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Abstract: In this work we present a new method for calculating terminal conditions for
nonlinear model predictive control (NMPC) that is non-conservative and scalable via the quasi-
infinite horizon methodology. Then, we introduce adaptive-horizon NMPC, a new method for
updating prediction horizon lengths online via nonlinear programming sensitivity calculations.
Finally, we show how these methods work together to provide an adaptive horizon NMPC
implementation for a quad-tank simulation example.
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1. INTRODUCTION

Model predictive control (MPC) has seen a great deal
of success in the chemical industry, as it can naturally
handle multiple-input-multiple-output systems with oper-
ating constraints. A survey of industrial applications of
MPC is given in Qin and Bagdwell (2003), and a thor-
ough theoretical treatment of MPC is given in Rawlings
and Mayne (2009). Nonlinear model predictive control
(NMPC) has the added advantage of being able to capture
nonlinear effects and thus provides higher accuracy across
a wide range of states (Grüne and Pannek, 2011). Fast
NMPC implementations for large systems are enabled by
noting that an exact solution of the associated nonlinear
programming (NLP) problem is not necessary (Pannocchia
et al., 2011; Zavala and Biegler, 2009).

Terminal conditions are an important aspect of ensuring
the stability of NMPC. However, calculating appropriate
terminal constraints and costs for the nonlinear case is
not straightforward. In Chen and Allgöwer (1998), a quasi-
infinite horizon approach is proposed in which the terminal
cost is computed based on a controller for the linearized
system, and the terminal region represents a region of
attraction for the linear controller applied to the nonlinear
system. This method was applied to an experimental quad-
tank system in Raff et al. (2006) and further extended
in Rajhans et al. (2016). Furthermore, this method was
extended to a discrete time analysis in Rajhans et al.
(2017), which eliminates the need for a small discretization
step upon implementation. The main drawback of these
methods is in the necessity of either finding a Lipschitz
constant for the nonlinear part of the system or solving
a series of nonconvex optimization problems to global
optimality, either of which makes application to a large
system very cumbersome. We instead propose a method

of bounding the nonlinear effects of the system that is
more practical, and which leads to a method of calculating
terminal conditions that is scalable.

We then consider another major issue in NMPC design,
which is the selection of horizon length. In particular, we
note a significant trade-off in this choice. The longer the
horizon length, the larger the computational burden of
the NLP that is solved online. The shorter the horizon,
the smaller the region of the state space from which the
terminal region is N -reachable. Moreover, we recognize
that this trade-off can vary with the state of the system.
Thus, it is desirable to have a method for updating horizon
lengths online. One method for updating horizon lengths
is known as variable horizon MPC (Scokaert and Mayne,
1998). Here, the horizon length is treated as a decision
variable in the optimization problem. However, in the non-
linear case, this leads to solving a mixed-integer nonlinear
program (MINLP) online, which is currently impractical
for large systems with significant nonlinearities. Another
idea is that of adaptive horizon NMPC. Here, the pre-
diction horizon is updated online based on current state
estimates. We propose a method that utilizes sensitivity
updates from sIPOPT (Pirnay et al., 2012) in order to
choose a sufficient horizon length in real time.

In this work we combine the technologies of quasi-infinite
horizon NMPC and adaptive horizon NMPC in order to
provide a flexible NMPC formulation that is asymptot-
ically stable under reasonable assumptions. Finally, we
show our methods applied to a quad tank example from
Raff et al. (2006).

2. NOTATION AND DEFINITIONS

We consider the system:
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xk+1 = f(xk, uk) (1)

where xk ∈ X is a vector of states that fully define the
system at time k, and uk ∈ U is the vector of control
actions implemented at time k. We use | · | as the 2-norm,
R as the set of real numbers, Z as the set of integers, and
the subscript + to indicate their nonnegative counterparts.
We make the following basic assumptions and definitions.

Assumption 1. (A)The set X ⊆ Rnx is positive invariant
for f(·, ·). That is, f(x, u) ∈ X holds for all x ∈ X , u ∈ U.
(B) The set X ⊂ Rnx is closed and bounded (C) The
setpoint (xs, us) = (0, 0) satisfies 0 = f(0, 0). (D) The set
U is closed and bounded, and contains zero in its interior.

