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Abstract: Iterative real-time optimization schemes that employ modifier adaptation add bias
and gradient correction terms to the model that is used for optimization. These affine corrections
lead to meeting the first-order necessary conditions of optimality of the plant despite plant-model
mismatch. However, since the added terms do not include curvature information, satisfaction of
the second-order sufficient conditions of optimality is not guaranteed, and the model might be
deemed inadequate for optimization. In the context of modifier adaptation, this paper proposes
to include a dedicated parameter-estimation step such that also the second-order optimality
conditions are met at the plant optimum. In addition, we propose a procedure to select the
best parameters to adapt based on a local sensitivity analysis. A simulation study dealing with
product maximization in a fed-batch reactor demonstrates that the proposed scheme can both
select the right parameters and determine their values such that modifier adaptation can drive
the plant to optimality fast and without oscillations.
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1. INTRODUCTION

Real-time optimization (RTO) is used extensively to oper-
ate industrial processes at economically optimal operating
conditions without compromising product quality and
process constraints. In many RTO schemes, the successive
operating points are computed via model-based optimiza-
tion. However, if the process model does not predict the
plant behavior accurately, the optimal operating conditions
found via numerical optimization might result in sub-
optimal performance and violate crucial process constraints.
Hence, the optimization problem needs to be adapted
based on measurements. For this purpose, there are various
schemes which differ in the way in which they exploit the
measurements.

In the two-step approach (Chen and Joseph, 1987), some
of the model parameters are adapted so that the model
outputs match the plant outputs at the current operating
point as well as possible. Optimization of the steady-
state operating point is then performed using the adapted
model. This iterative two-step approach has the potential
of converging to the plant optimum if the plant-model
mismatch is of parametric nature, i.e., if the mismatch can
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be corrected by parameter adaptation. However, in the
presence of structural plant-model mismatch, the two-step
approach may perform poorly (Forbes et al., 1994).

Consequently, a modified two-step approach, called Inte-
grated System Optimization and Parameter Estimation
(ISOPE), was proposed by Roberts (1979). A parameter
estimation problem is solved to make the model outputs to
match the measured plant outputs. Then, assuming that the
plant output gradients can be estimated experimentally,
a gradient correction term is added to the cost of the
optimization problem.

Alternatively, one can use measurements to compute zeroth-
and first-order correction terms to the cost and constraint
functions without model adaptation (Tatjewski, 2002;
Gao and Engell, 2005). This approach, which has been
labeled Modifier Adaptation (MA) in Marchetti et al.
(2009), modifies the cost and constraint functions of the
optimization problem so as to enforce the plant first-order
necessary conditions of optimality known as the Karush-
Kuhn-Tucker (KKT) conditions. However, plant optimality
also requires satisfaction of the second-order optimality
conditions at the plant optimum. Note that this property,
called model adequacy, is a property of the model at hand,
since the affine corrections that are specific to MA do not
affect the Hessian of the optimization problem. One can use
convex approximations to the cost and constraint functions
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to guarantee model adequacy (François and Bonvin, 2013).
However, this may reduce model accuracy, and thereby the
rate of convergence to the plant optimum may deteriorate.

To improve model adequacy for MA, Ahmad et al. (2017)
proposed the Effective Model Adaptation (EMA) procedure
in which the parameters of a first-principles model are
estimated iteratively. If the updated model satisfies a
certain model-adequacy criterion, the model is adequate
for optimization. However, parameter estimation does not
always result in adequate models. The present contribution
focuses on improving EMA by explicitly considering the
model-adequacy criterion in the parameter estimation step.

We also propose a procedure to select the best parameters
to estimate for the purpose of making the model adequate.
In principle, all model parameters can be estimated, but
this may lead to overfitting and increased computational
effort. Furthermore, the number of parameters that can
be estimated accurately depends on the measurements
that are available, the measurement noise, and the level
of excitation. Some parameters might play a significant
role in dynamic optimization, but have a negligible or no
effect in steady-state optimization (Houska et al., 2015).
Hence, we suggest to select the set of parameters at each
RTO iteration by computing the parametric sensitivity of
the Lagrangian function, thereby effectively ranking the
parameters.

