsystem cost function, to solve a cooperative 

optimization, the distributed optimization need to be utilized.  

Based on the Lyapunov theorem, distributed model predictive 

control stability can be analyzed. For each subsystem i ,  if 

there exists a Lyapunov function   i iV x k  and  class 

functions 
1i , 

2i , 
3i  then the system is stable (Jokic and 

Mircea (2009)): 

  
     

        
1 2

31

i i i i i

i i i i

x V x x

V x k V x k x k

 



 

   
 (4) 

3. SYSTEM RECONFIGURATION OF DISTRIBUTED 

MODEL PREDICTIVE CONTROL 

System reconfiguration in this work is considered as system 

interconnection structure change including the connection 

rate and interconnection states (interconnected or un-

interconnected). The interconnection of subsystems can be 

represented as a network topology, as connection form in (1), 

a state-to-state topology is derived. For the control 

construction described in Fig.1, Large-scale process and 

distributed controllers both have their respective network 

topology, they may be the same or different. 

For example, assume a large system contains three 

subsystems and each process has three measurable states, and 

process is modeled as (1), then this kind of the network 
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topology of process can be written as (5), and element 1 

means having connections with two states while 0 is opposite.  

Large-scale 

process
sensors

Distributed 

controllers
Actuators

bias

Actual variables

Sensor measurements 

Control sequence

Control action

 

Fig. 1. Large-scale system structure. 

The topology matric in (5) shows that except for the internal 

states of each subsystem, one subsystem is infected by other 

subsystems. This topology (5) describes the relationship 

between each state in different subsystems. But if all 

described by 0 and 1 as general, it can only provide the 

information whether the two states are interconnected or not, 

the relationship about connection intension cannot be 

represented. 
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 (5) 

System reconfiguration network topology is explicitly 

described by parameters, i.e. substitute the 0-1 binary 

variables in network with variable parameters expressing the 

different connecting intensions. This description provides a 

way to show system change explicitly in topology. For 

parameterized topology, (5) can be rewritten as: 
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where  ij tα  is the topology matric of subsystem i  and 

subsystem j  constructed by parameters  kl t , the 

information is from j  to i . The subscript index k  and l  

of  t  are sequence number of states in each sub-process. 

With the parameterized topology (6), the system (1) can be 

rewritten as: 
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Divide (7) into M  subparts, each subsystem is: 
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where 
PiT ,

PiA ,
PiB  and 

PiC  are the sub-matrices 

associating with i th subsystem in 
PT , 

PA , 
PB  and 

PC . 

Furthermore, to simplify computation, remove the zero items 

in matric 
PT  so that consider the subsystems having 

interconnections of states only, i.e. the neighbor systems. 

Then the system model with parameterized topology can be 

reorganized as (9). 
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where 
ijα  is parameter matric without zero items. (11) is the 

same form as (1). Assume that the network topology of 

controller is same as process, the model controller used to 

determine the control input is also as (9), so the stable DMPC 

controller can be derived in Theorem 1. 

Theorem 1: For each subsystem i  with time-varying 

parameterized topology, if there exists a Lyapunov function 

  i iV x k  and  class functions
1i ,

2i ,
3i  satisfying 

the following conditions for stability: 

       
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Remark 1: For reconfigurable control with (9), both the 

process and controller topology need to be changed. The most 

important here is the controller design is parameterized by 

network time varying parameters which system 

reconfiguration is obtained without a new controller design. 

4. FAULT-TOLERANT CONTROL WITH 

RECONFIGURABLE SYSTEM 

In this section, distributed sensor fault tolerant control 

strategy using method introduced in Section 3 is proposed to 

maintain stability and better performance than faulty system. 

4.1 Fault detection 

In order to detect the faults in sensors, the residual should be 

generated first. For the residual generation algorithm, because 

of the predictive property of MPC, the states and outputs from 

predictor are introduced to be compared with sensor 

measurements. 

The predictor for (1) is showed as (11), where  ˆ
ix k ,  ˆ

iu k , 

 ˆ
iy k  are the predictive variables,  ˆ

iu k  is the control 

inputs calculated from DMPC controller and  ˆ 1ix k  , 

 ˆ
iu k  can both be saved according to the controller. So 
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different from the general MPC, the amplitude of  ˆ 1ix k   

should be saved, which may increase the storage space needed 

of system. 
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If the sensor measurement is  1ix k   at 1k   sampling 

time under the control input  ˆ
iu k , the residual of states 

ix  

can be represented as following: 

       ˆ1 1 1|i i ir k x k x k k      (12) 

If  1ir k   is equal to zero, there is no sensor bias, while if 

 1ir k   is not zero, there may be sensor bias. But consider 

that there may be some measurement noises leading 

 1ix k   can’t match  ˆ 1ix k   correctly, a threshold 
i hr  

is needed. The threshold means the minimal residual that can 

be accepted for fault detection. According to the simulation, 

if a fixed threshold is applied to the fault detection, a part of 

sensor bias can’t be identified if the amplitude of states is near 

to zero. So in order to improve the sensitivity of fault 

detection, a time varying threshold  ihr k is defined. 