Definition 2. (Comparison Functions) A function α :
R+ → R+ is of class K if it is continuous, strictly increas-
ing, and α(0) = 0. A function α : R+ → R+ is of class K∞
if it is a K function and lims→∞ α(s) =∞.

Definition 3. (Stable Equilibrium Point) The point x = 0
is called a stable equilibrium point of (1) if, for all k0 ∈ Z+

and ε1 > 0, there exists ε2 > 0 such that |xk0 | < ε2 ⇒
|xk| < ε1 for all k ≥ k0.

Definition 4. (Asymptotic Stability) The system (1) is
asymptotically stable on X if limk→∞ xk = 0 for all x0 ∈ X
and x = 0 is a stable equilibrium point.

Definition 5. (Control Lyapunov function) A function V :
X → R+ that satisfies the following:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

V (f(x, uc(x)))− V (x) ≤ −α3(|x|), (2b)

for some K∞ functions α1, α2, α3 and some control law
uc : X → U, is said to be a control Lyapunov function for
(1).

Theorem 6. If system (1) admits a control Lyapunov func-
tion for some control law uc, then uc is asymptotically
stabilizing on X .

See Appendix B of Rawlings and Mayne (2009) for proof
of the preceding.

3. NONLINEAR MODEL PREDICTIVE CONTROL

First we consider the traditional terminal cost / terminal
region NMPC formulation:

VN (x) = min
zi,vi

∑
i∈N

L(zi, vi) + ψ(zN ) (3a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (3b)

z0 = xk (3c)

vi ∈ U ∀ i = 0 . . . N − 1 (3d)

zN ∈ Xf (3e)

where z ∈ Rnx and v ∈ Rnu are the predicted states and
controls, respectively. The mapping L : X ×U→ R+ is the
tracking stage cost penalizing deviations from the setpoint,
and ψ : Xf → R+ is the terminal cost. At each time k, the
NLP is solved for xk, and the first control is implemented
to the system, that is uk := v0|k. The following assumption
imposes a basic requirement on the nature of the tracking
stage cost and other basic assumptions for tracking NMPC
formulations.

Assumption 7. (A) There exist αU , αL, αU,φ, αL,φ ∈ K∞
such that αU (|x|) ≥ L(x, u) ≥ αL(|x|) ∀ x ∈ X , u ∈ U

and αU,φ(|x|) ≥ φ(x) ≥ αL,φ(|x|) ∀ x ∈ Xf . (B) A solution
to (3) exists for all xk ∈ X . (C) The functions L(·, ·),
f(·, ·, ·), and ψ(·) are twice continuously differentiable. (D)
There exists αψ ∈ K∞ and a control law uf (x) such that
ψ(f(x, uf (x)))− ψ(x) ≤ −αψ(|x|) ∀ x ∈ Xf .

Definition 8. Weak controllability (Diehl et al., 2011) is
satisfied for a given NMPC formulation if there exists a
control trajectory vi, i = 0 . . . N − 1 satisfying

N−1∑
i=0

|vi| ≤ αwc(|x|) (4)

for some αwc ∈ K∞.

The upper bound αU (|x|) ≥ L(x, u) holds if weak control-
lability holds, since |vi| ≤ α(|x|) holds ∀ i. The tracking
stage cost usually has the form L(z, v) = zTQz + vTRv,
where Q,R are positive semidefinite matrices but other
norms can also be used to satisfy Assumption 7A. The
following result is standard.

Theorem 9. Under Assumptions 1 and 7, VN (x) satisfies
the conditions of a control Lyapunov function (2b), and
thus the system (1) under control by NMPC (3) is asymp-
totically stable for all x0 ∈ X .

Assuming a good initialization for the NLP (3), the proof
of Theorem 9 is analogous to that of linear MPC (Pannoc-
chia et al., 2011).