This paper is organized as follows. Section 2 formulates the
optimization problem and reviews the concepts of MA,
model adequacy, and EMA. Section 3 investigates the
addition of a penalty function to EMA to improve model
adequacy. Section 4 proposes to use a local sensitivity
analysis to select, in each iteration, the parameters to adapt.
Section 5 presents a simulation study that investigates the
performance of MA on the basis of an inadequate model
that is then updated to make it adequate. Finally, Section
6 concludes the paper with remarks on further research.

2. PRELIMINARIES

2.1 Plant Optimization Problem

The plant optimization problem is formulated as:

min
u

Jp(u) := J̃p(u,yp(u))

s.t. Cp(u) := C̃p(u,yp(u)) ≤ 0,

uL ≤ u ≤ uU ,

(1)

where u ∈ Rnu is the input vector and yp ∈ Rny is a vector
of plant measurements. Jp : Rnu → R is the cost function
to be minimized, Cp : Rnu → RnC is the set of process-
dependent inequality constraint functions. The solution to
Problem (1) is denoted as u∗p.

In practice, the plant input-output mapping, yp : Rnu →
Rny , is not known, but it is assumed that an approximate
model is available. This model can be used in the following
optimization problem:

min
u

J(u, θ) := J̃(u,y(u, θ))

s.t. C(u, θ) := C̃(u,y(u, θ)) ≤ 0,

uL ≤ u ≤ uU ,

(2)

where θ ∈ Rnθ represents the vector of model parameters
and y(u, θ) is the vector of outputs predicted by the model.
Generally, due to plant-model mismatch, the solution to
Problem (2) differs from the plant optimum u∗p. RTO
schemes for the situation with plant-model mismatch
iteratively adapt the model-based optimization problem so
as to reach plant optimality.

In the two-step approach, the plant measurements are
used to identify some of the model parameters at the
current operating point by solving the following least-
squares problem:

θ(k) := arg min
θ
‖yp(u(k))− y(u(k), θ)‖2, (3)

with yp(u
(k)) being the plant measurements at the current

operating point u(k). The updated model is then used in
the optimization problem to generate the new set of inputs
u(k+1). However, this approach usually does not reach
plant optimality in the presence of structural plant-model
mismatch.

2.2 Modifier Adaptation

In MA, the model-based optimization Problem (2) is
modified by the introduction of zeroth-order (bias) and
first-order (gradient) correction terms as follows:

min
u

J (k)
m (u, θ) := J(u, θ) + ε

(k)
J + λ

(k)
J

(
u− u(k)

)
s.t. C(k)

m (u, θ) := C(u, θ) + ε
(k)
C + Λ

(k)
C

(
u− u(k)

)
≤ 0,

uL ≤ u ≤ uU ,
(4)

where the correction terms are described by:

ε
(k)
J =Jp(u

(k))− J(u(k), θ) (5)

λ
(k)
J =

(
∇Jp(u(k))−∇J(u(k), θ)

)T
(6)

ε
(k)
C =Cp(u

(k))−C(u(k), θ) (7)

Λ
(k)
C =

(
∇Cp(u

(k))−∇C(u(k), θ)
)T
, (8)

with the scalar ε
(k)
J and the nC -dimensional vector ε

(k)
C rep-

resenting zeroth-order corrections, and the nu-dimensional

row vector λ
(k)
J and the nC × nu matrix Λ

(k)
C being the

first-order modifiers. Note that the model parameters θ are
not adapted.

To prevent excessive corrective action, the inputs can be
filtered as follows:

u(k+1) = u∗(k+1) + K(u(k) − u∗(k+1)), (9)

where u∗(k+1) is the solution to Problem (4), and K is a
diagonal matrix of filter gains in the interval [0, 1). In this
contribution, the experimental gradients are calculated
as in Gao and Engell (2005) by using finite-difference
approximation if needed with additional perturbations
around u(k).

