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Abstract: Expert knowledge is an important factor to achieve operational effectiveness. This
work focuses on mining such knowledge on operator responses to alarms, and examining the
relations between the responses and alarms from the historical Alarm & Event logs, which are
commonly available in modern industrial facilities. The process mining is adapted and applied
to construct dependency matrices, based on which workflow models of the operator responses to
alarms are discovered. Also, a new framework for graphical representation of operator responses
is proposed to give a better visualization of the extracted workflow models. To demonstrate the
effectiveness of the method, an industrial case study is presented.
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1. INTRODUCTION

Modern industrial facilities are usually very large in scale
and complex in process operation. The interconnection
of a large number of components, such as vessels, pipes,
actuators, sensors, and control modules, forms paths for
the propagation of abnormalities, which usually result
in multiple alarm annunciations and even alarm floods.
In practice, too many alarms may overload operators
and make them fail to respond to alarms in a timely
and corrective manner. For example, as mentioned in
(Mattiasson, 1999), it is highly unlikely for operators to
read through an alarm response manual during an alarm
flood that requires immediate attention. If theses alarms
are not addressed timely, the abnormal operation can lead
to unexpected plant shut-down, economic loss and even
loss of life as seen in many plant failures (Goel et al.,
2017). Thus, there is a high demand to develop tools to
assist operators in taking timely and corrective responses
to address alarms.

Computerized control and information systems, such as
the Distributed Control Systems (DCSs) and the Super-
visory Control And Data Acquisition (SCADA) systems,
have been broadly deployed in large-scale industrial fa-
cilities, making the collection of large volumes of process
operation data and events an easy task. Such historical
data contains valuable information about process oper-
ation status, propagation of abnormalities, and operator
actions in response to alarms. Extracting knowledge from
historical data would be helpful for decision support dur-
ing process monitoring (Goel et al., 2017). The existing
research mainly focused on analyzing alarm data to tackle
alarm floods and nuisance alarms (Schleburg et al., 2013;
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Hu et al., 2017), whereas historical events related to oper-
ator responses are not sufficiently investigated.

The human factor is crucial in alarm monitoring in plenti-
ful studies in the area of ergonomics (Nimmo, 2002; Stan-
ton and Baber, 2008; Adhitya et al., 2014). The goal of any
alarm system is to effectively display the state of the plant
to the operator, and the operator should be able to clearly
identify which alarm requires immediate attentions and
how to fix the abnormalities. Historical records about such
interactions between alarm systems and operators make it
possible to find out how operators respond to alarms and
how operational procedures are conducted routinely. The
workflow mining, or also known as process mining (Van der
Aalst et al., 2004), provides solutions to gain such insights
from the historical data. By extracting all variations of
procedures and turning them into understandable models,
the real execution can be discovered.

This paper attempts to adopt the workflow mining into
the field of alarm management to learn how operators
respond to alarms. Some related studies are: Dasani et al.
(2015) created workflow models from event messages from
a boiler operation and applied conformance checking to
the resulting model to extract unique findings. Hu et al.
(2016) applied process discovery to text based messages to
capture responses for univariate alarms and displayed the
results using petri-nets. Based on these ideas, this work
explores workflow mining of operator actions in response
to mutivariate alarms. The major contributions are to
propose: 1) a systematic method to capture relationships
between operator responses and alarms, and 2) a new
graphical visualization framework to represent the extract-
ed workflow models. Such workflow models can be used to
assist operators in decision making. As a result, operators
can take actions promptly and correctly to tackle abnor-
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Table 1. Common operator actions in industri-
al facilities.

Type Examples

Primary
actions

1) acknowledging, shelving, or suppressing alarms;

2) regulating pumps, valves, motors or fans;

3) adjusting parameters, set points, or alarm limits;

4) switching operating states and control modules.

Secondary
actions

1) communicating with other workers;

2) scheduling tasks contemporaneously;

3) checking operation manuals or notes;

4) thinking about causes and solutions.

malities by referring to the corrective responses distilled
from the historical data.

The remainder of the paper is organized as follows. Section
2 gives a brief introduction to common operator responses
and an industrial event log of alarm messages and op-
erator actions. In Section 3, a variant of the heuristics
miner is used and adapted to capture the dependencies
between alarms and operator responses. A new framework
for graphical representation of workflow models is also
proposed in this section. Section 4 presents an industrial
case study to demonstrate the effectiveness of the proposed
methods, followed by concluding remarks in Section 5.