4. QUASI-INFINITE HORIZON NMPC

Establishing Assumption 7 (D) is a key difficulty in en-
suring the stability of (3). This assumption is satisfied if
there exists a stabilizing controller in the terminal region
with ψ(x) as a control Lyapunov function. Chen and
Allgöwer (1998) propose an infinite-horizon LQR applied
to the linearized system as the stabilizing controller in the
terminal region. Finding the size of the terminal region is
then a question of finding the largest region around the
setpoint in which the LQR is stabilizing for the nonlinear
system. This is done in previous works by finding a Lips-
chitz constant for the nonlinear system and analyzing the
descent of the Lyapunov function, or by solving a sequence
of global optimization problems. The terminal cost is then
the cost function of the LQR, ψ(x) = xTPx. The main
issue with this method is that finding the terminal region
via a Lipschitz constant bound or by solving a sequence
of global optimization problems can be cumbersome when
applied to a large system. In the next section we propose
a more practical method of finding the terminal region
size via a bound on the nonlinear effects of the system
that more easily applies to large systems. We also do the
analysis in discrete time, as in Rajhans et al. (2017).

4.1 Deriving a Terminal Cost and Region

Consider (1) broken down into linear and nonlinear parts
with the terminal control law uf (x) = −Kx applied, so
that

xk+1 = f(xk,−Kxk) = AKxk + φ(xk,−Kxk) (5)

where AK = A − BK, the pair (A,B) is assumed to be
stabilizable, and φ : X × U → X is the nonlinear part
of the system dynamics. For the terminal control law uf

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

501



we choose infinite horizon LQR applied to the linearized
system, so that

ψ(x) = xTPx = min

∞∑
i=0

L(zi, vi) (6a)

s.t. zi+1 = Azi +Bvi ∀ i = 0 . . .∞, z0 = x (6b)

In order to show a stability region of the linear controller
for the nonlinear system, it is necessary to show a bound
on the nonlinear system effects. To that end, we show the
existence of a bound of the following form.

Theorem 10. There exists M, q ∈ R+ such that

|φ̄(x)| ≤M |x|q ∀ x ∈ X (7)

where φ̄(x) = φ(x,−Kx).

Proof. Define f̄(x) := f(x,−Kx). Then the nonlinear
part of the system is φ̄(x) := f̄(x) − AKx. By Taylor’s
Theorem we have

φ̄j(x) = φ̄j(0) +∇φ̄j(0)Tx

+
1

2

∫ 1

0

xT∇2φ̄j(xτ)x dτ ∀ i = 1 . . . n (8)

where j is indexed over each state. Note that, at x = 0,
φ̄j(x) = 0 and ∇φ̄j(x)T = ∇f̄j(x)T − ∇(AK,j , xj) =
AK,j −AK,j = 0. Then

φ̄j(x) =
1

2

∫ 1

0

xT∇2φ̄j(xτ)x dτ (9)

Given Assumptions 1B and 7C, we can define

λm := max
x∈X ,j∈1...n

| ∇2φ̄j(x)| (10)

and from (8):

|φ̄(x)| ≤
√
n
λm
2
|x|2 (11)

Thus (7) is satisfied with M =
√
nλm

2 and q = 2. 2

Note that, in general, (5) represents an implicit discretiza-
tion of a set of differential and algebraic equations (DAEs)
and φ cannot be obtained explicitly. Furthermore, actually
quantifying (7) by finding a bound on the Hessians of (5)
may be tedious. Instead, we find M and q in (7) explicitly
via simulations from a sampling of initial conditions in
the state space, as shown in Section 7. Here the key
advantages of this method are apparent, in that we only
need to solve a series of one step simulations using the
linear control, and do not need to iterate on regions in
which a Lipschitz constant is valid. To find the terminal
region, we consider the LQR controller (6) applied to the
fully nonlinear system (1). From the optimality conditions
for (6) the infinite horizon cost matrix P ∈ Rn×n satisfies
the discrete-time Riccati equation

ATPA− P − (ATPB)(BTPB +R)−1(BTPA) +Q = 0
(12)

This also gives the gain matrix K = (R+BTPB)−1BTPA
such that uf (x) = −Kx. Defining W = Q + KTRK, we
satisfy the Lyapunov equation:

ATKPAK − P +W = 0 (13)