2.3 Model Adequacy

If the process model used in an RTO algorithm is capable
of producing a fixed point that is a local minimum at the
plant optimum u∗p, then the model is said to be adequate
for optimization (Forbes and Marlin, 1996).
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By using MA, u∗p satisfies the first- and second-order
optimality conditions of the modified optimization Problem
(4). Since MA corrects only the first-order KKT conditions,
it is however not guaranteed that u∗p will satisfy the second-
order optimality conditions.

Concretely, model adequacy requires that the reduced
Hessian of the model-based optimization Problem (4) at
u∗p, ∇2Lm,r

(
u∗p, θ, µ

∗), is positive definite (Marchetti et al.,
2016), where Lm represents the Lagrangian function:

Lm (u, θ, µ) := Jm (u, θ) + µTCm (u, θ) , (10)

with µ being the nC-dimensional vector of Lagrange
multipliers.

The vector of active constraints at u∗p is denoted by

Ca
m

(
u∗p, θ

)
∈ Rna

C , where naC is the cardinality of the active
constraints at u∗p. Assuming that Linear Independence
Constraint Qualification (LICQ) holds at u∗p, one can write:

∂Ca
m

(
u∗p, θ

)
∂u

Z = 0, (11)

where Z ∈ Rnu×(nu−na
C) is a null-space matrix. The

reduced Hessian of the Lagrangian on this null space,
∇2Lm,r

(
u∗p, θ, µ

∗) ∈ R(nu−na
C)×(nu−na

C), is given by Gill
et al. (1981) as:

∇2Lm,r
(
u∗p, θ, µ

∗) := ZT

[
∂2Lm

(
u∗p, θ, µ

∗)
∂u2

]
Z. (12)

Note that, if the Hessian of the Lagrangian function
is positive definite, then the reduced Hessian of the
Lagrangian is also positive definite.

2.4 Effective Model Adaptation

Model adequacy upon convergence can be achieved itera-
tively by updating the model parameters θ in the modified
optimization Problem (4). EMA exploits this idea and
adapts the model parameters via the least-squares Problem
(3) as detailed in Ahmad et al. (2017). EMA accepts the
new parameters θ(k+1) only if the following two conditions
are satisfied:

• ∇2J
(k)
m (u, θ(k+1)) is positive definite,

•
∣∣∣J (k)
m (u(k+1), θ(k+1))− Jp(u(k+1))

∣∣∣ <∣∣∣J (k)
m (u(k+1), θ(k))− Jp(u(k+1))

∣∣∣.
The first condition forces the cost term of the Lagrangian
function (10) to be positive definite at the kth iteration.

Note that ∇2J
(k)
m (u, θ(k+1)) being positive definite implies

that ∇2J(u, θ(k+1)) is positive definite.

The second condition can be analyzed via a Taylor’s series

expansion of J
(k)
m (u, θ) − Jp(u) at u(k). Upon neglecting

the terms higher than second order, one can write:

J (k)
m (u, θ)− Jp(u) ≈

1

2

(
u− u(k)

)T (
∇2J (k) −∇2J (k)

p

)(
u− u(k)

)
,

(13)

from which it can be inferred that the second condition
reflects the gap between the Hessian matrices of the adapted
model and of the plant. Hence, enforcing the second

condition ensures that the adapted model exhibits a Hessian
that approximates the plant Hessian.

The parameters θ(k+1) that result from EMA are then used
in the modified optimization Problem (4).

3. EMA WITH PENALTY FUNCTION

The least-squares parameter estimation Problem (3) that
is used in EMA minimizes the output prediction error.
However, it does not guarantee that the adapted model will
satisfy model adequacy even when there exist parameter
values that make the model adequate. Furthermore, since
MA aims at meeting the first-order KKT conditions, the
parameter adaptation problem should be designed to
primarily search for an adequate model by meeting the
second-order optimality conditions. Therefore we propose
to add a penalty term to the least-squares Problem (3) as
follows:

θ(k) := arg min
θ
‖yp(u(k))− y(u(k), θ)‖2 + αTP(k)(θ)

s.t. α > 0,

with

P(k)(θ) =
[
min

(
0, eig

(
∇2Lm(u(k), θ, µ(k))

))]2
,

(14)
where α is a penalty parameter and eig represents a vector
of eigenvalues. The added penalty term penalizes the cost
function of the identification problem when the eigenvalues
of the Hessian of the Lagrangian function are not positive
for a given value of the parameters θ. Positive eigenvalues
imply that the Hessian of the model Lagrangian is positive
definite, which also makes the reduced Lagrangian Lm,r
positive definite.

