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Abstract: Most industrial controllers are designed based on process models, and hence the closed-loop 

performance closely depends on the model quality. Since process dynamics variations are inevitable in 

practical applications, plant-model quality assessment is necessary so that model mismatch can be 

detected in time. In this article, a novel method based on temporal smoothness regularization is presented 

for model quality assessment. The linear time variant (LTV) model structure is applied to approximate 

the process dynamics. To avoid an overfitted model, temporal smoothness regularization is imposed on 

the model parameter changes so that model generalization ability is guaranteed.  On the basis of the LTV 

model structure, a data-based model quality assessment approach is proposed, and the applicability is 

demonstrated through representative case studies. 
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1. INTRODUCTION 

Model-based controllers are widely applied in the process 

industry. Process models are built to approximate the 

dynamic feature of controlled processes and can guide the 

design of model-based controllers. In spite of the fact that 

industrial processes have complicated dynamic feature and 

significant process nonlinearity, the process dynamics can 

usually be well approximated by relatively simple linear 

models in a limited operating point range. This is the main 

reason why linear-model based control strategies have been 

successfully implemented in industrial applications, such as 

the model-based PID (Skogestad, 2003) and linear model 

predictive control (MPC) (Qin & Badgwell, 2003).  

Control performance of model-based controllers is closely 

related to model quality. However, it must be emphasized 

that process dynamics variations are inevitable in practice.  

For a highly nonlinear process with varying operating points, 

the process dynamics cannot be well approximated by a 

linear time-invariant model, because locally linearized 

models at different operating points have significant 

divergence with each other. Another cause for dynamics 

variations is the time-variant nature in process characteristics, 

for example, the impacts of valve abrasion on process 

dynamics during operation. In cases of significant changes in 

process dynamics, model mismatch would occur and further 

results in performance degradation of model-based 

controllers. Hence, model quality assessment becomes 

necessary to achieve control performance maintenance.  

Detection of model mismatch has gained considerable focus 

in the field of process engineering. A widely applied 

approach is to analyse statistical characteristics of the 

residual generated by the process model. The two-model 

divergence algorithm has been proposed by Huang (2001), 

and the model mismatch is detected by investing the 

divergence between the residual generated by the process 

model and the recently established time-series model. The 

local detection approach relies on a hypothetical test on the 

model residuals to detect model mismatch, and the major 

advantage is the effectiveness in detecting minor changes in 

model parameters (Huang, 2000). In addition, changes in the 

statistical feature of model residuals can be quantified by the 

signal entropy (Shardt & Huang, 2013). Another approach to 

model-mismatch detection is to evaluate the correlation 

between the model input and residual signals. The 

reasonability lies in that, in the presence of significant model 

mismatch the process input and residual signals would 

exhibit evident correlation with each other.  Both partial 

correlation analysis (Badwe, et al., 2009) and mutual 

information (Chen, et al., 2013) can be applied to evaluate the 

correlation in process variables.   

In this article, a novel approach is applied based on the 

temporal smoothness regularization method. The process 

dynamics is approached using linear time variant (LTV) 

model structure, which is a basis transfer function model with 

time-varying coefficients. By this approach, the model 

quality can be monitored by examining changes in the model 

coefficients, and model-mismatch detection becomes possible 

as well. For the applied LTV model structure, the overall 

number of model coefficients exceeds the number of 

collected samples, and an overfitted LTV model with poor 

generalization ability would be obtained. To compensate this 

issue, a temporal smoothness regularization term is imposed 

on the changes of the time-varying model coefficient. The 

central idea is to penalize excessively aggressive model 

coefficient variations and guarantee that the time-varying 
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process can be approximated using relatively simple model 

structures. Hence, model generalization ability is preserved. 

The utilization of the regularization term that penalizes model 

parameter variations is proposed by Ohlsson, et al. (2010), 

and in this article the regularization term in the L2 norm is 

adopted for computational efficiency. A data-driven approach 

to model quality assessment is proposed, which evaluates the 

divergence in the process dynamics during the period when 

the control performance is satisfactory and the monitoring 

period. With the model quality index in the L2 norm defined, 

model mismatch is enable to be detected in time, thereby 

providing useful guides for further controller maintenance. 