2. PRELIMINARIES

This section introduces common operator responses to
handle alarms in industrial facilities, and discusses the his-
torical data involving both alarm messages and operator
response events.

2.1 Operator Responses to Alarms

Alarms are generated by alarm systems in the form of
visual or audible notifications to warn operators of abnor-
malities. Accordingly, operators take actions to respond to
the alarms and bring the system back to the normal state.
As summarized in (Rothenberg, 2009; Hu et al., 2016),
there are two major types of operator actions (shown in
Table 1) in industrial facilities.

Primary actions are usually deterministic and can be easily
historized and used for off-line analysis. By contrast, sec-
ondary actions are uncertain and usually performed before
or after certain primary actions. Secondary actions are
considered as non-standard and non-documented actions
and usually cannot be historized by computerized control
and information systems. In view of that, this work only
studies primary actions, which are usually available in the
historical data. To evaluate which actions are associated or
important to an alarm, metrics are needed to measure the
dependencies between actions and alarms. This problem is
addressed in the next section.

Fig. 1 presents a single tank system, where the input flow
rate is controlled by the pump and the output flow rate is
controlled by the valve. If the ratio between the pressure of
the pump and the position of the value exceeds the normal
operating range, the level in the tank may become too high
or too low, and this may trigger an alarm. Therefore in this
system, three different variables are inter-related. In the
scenario where the level is above the alarm limit, several

Fig. 1. A single tank system.

operating procedures could be executed by the operator
to handle such an alarm:

(1) Increasing the opening of the valve at the bottom of
the tank;

(2) Reducing the speed of the pump or shutting down the
pump, while keeping the valve open;

(3) Increasing the alarm limit of the tank fluid level.

In this paper, the goal is to determine which actions are
commonly used and which actions are more effective in
addressing alarms. Such knowledge is usually hidden in
the historical data, namely, the Alarm & Event (A&E)
logs in the next subsection.

2.2 Alarm & Event Logs

An A&E log is a structured database of time stamped
textual messages for events, such as the alarm state
transitions and operator responses (Hu et al., 2016, 2017).
The common data attributes in an A&E log include the
time stamp, tag name, alarm identifier, event type, plant
area, priority, state transition, and description. Among
them, configuration attributes, such as the tag name,
alarm identifier, event type, plant area, and priority are
fixed and uniquely identify a process or an instrument.
By contrast, other data attributes, such as the time stamp
and state transition, may vary with time and indicate what
events happened and when they happened.

The data attributes enable the exploitation for multiple
purposes in off-line analysis. Since the goal of this paper is
to extract information about operator responses to alarms,
only related data attributes are used. More specifically, in
this paper an event is referred to as a 3-tuple, consisting
of three data attributes, including the time stamp, event
type, and activity, which are described as follows:

(1) Time stamp defines when exactly an event happened
in the studied time period and also defines the orders
of events.

(2) Event type defines whether the event is related to an
alarm or a response.

(3) Activity defines the state transition, such as an alarm
occurrence (ALM) and return-to-normal (RTN) of
a specific alarm, or a change of a specific operator
response, (e.g., opening or closing a valve).

In some cases, unprocessed A&E logs (namely, raw files)
may have many imperfections, such as missing records, in-
consistent time formats, and improper descriptions (Suri-
adi et al., 2017). Thus, prior to extraction of information,
such imperfections should be resolved, and therefore, a
processed A&E logs is more useful.
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3. METHODOLOGY

This section presents the process mining technique which
extracts workflow models of operator responses to multi-
variate alarms from historical A&E logs, and a new frame-
work for graphical representation of operator responses.