Since P =
∑∞
k=0(ATK)kW (AK)k solves this equation, we

can write

‖P‖ ≤
∞∑
k=0

‖(ATK)kW (AK)k‖ ≤ λmaxW

1− σ̂2
(14)

where λmaxW and λminW are maximum and minimum eigen-
values of W , respectively, and we assume the maximum
singular value of AK , σ̂ ∈ [0, 1). Similarly, we have:

‖ATKP‖ ≤ ‖AK‖
∞∑
k=0

‖(ATK)kW (AK)k‖ ≤ σ̂λmaxW

1− σ̂2
(15)

To show the descent of the Lyapunov function under
evolution of (5) in the terminal region we have:

ψ(xk+1)− ψ(xk) (16a)

= xTk+1Pxk+1 − xTk Pxk (16b)

= (AKxk + φ̄(xk))TP (AKxk + φ̄(xk))− xTk Pxk (16c)

= xTk (ATKPAK − P )xk + 2xTkA
T
KPφ̄(xk)

+ φ̄(xk)TPφ̄(xk) (16d)

= −xTkWxk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)TPφ̄(xk) (16e)

≤ −λminW |xk|2 + 2σ̂
λmaxW

1− σ̂2
M |xk|q+1 +

λmaxW

1− σ̂2
M2|xk|2q

(16f)

≤ −εψ|xk|2 ∀ xk ∈ Xf (16g)

which gives the stability condition

−λminW + 2σ̂ΛPM |xk|q−1 + ΛPM
2|xk|2(q−1) ≤ −εψ < 0

(17)

where ΛP =
λmax
W

1−σ̂2 and εψ > 0 is an arbitrarily small
constant. Then by the quadratic formula:

|xk| ≤ cf

:=

(
−σ̂ΛPM +

√
(σ̂ΛPM)2 + (λminW − εψ)ΛPM2

ΛPM2

) 1
q−1

(18)

which will be used to define Xf = {x | |x| ≤ cf}. Note that
it must also be verified that control constraints are satisfied
in the terminal region, that is −Kx ∈ U ∀ x ∈ Xf . If
this does not hold then Xf must be decreased in size until
control constraints are satisfied.

5. QUASI-INFINITE ADAPTIVE HORIZON NMPC
(QIAH-NMPC)

We now consider the problem of choosing a horizon length
N . We propose an algorithm for finding a sufficient hori-
zon length using sensitivity updates from sIPOPT (Pirnay
et al., 2012), shown in Figure 1. The first step is to
determine Nmin, the minimum horizon length that will be
discussed in the next section, Ns, a safety factor chosen
through simulation, and Nmax, a sufficiently long horizon
length that guarantees feasibility of (3) and serves as an
initialization for N . Then, at each time point k, solve
the NMPC problem (3) which we call P (xk). Next, solve
Ps(xk+1), the sensitivity prediction using the successor
state xk+1 as the initial condition. If Ps(xk+1) gives a
feasible solution, that is, the terminal region is reached
in N time steps, then determine ST , the time step at
which the state reaches the terminal region. Then, set
Nk+1 = ST + Ns and k = k + 1, and proceed to the
next NMPC problem. If Ps(xk+1) does not give a feasible
solution, then setNk+1 = Nmax and k = k+1, and proceed
to the next NMPC problem. In this fashion, the horizon
length is chosen based on a sensitivity prediction plus a
safety factor, and Nmax is chosen as a default in case this
calculation fails.
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Fig. 1. Algorithm to Determine Nk

6. PROPERTIES OF QIAH-NMPC

First we establish relationships between the linear and
nonlinear systems. Consider the cost of the LQR control
evaluated for (3):

V KN (x) =

N−1∑
i=0

L(zi,−Kzi) + ψ(zN ) (19)

where zi+1 = Azi +Bvi + φ(zi, vi) ∀ i = 0 . . . N − 1.

Lemma 11. There exists αNL ∈ K∞ such that |V KN (x) −
ψ(x)| ≤ αNL(|x|) ∀x ∈ Xf , N ∈ N

Lemma 11 holds since the nonlinear system dynamics
are uniformly continuous. Now consider the following
parameterized problem:

V pN (x, p) = min

N−1∑
i=0

L(zi, vi) + ψ(xN ) + ρ p εi (20a)

s.t. zi+1 = Azi +Bvi + γi ∀ i = 0 . . . N − 1 (20b)

|γi − φ(zi, vi)| ≤ εi, εi ≥ 0 ∀ i = 0 . . . N − 1 (20c)

|γi| ≤ p ∀ i = 0 . . . N − 1 (20d)

z0 = x (20e)

with ρ > 0. We now use (20) to relate (3) and (6).