The remainder of this article is organized as follows. In 

Section 2, the preliminary of the identification method based 

on the basis transfer function model is provided. In Section 3, 

the LTV model structure is given, which is the basis function 

model with temporal smoothness regularization of model 

coefficient variations. Furthermore, an iterative numerical 

method with low computational cost is presented to calculate 

the model coefficient. In Section 4 the data-driven model 

quality assessment scheme is provided. In Section 5, the 

effectiveness of the proposed method is demonstrated 

through a simulation study of a binary distillation process. 

Relevant conclusions are given in Section 6. 

2. PRELIMINARY OF THE BASIS MODEL APPROACH 

In this section, the preliminary of the process identification 

method based on basis models is reviewed. Since an MIMO 

process can be viewed as the combination of several 

separated MISO processes, in this article only the MISO case 

would be discussed, and the MIMO case is omitted for 

brevity. Consider the following continuous MISO process: 
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Each channel  iG s  can be approximated by a truncated 

basis transfer function series (Van den Hof & Ninness, 2005) : 
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where   kF s  is the basis function model series and 
i  is 

the model coefficient vector of the i-th channel: 
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T

i i i i nc c c     (3) 

Commonly applied basis models include the Laguerre model 

series (Wahlberg, 1991):  
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and the FOPTD (first-order plus time delay) model series 

(Helbig, et al., 2000):   
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Let  ,i kz t  denote the filtered output of  kF s  with the input 

being  iu t : 

      , ii k kZ s F s U s  (6) 

To calculate the model coefficient, the data matrix 
iZ  is 

formulated as follows using the samples of   , 1, ,i k k n
z t


: 
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The model coefficient vectors  
1,i i m

  of different channels 

are piled as follows: 
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T
T T T mn
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Consequently,   can be determined based on the following 

criterion: 

  2

2min || ||-Y Z


  (9) 

where  

  1 2

N mn

m R       (10) 

and Y  is the process output vector defined as follows: 

  (1) (2) ( )
T Ny y y N R Y  (11) 

Obviously,   can be calculated based on the least-squares 

regression: 

  
1

T T
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3. LTV MODELING BASED ON THE TEMPORAL 

SMOOTHNESS REGULARIZATION 

3.1 LTV model structure with temporal smoothness 

regularization 

Based on the basis model structure, the process output is 

formulated as: 

 ( ) ( ) ( )Ty t t t z  (13) 

where ( )tz  is the t-th row vector of the matrix   defined in 

eq. (10). The model coefficient vector ( )t  is assumed to be 

time-varying, which can be determined based on the 

following criterion: 

 2

2
( )

1

min = || ( ) ( ) ( ) ||
N

T

t
t

J y t - t t





z  (14) 

For problem (14), it should be noted that the number of 

parameters to be optimized exceeds the sample number N. 

Under the assumption that the model coefficients { }t   are 

independent, an overfitted LTV model with poor 

generalization ability will be obtained. It should be noted that 

stationary operations are usually necessary requirements in 

industrial applications, and hence a nonlinear process usually 

operates at a steady point during a certain period. It implies 

that changes in the process dynamics would not be overly 
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frequent. To avoid overly frequent model coefficient changes, 

a temporal smoothness regularization term of model 

coefficient variations is added (Boyd & Vandenberghe, 2004): 

 2 2

2 2
( )
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t t
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where   is the regulation parameter. The regularization term 

penalizes overly aggressive model coefficient changes such 

that model generalization ability is guaranteed. The utilization 

of the regularization term that penalizes LTV model 

parameter variations is firstly proposed by  Ohlsson, et al. 

(2010). For the proposed method, the major difference from 

the method by Ohlsson  is:  

1. the regularization term is the sum of squared norms rather 

than norms;  

2. the regularization term is in the L2 norm. 

Consequently, the problem formulated in (15) can be solved 

analytically.  

3.2 Numerical algorithm 

The optimization objective J  in problem (15) is convex, and 

the optimal solution ( )t  must satisfy the following 

condition: 
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Let’s define: 
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where  
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The matrix I  is the identity matrix with the size of mn mn . 