3.1 Preliminaries on Process Mining

As introduced in (Van der Aalst, 2011a), the process min-
ing is a relatively young research area sitting between ma-
chine learning and data mining. The basic idea of process
mining is to discover, monitor, and improve real processes
by extracting knowledge from historical event logs. It con-
sists of 3 main tasks, including process discovery, confor-
mance checking, and process enhancement (Van der Aalst,
2011b). Fueled by the availability of large amounts of event
data, process mining has been broadly applied to solve real
world problems. Meanwhile, a variety of process mining
algorithms and softwares have been developed. Some of
the fundamental algorithms are, but not limited to, the
alpha miner (Van der Aalst et al., 2004), heuristics miner
(Weijters et al., 2006), fuzzy miner (Günther and Van der
Aalst, 2007), and genetic miner (de Medeiros et al., 2007).
Over the past few years, many revised versions of these
algorithms have been developed for performance improve-
ment or special applications (Weijters and Ribeiro, 2011;
Wen et al., 2006; de Medeiros et al., 2003).

In industrial facilities, there could be different ways to
respond to the same alarms and clear the abnormal sit-
uations. Such dependencies between alarms and responses
are stored in the A&E logs. In this work, the heuristic
miner algorithm is exploited to extract workflow models
of operator actions in response to multivariate alarms.
Compared to the most common process mining algorithm,
namely, the α-algorithm, the heuristic miner is more ro-
bust to noises (Weijters et al., 2006; Weijters and Ribeiro,
2011). Moreover, using this algorithm, it is not necessary to
segment the A&E log into traces of events, which is a major
difference to the univariate analysis case in (Hu et al.,
2016), where A&E log needs to be segmented into many
traces and the “head” or “tail” of each trace of events
should be identified from the data. Thus, this property
makes the heuristic miner more appropriate for the case
with multivariate alarms.

3.2 Construction of Dependency Relations

According to (Weijters et al., 2006; Weijters and Ribeiro,
2011), an event log should be analyzed for causal depen-
dencies, which are usually reflected by the orders of events
(alarms or responses) in the A&E log file. Thus, some
basic notations are introduced first. Given an A&E log
D = {x1 x2 x3 . . . xN} defined on the event domain X
(including alarms and responses), the following log-based
relations are defined:

• Direct successor: A > B iff there exists i ∈
{1, 2, . . . , N − 1} such that xi = A and xi+1 = B
within D;
• Length-two loops: A � B iff there exsists i ∈
{1, 2, . . . , T − 2} such that ti = A , ti+1 = B and
ti+2 = A within D;

• Direct or indirect successor: A ≫ B iff there exsists
i < j and i, j ∈ {1, 2, . . . , N} such that ti = A and
tj = B within D.

where “iff” abbreviates for “if and only if”, andN indicates
the number of events in D.

Dependency is then defined as the relation that the pres-
ence of certain events (alarms and responses) implies the
presence of other events (alarms and responses). To be
more specific, within the heuristics miner algorithm, five
types of dependencies are defined (Weijters et al., 2006;
Weijters and Ribeiro, 2011):

Direct dependency: the occurrence of one event direct-
ly causes another event to occur. The direct dependency
metric is given by

A→ B =
|A > B| − |B > A|
|A > B|+ |B > A|+ 1

(1)

where | · | indicates the frequency of a specific log-based
relation. A value close to 1 indicates a strong bi-variate
relationship between A and B.

Self dependency: the occurrence of the same event con-
secutively within an event log. The self dependency
metric is given by

A→ A =
|A > A|
‖A > A|+ 1

(2)

where this type of dependency usually occurs when the
same alarm is raised multiple times in succession, or one
operator response repeats multiple times.

Length-two dependency: the occurrence of A followed
by B is followed again by A (ABA). The length-two
dependency metric is given by

A→2 B =
|A� B| − |B � A|
|A� B|+ |B � A|+ 1

(3)

where this type of dependency can be regarded as a
feedback system.

Long distance dependency: similar to direct depen-
dency except, A is followed by B within a window size.
The long distance dependency metric is given by

A→l B =
|A≫ B| − |B ≫ A|
|A≫ B|+ |B ≫ A|+ 1

(4)

AND/XOR dependency: If an event has multiple di-
rect dependencies, those events must be either AND or
XOR dependencies. For example, A is followed by B
and A is followed by C. Then, an AND relationship
may suggest that both B and C occur after A. XOR
dependency may suggest that A followed by B and A
followed by C are two different dependencies with no
relation. The AND/XOR dependency metric is given by

A→ B ∧ C =
||B > C| − |C > B||
|A > B|+ |A > C|

(5)