Lemma 12. There exists αV ∈ K∞ such that |ψ(x) −
VN (x)| ≤ αV (|x|) ∀ x ∈ Xf , N ∈ N

Proof. Note that V pN (x, 0) = ψ(x) from (6). Also, from
weak controllability there exists some p = αp(|x|) such
that V pN (x, αp(|x|)) = VN (x) from (3), when ρ is chosen
sufficiently large. Thus, (20) is parameterized in the evo-
lution of the nonlinearities of the system. Furthermore,
(20) satisfies the Mangasarian-Fromovitz Constraint Qual-
ification (MFCQ) since any control vi is feasible. MFCQ
ensures that V pN (x, p) is uniformly continuous in p (and x),
and therefore Lemma 12 holds.

See Yang et al. (2015) for more information on constraint
qualifications and continuity of parameterized nonlinear
programming problems in the context of NMPC.

6.1 Asymptotic Stability of QIAH-NMPC

We now consider the stability of (1) under control accord-
ing to (3) with terminal conditions described in Section
4, and a horizon length that is updated adaptively and
assumed to be feasible. For now, we assume no plant model
mismatch, i.e., wk = 0 ∀ k ∈ I+. Define the bounded
set of acceptable horizon lengths N = {N |Ns ≤ N ≤
Nmax, N ∈ I+}, and the subset of horizon lengths that
define feasible problems (3) at time k that we denote as
Nk ⊂ N . Furthermore, define some process (e.g. Figure 1)
that determines horizon lengths H : Rn × N × Rn → N
so that Nk+1 = H(xk, Nk, xk+1) ∈ Nk+1.

Assumption 13. If problem (3) at time k with xk and
Nk is feasible, then so is problem (3) solved at time
k + 1 with xk+1 and Nk+1 = H(xk, Nk, xk+1). That is,
H(xk, Nk, xk+1) ∈ Nk+1 ∀xk, xk+1 ∈ X , Nk ∈ Nk.

Assumption 14. There exists a value of the parameter Ns
such that the solution of (3) with horizonNk ≥ Ns satisfies

αL(|xk|)− αNL(|zNk|k|) ≥ α3(|xk|) (21a)

αL(|xk|)− αV (|zNk+1+1|k|) ≥ α3(|xk|) (21b)

for some α3 ∈ K∞, where Nk+1 = H(xk, Nk, xk+1), αL
satisfies Assumption 7(A), and αNL, αV satisfy Lemmas
11 and 12, respectively.

Essentially, this condition means that costs due to nonlin-
ear effects in the terminal region must be small compared
to the stage cost of the initial condition, and therefore (3)
is a good approximation of the infinite horizon problem.
Note that, in the case of a lengthening horizon, the usual
assumption that Vf (x) ≥ V∞(x) ∀ x ∈ Xf would also
suffice. However, we instead employ Assumption 14 so that
the horizon may be lengthened or shortened freely.

Assumption 14 may need to be checked through simulation
and enforced by selection of Ns. We recognize that a value
of Ns that rigorously guarantees Assumption 14 may be
difficult or impossible to find. However, in the case of our
examples, it is straightforward to find a value that leads
to satisfactory simulation results. We now show that AH-
NMPC is asymptotically stable.

Theorem 15. Under Assumptions 1, 7, 13, and 14 there
exist α1, α1, α3 ∈ K∞ with wk = 0 ∀ k ∈ I+ such that:

α1(|xk|) ≤ VNk
(xk) ≤ α2(|xk|) (22a)

VH(xk,Nk,xk+1)(xk+1)− VNk
(xk) ≤ −α3(|xk|) (22b)

∀ xk ∈ X , Nk ∈ Nk

Proof. The inequalities (22a) are satisfied by the form
of the objective function and weak controllability. The
descent inequality (22b) is not as simple in the case of
a variable horizon. We consider this in two separate cases.