     ˆ
ih ir k x k  (13) 

where   is a rate that satisfies 0 1   associated with 

the amplitude of noise or it can be determined by the actual 

situations. 

The principle of fault detection is: 

If    i ihr k r k , there is no fault; 

If    i ihr k r k , there is fault detected, translate to the FTC. 

In this way, some influence of noises on the process can be 

rejected when detect faults and sensitivity of fault detection 

can be improved. 

4.2 Fault compensation with system reconfiguration 

Sensor bias is the fault on the amplitude of measurements that 

sensor send to controller, but there is no bias on actual process, 

only sensor measurements correction are put in controller 

design model network topology while the process network is 

unchanged. 

Controller is designed using the model (1) and state 

measurements, substitute the sensor measurements  1ix k  , 

the actual model used for controller is represented in (14). 

The reconfigurable FTC controller as (9) is defined in (15). 

The parameter 
j  is attached to sensor measurements

 jx k , it is the correction parameter for  jx k  when there 
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Fig. 2. Parameterized DMPC structure. 

is bias on it, substituting  jx k  to  j jx k   will near to 

the true value. If a fault is detected on the state  jx k , then let 

predictive state  ˆ
jx k  as the true value, so the correction 

parameter 
j  is calculated as: 

  
   

 

ˆ
1

j j

j

j

x k x k

x k


 
 


 (16) 

The fault-tolerant control algorithm containing fault 

detection and fault compensation is described in Algorithm 1: 

Algorithm 1: Fault detection and fault compensation 

Initialization of parameters 

Step 1: At time k , receive the sensor measurement 

 jx k  

Step 2: Calculate the residual  jr k   

Fault detection: 

   i ihr k r k : no sensor fault,   1j k    

   i ihr k r k : sensor fault detected, update as (16) 

Step 3: Design FTC controller as (15) 

Step 4: Save  ˆ
jx k , 1k k  , go back to step1 

 

5. NUMERICAL SIMULATION 

Consider a numerical example constructed by two linear 

subsystems. The two subsystems are connected through the 

state 
22x  of subsystem 2, except for the subsystem 1, it also 

influences subsystem 1 as the second state of subsystem1. The 

setpoints are all set to zero and sampling time is 1T s . 
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For system reconfiguration, when 30k  , the state 
22x  

interconnects with the subsystem 1 by whole amplitude, when 

30k  , the connection decreases to 50% of the amplitude of 

state 
22x . Fig.3(a)-(b) show the state evolution of subsystem 

1 and subsystem 2. From Fig.3a and Fig.3c it can be seen that 

when sampling instant is 30, the construction of subsystem 1 

changes, states and control inputs have an obvious shake, but 

after that, the system is stable at the setpoint. 

For fault-tolerant control, consider that when there is a   

sensor bias of the sensor of state 1 in subsystem 1. The 

parameter of threshold  ihr k  is set as 0.1  and with 

(13) and output measurements, it is time varying. The 

control process shows in Fig 4. The evolutions of state 1 are 

compared between FTC and without FTC is showed in Fig 5. 

It can be seen that states with fault-tolerant controller are 

driven to setpoint faster than without it. And the residual for 

actual system and system without sensor bias is showed in Fig 

6. Control with sensor bias has an obvious residual compared 

with corrected control with sensor bias, which shows the FTC 

controller has some effect on sensor bias restrain. 

Remark 2: Though the two subsystems are less for large- 

scale system, they can still reflect the characteristics of the 

algorithm here. The reconfiguration situation in process 
control can be considered as a change of feed concentration 

 
(a) 

 
(b) 

   
(c) 

 
(d) 

Fig. 3. State (a-b) and control (c-d) evolution evolution for 

reconfigurable system.  

 

(a) 

 
(b) 

Fig. 4. State (a) and control (b) evolution of subsystem 1 for 

fault-tolerant control.  
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Fig. 5. State comparisons for three situations: correct 

system, sensor fault with FTC, sensor fault without FTC. 

 

Fig. 6. Residual comparison between FTC system and 

without FTC system. 

or component of interconnected process. For fault-tolerant 

control, the parameterized topology is like a multiplier of the 

controller to compensate for the bias. 

6. CONCLUSION 

A parameterized topology for large-scale processes and 

controllers network is introduced in this work, and controllers 

for both system reconfiguration and sensor FTC can be 

designed with it. For system reconfiguration, this allows 

distributed controllers adjust parameters online without 

redesign. For FTC with sensor bias, with compensation 

brought by parameterized topology, there is no need for 

backup controllers and redesign. This way has taken full 

advantages of properties for distributed control and large-

scale system network. 
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