Thresholds to imply the above dependencies can be pre-
defined and adjusted by the users based the application
requirements. High restrictions will result in over gener-
alized or partial models, while low restrictions will result
in unwanted relationships. The user’s expert knowledge
about the process and interpretation skills can greatly
improve the results.
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3.3 Implementation of the Heuristics Miner

The key to construct a workflow model using the heuristic
miner algorithm is to extract frequency based matrices
representing dependency relations and build dependency
graphs based on these matrices (Weijters et al., 2006; Wei-
jters and Ribeiro, 2011). GivenM unique events (including
all unique alarms and responses), the dependency graphs
are contracted with the size M ×M . The procedures to
create dependency matrices are:

Step 1 Check if each unique event meets the minimum
observation count. If this condition is not met, these
events will not be considered for the remaining steps.

Step 2 Create three dependency graphs, namely, direct
dependency graph, length-two dependency graph, and
long distance dependency graph, using the log-based
relations and metrics in Section 3.2.

Step 3 Check for any negative dependencies and remove
them from the dependency matrices.

Next, the following procedures are followed to mine mul-
tivariate relationships from the constructed dependency
graphs:

Step 1 Find the highest row and column values from all
three dependency matrices.

Step 2 Check whether each of the highest row or column
values meet the threshold requirements. If this condition
is met, then select all dependencies in the respective row
or column with dependencies greater than the highest
row/column minus the relative to best threshold.

3.4 Graphical Representation

The detected relations of operator responses to multi-
variate alarms can be represented by workflow model-
s, which are graphical representations in different forms
(de Medeiros et al., 2003). In this paper, a new framework
for the graphical representation of workflow models of
operator responses to alarms is proposed. In this new
framework, two main parts are defined:

(1) Nodes: each node indicates a unique event, such
as the occurrence of an unique alarm, its return-
to-normal, or an associated alarm response. In this
framework, nodes related to alarm occurrences or
return-to-normal events, are representing by triangle
symbols. Nodes related to operator responses or other
related events are represented by ellipse symbols.

(2) Edges: each edge indicates the dependency between
two events. Three types of edges are defined in this
graphical representation: a green solid arrow indi-
cating the forward dependency, a red solid arrow
indicating the reverse or feedback dependency, and
a dotted arrow indicating a portion of the process
model which is connected to the other portion of
the process model. In most cases, a well structured
or ideal process model should not contain self loops
and reverse dependencies. Dashed lines are useful to
display large and complex process models.

The following list presents the graphical notations for the
representation of workflow models of operator responses
to multivariate alarms:

. A hollow triangle connecting to the start of an edge,
represents the occurrence of an alarm.

/ A hollow triangle connecting to the end of an edge, repre-
sents the return-to-normal event of an alarm.

I A solid triangle connecting to the start of an edge indicates
the repeated occurrence of an alarm.

J A solid triangle connecting to the end of an edge indicates
repeated return-to-normal event of an alarm.

−→ A green solid arrow represents an edge connecting two
events in a forward direction.

←− A red solid arrow represents an edge connecting two events
in a feedback direction.

· · · A dotted line (either a green or red arrow) connects two
partial process models.

An hollow ellipse represents a unique operator response,
and a solid ellipse indicates a repeated operator response.

Fig. 2. Color map of the direct dependency matrix. A
darker color indicates a higher dependency value. A
red color indicates that the dependency is no less than
the predefined threshold of 0.9.

To distinguish between different alarms or responses, d-
ifferent colors are used for the above symbols. Since the
occurrence and return-to-normal events usually appear in
pair for the same alarm tag, the same color should be used
for such alarm events. For instance, we can use yellow,
orange, and red to denote the “high”, “high high”, and
“very high” alarms for the ALM and RTN of a specific
variable. Meanwhile, we can use light blue, blue, and dark
blue to denote the “low”, “low low”, and “very low” alarms
for the ALM and RTN of a specific variable.

4. INDUSTRIAL CASE STUDY

The case study involves a real A&E log file, which con-
sisted of 13917 events. The number of unique events in-
cluding alarms and response was 134, indicating that the
average frequency of each event is 104. Using the heuristic
miner, the dependency matrices are constructed with a
size of 134× 134. In order to find significant dependencies
between alarms and response, a large threshold of 0.9, is
applied to filter out weak dependencies and then construct
dependency graphs.
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Fig. 3. Color map of the length-two dependency matrix.