Increasing or constant horizon, Nk+1 ≥ Nk

In the case of an increasing horizon we define the initial-
ization for (3) solved at time k + 1 as the following:

v̂i|k+1 =

{
vi+1|k ∀ i = 0 . . . Nk − 2

−Kzi ∀ i = Nk − 1 . . . Nk+1 − 1
(23)

ẑ0|k+1 = z1|k (24a)

ẑi+1|k+1 = f(ẑi|k, v̂i|k) ∀ i = 0 . . . Nk+1 (24b)

with the value function V̂Nk+1
(xk+1). Then the descent

inequality of the Lyapunov function is given as follows:

VNk+1
(xk+1)− VNk

(xk) ≤ V̂Nk+1
(xk+1)− VNk

(xk) (25a)

=

Nk+1−1∑
i=0

L(ẑi|k+1, v̂i|k+1) + ψ(ẑNk+1|k+1)

−
Nk−1∑
i=0

L(zi|k, vi|k)− ψ(zNk|k) (25b)

= −L(xk, uk)

+

Nk−2∑
i=0

(
L(ẑi|k+1, v̂i|k+1)− L(zi+1|k, vi+1|k)

)
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+

Nk+1−1∑
i=Nk−1

L(ẑi|k+1, v̂i|k+1) + ψ(ẑNk+1|k+1)− ψ(zNk|k)

(25c)

= −L(xk, uk) +

Nk+1−1∑
i=Nk−1

L(ẑi|k+1, v̂i|k+1)

+ ψ(ẑNk+1|k+1)− ψ(zNk|k) (25d)

= −L(xk, uk) + V KNk+1−Nk+1
(zNk|k)− ψ(zNk|k) (25e)

≤ −αL(|xk|) + αNL(|zNk|k|) ≤ −α3(|xk|) (25f)

where (25f) follows from Lemma 11 and (21a).

Decreasing horizon, Nk+1 < Nk

In the case of a decreasing horizon we define the initializa-
tion for (3) solved at time k + 1 as the following:

v̂i|k+1 = vi+1|k ∀ i = 0 . . . Nk+1 − 1, (26)

again with the state initialization given by (24) and the

value function denoted as V̂Nk+1
(xk+1). Then the descent

inequality of the Lyapunov function is given as follows:

VNk+1
(xk+1)− VNk

(xk) ≤ V̂Nk+1
(xk+1)− VNk

(xk) (27a)

=

Nk+1−1∑
i=0

L(ẑi|k+1, v̂i|k+1) + ψ(ẑNk+1|k+1)

−
Nk−1∑
i=0

L(zi|k, vi|k)− ψ(zNk|k) (27b)

= −L(xk, uk) +

Nk+1−1∑
i=0

(
L(ẑi|k+1, v̂i|k+1)− L(zi+1|k, vi+1|k)

)
+ ψ(ẑNk+1|k+1)−

Nk−1∑
i=Nk+1+1

L(zi|k, vi|k)− ψ(zNk|k) (27c)

= −L(xk, uk) + ψ(ẑNk+1|k+1)

−
Nk−1∑

i=Nk+1+1

L(zi|k, vi|k)− ψ(zNk|k) (27d)

= −L(xk, uk) + ψ(zNk+1+1|k)

− VNk−Nk+1−1(zNk+1+1|k) (27e)

≤ −αL(|xk|) + αV (|zNk+1+1|k|) ≤ −α3(|xk|) (27f)

where we use ẑNk+1|k+1 = zNk+1+1|k in (27e), and (27f)
follows from Lemma 12 and (21b). Thus VN (x) satisfies
(22), and QIAH-NMPC is asymptotically stable.