Based on (16), ( )t  is obtained as: 
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Even though 
NA  has a large size, it has a strip structure. 

Using the skills on matrix computation summarized by Boyd 

and Vandenberghe (2004) , an iterative algorithm based on 

the matrix inverse lemma is presented to compute (21) in a 

cost efficient way. The matrix 
tA  can be formulated in a 

block matrix form: 
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The definition of 
tB  is: 
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Using the matrix inverse lemma for the block matrix, the 

inverse of 
tA  is calculated as follows: 
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where 
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1
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
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can be calculated in an iterative form: 
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According the definition of   in eq. (21), it is obvious that 

N   . Using eq. (24), we can obtain: 
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Eq. (29) can be reformulated in an iterated form: 
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Based on eq. (28) and eq. (30), t  can be updated in an 
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iterative manner. Furthermore, the inverse of the large-scale 

matrix 
NA  is avoided and the computational burden is 

reduced significantly. 

4. DATA-DRIVEN MODEL QUALITY ASSESSMENT  

4.1 Historical data based benchmark for model quality 

assessment 

The model quality is closely related with control performance. 

In this article, a historical data based benchmark for model 

quality assessment is proposed. The benchmark is selected by 

the user, which is the closed-loop operating data during the 

period when the control performance is considered to be 

satisfactory. Consequently, the central ideal of model quality 

assessment is to evaluate the divergence in the process 

dynamics during the benchmark period and monitoring 

period. Combining the benchmark data and monitoring data, 

the principle for the LTV modeling is reformulated as follows: 
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where ˆ ˆˆ ˆ{ ( ), ( )}y t tz
 
and { ( ), ( )}y t tz  denote the benchmark 

data and monitoring data, respectively.  

The model coefficients ˆˆ{ }t 
 
and { ( )}t  reveal the process 

dynamics during the benchmark period and monitoring 

periods, respectively. Therefore, model quality can be 

examined by investing the divergence between ˆˆ{ }t 
 
and 

{ ( )}t . For each channel at the time instant t, the process 

dynamics is approximated as: 
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Noticing eq. (8),  i t  is formulated using the appropriate 

elements of t   that are corresponding to i-th channel. The 

model quality is evaluated in the  L2 norm: 
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where  ˆ ˆ{ }i t  is the model coefficients during the 

benchmark period and 
0  is the average of  ˆ ˆ{ }i t . Based 

on the basis model structure, eq. (35) can be reformulates in 

the quadratic form: 
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where M  is a constant symmetric matrix with each element 

being 
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The symbol Re in eq. (3) denotes the real part of a complex 

number.  A higher value of ( )i t
 
indicates more significant 

model mismatch and higher priority of model maintenance. 

The proposed model quality assessment method is data-

driven, and the plant model is not necessarily known a priori. 

Even though the nominal plant model can be used to specify 

the nominal model coefficient 
0 , it still needs to be pointed 

out that the nominal plant model is not always available in 

practice. Moreover, the plant model is usually obtained by the 

technique system identification, and hence the modeling error 

is inevitable, which may further affect the reliability of model 

quality assessment. Nevertheless, these practical issues are 

handled by the proposed data-driven approach.  

4.2 Choice of parameters 

For the proposed method, there are two undetermined 

parameters: the regularization parameter   and the threshold 

h for determining model mismatch. The basic idea for 

determination of these parameters is to resort to the 

benchmark data, which is described below. 

The parameter   manages the balance between the fitting 

error and model generalization ability. The parameter   is 

tuned based on the cross-validation approach using the 

benchmark data. In this study, the leave-one-out cross 

validation (LOOCV) method is applied, the central idea of 

which is to use only one collected sample as the validation set 

and the remaining samples as the training set (Arlot & 

Celisse, 2010). Nevertheless, it should be noted that 

conventional LOOCV methods primarily aim at time-

invariant models and thus needs to be modified for the LTV 

model structure. Let the q-th sample be the validation set, and 

the LTV model is trained according to the following criteria: 
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Comparing eq. (39) and eq. (15), the sample at time instant q 

and the corresponding model coefficient vector ˆ( )q  would 

not be involved in training the model. The validation error is 

defined as follows: 
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From eq. (40), the q-th prediction is estimated using the 

interpolation between ˆ( 1)q   and ˆ( 1)q  . The 

regularization parameter   is determined such that sum of 

the squared validation error is minimized: 
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Using the benchmark data, the threshold h can be determined 

based on the 3-sigma principle: 

 

   ˆ ˆ3 [ ]h t t     (42) 

where  ˆ{ }t  are the model quality indices in the benchmark 

periods, while   and  are the mean and standard deviation 

of  ˆ{ }t , respectively. 