Fig. 4. Color map of the long distance dependency matrix.

The calculated direct dependency matrix, length-two de-
pendency matrix, and long distance dependency matrix
are presented using color maps in Figs. 2, 3, and 4. The col-
or of each pixel in the color map indicates the dependency
value from the row variable to the column variable. The
diagonal indicates the dependency between one variable
and itself. The red color indicates that the dependency
value is no less than the threshold of 0.9. From the direct
dependency matrix in Fig. 2, there is a high number of self-
dependencies as can be observed at the diagonal, where
quite a few pixels have the red color, indicating significant
dependencies. From the length-two dependency matrix in
Fig. 3, it can be seen that fewer significant dependencies
are found compared to the direct dependency matrix.
From the long distance dependency matrix in Fig. 4, a
large number of long distance dependencies are found and
quite a few are significant, i.e., the dependency values are
no less than the predefined threshold.

Based on the significant dependencies found from the de-
pendency matrices, workflow models of operator responses

(a)

(b)

(c)

(d)

Fig. 5. Constructed workflow models based on the new
graphical representations.

to multivariate alarms can be constructed. Fig. 5 presented
four examples of the extracted work flow models, which
are displayed using the new graphical representation. The
dependencies are automatically detected using the process
mining method in this work; the workflow graphs in Fig. 5
are manually drawn based on these dependencies.

• In Fig. 5a, the triangles of different colors indi-
cate three alarms, namely, “Var1.LO”, “Var1.LL”
and “Var1.VL”, which correspond to “low”, “low
low”, and “very low” alarm limits of the same pro-
cess variable “Var1”. As discovered from the A&E
log, commands to open the valve “V2” were usual-
ly made by operators through two ways indicated
by “V2.OPENCMD1” and “V2.OPENCMD2”. Then,
the valve “V2” opened, leading to the the clearance
of “Var1.LO”. Meanwhile, an operator changed the
alarm limits, which cleared the alarms “Var1.LL” and
“Var1.VL”.

• From Fig. 5b, it can be seen that the alarm “Var2.LO”
was triggered by the command “V3.CLOSECMD1”
or “V3.CLOSECMD1” that was used to close valve
“V3”. Then, Pumps “PM1” and “PM2” stopped.
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After that, an operator made commands to open
valve “V3”, which led to the clearance of the alar-
m “Var2.LO”. This example demonstrates that the
method in this work is not only capable of discovering
workflow models for multivariate alarms, but also
capable of finding those for univariate alarms.
• Fig. 5c presents a special case, where no operator

actions or system changes appeared in the extracted
workflow model. The alarms “Var6.HI”, “Var6.HH”,
and “Var6.VH” occurred in a sequential order and
cleared in a reverse order. After that “Var6.HI”
alarm happened again, indicating the repeating of
these alarms without the intervention of operators. As
indicated by the solid symbols, “Var6.VH:ALM” and
“Var6.VH:RTN” were likely to repeat by themself.
• The last example in Fig. 5d presents a more com-

plex case, with six alarm variables and ten alarm
responses. Since this graphical model is too large, it
is decomposed into two parts, connected by a dotted
arrow. Compared to the previous examples, there are
two new actions, namely, “PCOUT.SETCMD1” and
“PCOUT.SETCMD1”, which indicate the operator
respones to change the parameters related to the
pump control loop.

5. CONCLUSION

This paper presents a framework for the extraction and
graphical representation of operator actions in response
to multivariate alarms. Process mining is adapted and
applied to extract meaningful workflow models, which
represent the knowledge of how operators make actions to
respond to alarms. Meanwhile, a new framework of graphi-
cal representation of workflow models is proposed for a bet-
ter visualization of the extracted results. Eventually, the
results can be used to assist operators in decision making,
and thus prevent the reproduction of human errors when
responding to alarms. The workflow models captured from
the skilled operators can also be used for operator training
programs. Further, there remain many research oppor-
tunities in this area. Some possible problems deserving
efforts include: how to validate the captured the workflow
models based on the process knowledge or alarm response
manuals, how to incorporate more information, such as the
response time, and how to evaluate which response is the
best when there are multiple paths of operator actions in
response to the same alarms.
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