7. QUAD TANK EXAMPLE

We consider the experimental quad tank system from Raff
et al. (2006) described by the following equations, ignoring
state constraints for this work:

ẋ1 = − a1
A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1
A1

u1 (28a)

ẋ2 = − a2
A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2
A2

u2 (28b)

ẋ3 = − a3
A3

√
2gx3 +

(1− γ2)

A3
u2 (28c)

ẋ4 = − a4
A4

√
2gx4 +

(1− γ1)

A4
u1 (28d)

−43.4 ≤ u1 ≤ 16.6 (28e)

Table 1. Example parameters and results

h Q R M q cf
Quad tank 10 1.5I4 I2 0.005 2.1 28.3

−2 −1 0 1 2 3 4
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2

ln|x|

ln
|φ
|

ln|φ|

c|x|q

Fig. 2. Quad Tank, nonlinearity bound

−35.4 ≤ u2 ≤ 24.6 (28f)

x ≥ 0 (28g)

xss = [14, 14, 14.2, 21.3]T (28h)

The valve parameters are held constant at γ1 = γ2 = 0.4.

7.1 Terminal Region Calculations

The LQR parameters are shown in Table 1. We then
use these parameters to define the LQR, which is then
used to simulate the system and find the upper bound
for φ. This is done by simulating one step forward from
many initial conditions and subtracting the linear part
of the system. The results for 10,000 such simulations
are shown in Figure 2, and the bound parameters are
shown in Table 1. In this case the terminal region is given
by |zN | ≤ cf = 28.1, and we confirm that the control
constraints are satisfied for u = −Kx in this region.
This region has a volume 1

2π
2c4f = 3.15 × 106, which

is significantly larger than the region of volume 3 × 104

given in Raff et al. (2006) using the method of Chen and
Allgöwer (1998). We attribute the improvement in our
method to a more accurate approximation of nonlinearity
due to (7), as well as not having to iterate on regions in
which a given Lipschitz constant is valid.

7.2 Simulation Results

We have implemented both standard and adaptive horizon
NMPC for (28) using IPOPT on an Intel i7-4770 3.4 GHz
CPU. For standard NMPC, we set N = 25, and for AH-
NMPC we set Nmax = 25, Ns = 5. Also, sIPOPT is used
with the initial condition as the sensitivity parameter p
for updated NMPC calculations. However, because our
computed terminal region is so large, we may artificially
reduce it to |zN | ≤ 1 in order to more adequately
test the adaptive horizon algorithm. Also, in order to
simulate a disturbance for which the sensitivity prediction
is infeasible, we set the states to large predefined values at
k = 0, 50, 100. The norm of the state trajectories over time
is shown in Figure 3. The tracking behaviors of standard
NMPC and AH-NMPC are nearly identical. The difference
between the two methods is in the horizon lengths shown
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Table 2. Predefined state values

k x1 x2 x3 x4

0 40 40 0 0

50 40 0 40 0

100 40 0 0 40
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k
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60

jjx
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!

x
ss
jj

NMPC
AH-NMPC

Fig. 3. Quad tank, norm of states
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Fig. 4. Quad tank, Horizon Lengths

in Figure 4 and corresponding solve times. The standard
NMPC case has a constant horizon length and a higher
average solve time. For the adaptive horizon case the
horizon length tends to decrease as the system approaches
the steady state, leading to faster average solution times.
In the case of constant horizon NMPC, the average solve
time is 0.0115s, while the average solve time in the case
of AH-NMPC is 0.0062s, which shows a decrease of 46%.
When the sensitivity prediction is infeasible (zN /∈ Xf )
due to a large disturbance, the algorithm detects this and
defaults to Nk = Nmax, which guarantees feasibility of
(3) for all xk ∈ X . Thus, the horizon can be updated
adaptively under normal conditions, allowing for faster
average solve times, but still retains robustness in the case
of large disturbances.

8. CONCLUSIONS AND FUTURE WORK

This study presents a new method to calculate terminal
costs and regions for NMPC via the quasi-infinite horizon
framework that is both non-conservative and scalable. We
have also developed a method for updating prediction hori-
zon lengths adaptively online via a framework that retains
stability properties of the NMPC under assumptions of the
quality of linear control in the terminal region. Together,

these methods bridge a large gap in the practicality of
applying NMPC to real systems. Finally, we have shown
success on a computational example. The next steps of this
project will be to extend this methodology to provide a
rigorous robust stability property via reformulation of the
NLP, and to apply the quasi-infinite and adaptive horizon
methods to a large scale distillation system.
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