5. CASE STUDIES 

The proposed method is validated through a simulation case 

study, which is a binary distillation column developed by 

Wood and Berry (1973): 
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The process involves of two controlled variables, two 

manipulated variables and one disturbance variable. 

Descriptions of the variables are listed in Table 1.  

Table 1 Description of the variables in the Wood-Berry 

process 

 description variable type 

xD distillate composition CV 

xB bottoms composition CV 

R reflux flow rate MV 

S steam flow rate MV 

F feed flow rate DV 

 

Fig.  1 Set-point changes and the disturbance signal 

The channels of R-xD, R-xB, S-xD and S- xB are denoted as g11, 

g12, g21 and g22, respectively. The disturbance F is set to be 

unmeasured stochastic disturbance. Furthermore, Gaussian 

white noise is added to the CV variable. For the purpose of 

model quality assessment, step changes are introduced to the 

setpoints of xD and xB. The increments in the set-point signal 

together with the disturbance signal are shown in Fig. 1. The 

process is controlled by a MPC, and the sampling interval is 

0.1 minute.  

In the first case, mismatches in the gain are considered. The 

channel g11 has a -50% gain mismatch, while the mismatches 

in the other channels are 5% . The model matrix is given as 

follows: 
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To attempt model quality assessment, a total of 1000 samples 

are collected, and the first half is collected from the nominal 

period and used as the benchmark. The resulting model 

quality indices are shown in Fig. 2.  

 

Fig.  2 Model quality assessment in the gain mismatch case 

It can be concluded that the channel g11 has a more 

significant degree of model-mismatch and greater impacts on 

the closed-loop performance. This can be validated by 

comparing the response data, as shown in Fig. 3. In these two 

cases, the process outputs of xD has more significant 

divergence, while the trajectories of xB are rather similar. 

Hence, model re-identification is more necessary to be 

implemented on the channel g11 for controller maintenance 

purposes. 

 

Fig.  3 Closed-loop responses of xD  and xB in the nominal and 

gain-mismatch cases 

In the second case, model mismatches in the delay and time 

constant are considered. The process model is formulated in 

eq. (45). The time constant of g21 is increased from 10.9 to 22, 

and the delay of g22 is increased from 3 to 7. For the other 

channels, there is no model mismatch.  
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 (45) 

The same set-point change as the gain mismatch case is 

introduced. The model quality indices are displayed in Fig. 4. 

Model mismatches in channels g21 and g22 are isolated 

accurately. Furthermore, it is concluded that the model-

mismatch in g21 has greater impacts on the closed-loop 

performance due to larger values of the model quality index, 

which can be validated by the closed-loop response in Fig. 5.  

Therefore, the sub model g21 has a higher priority to be 

maintained. 

 

Fig.  4 Model quality assessment in the time constant and 

delay mismatch case 

 
Fig.  5 Closed-loop responses of xD  and xB in the nominal 

case and model-mismatch cases 

6. CONCLUSIONS 

In this article, the temporal smoothness regularization 

approach is applied to evaluate model quality and detect 

plant-model mismatch. The process dynamics is 

approximated by the LTV model structure based on the basis-

model approach with temporal smoothness regularization 

term. The central idea of the smoothness regularization is to 

penalize overly aggressive model parameter changes such 

that model generalization ability is guaranteed. The model 

quality index is defined as the difference in L2 norm between 

the nominal model and the current model, which is a practical 

indicator for detection of plant-model mismatches. 

Representative cases are studied, and results indicate that the 

proposed method is able to provide reasonable guides for 

controller maintenance purposes.  
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