The penalty parameter α drives the identification problem
to search for parameter values that enforce model adequacy.
Provided that the set of model-adequate parameters is
non-empty, the penalty term in Eq. (14) enforces model
adequacy for a sufficiently large penalty weight. Note
that, instead of the penalty term, one could have added
a constraint to the identification problem. However, the
identification problem becomes infeasible when there are
no parameter values that result in model adequacy. For
example, if the Lagrangian function is concave in the
parameters, it is not possible to satisfy model adequacy
via parameter adaptation.

4. PARAMETER SELECTION FOR EMA

In principle, EMA can be designed to adapt all model
parameters. However, since adapting all parameters may
result in identifiability issues and overfitting, it is often
desirable to adapt only a subset of the parameters. Hille
et al. (2017) proposed to select the parameters based on
a local sensitivity analysis performed on the outputs and
the gradients of the cost and constraint functions. The
parameters are then ranked and selected according to their
sensitivity.

Since the identification step in EMA with penalty func-
tion aims at obtaining a positive-definite Hessian of the
Lagrangian function that guarantees model adequacy, we
propose to select the parameters based on the parametric
sensitivity of the Lagrangian function. At the kth RTO
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iteration, the sensitivity of the Lagrangian with respect to
the model parameter θi is defined as:

SθiLm =
∂Lm

(
u(k), θi, µ

(k)
)

∂θi
. (15)

The parameters with the largest sensitivities have the
strongest influence on the Lagrangian function and, thus,
also on the eigenvalues of the corresponding Hessian. Ideally,
nu parameters could be selected to independently adjust
the nu eigenvalues of the Hessian. However, if the Hessian is
already convex along certain input directions, the number
of parameters that need to be estimated can be reduced.

Note that for parameter selection we do not consider
the sensitivity of the output error in the cost function
of Problem (14), since reducing the output error is not
the primary goal of the identification step. Nevertheless,
keeping the output error small helps to find parameter
values that match the reality well, in particular when a
large set of parameter values satisfy the model adequacy
criterion.

5. SIMULATION STUDY

We test the performance of modifier adaptation combined
with (a) EMA with penalty function (EMA-PF), and (b)
EMA with penalty function and parameter selection (EMA-
PF-PS) on a fed-batch reactor for penicillin production.
This process has been used to evaluate RTO methodologies
e.g. in Ahmad et al. (2017) and Mandur and Budman
(2015).

5.1 Problem Definition

The plant dynamics are described by the following equa-
tions:
dX

dt
=

µx S X

KxX + S
− X

V

dV

dt
(16)

dP

dt
=

µp S X

Kp + S + S2/KI
− P

V

dV

dt
−KH P (17)

dS

dt
= − µx S X

Yx/s(KxX + S)
− µp S X

Yp/s(Kp + S + S2/KI)

−mxX +
SF F

V
− S

V

dV

dt
(18)

dV

dt
= F − β V, (19)

where X, S and P are the concentrations of biomass,
substrate and penicillin, respectively. V is the volume of
the culture medium and F is the feed flowrate of substrate.
The parameter values used in the simulation study are
given in Table 1.

Plant-model mismatch is considered by ignoring the rate
of consumption of penicillin by hydrolysis in the model
used for optimization. The penicillin dynamics in the
optimization model then reads:

dP

dt
=

µp S X

Kp + S + S2/KI
− P

V

dV

dt
. (20)

The operational objective is to maximize the concentration
of penicillin at the end of the batch, while satisfying a
terminal constraint on the culture volume. The manipulated

variables are the feed flowrate of substrate F and the initial
substrate concentration S0.

The optimization problem thus reads:

max
F,S0

P (tf )

s.t. V (tf ) ≤ Vmax,
(21)

where Vmax = 120L is the maximal volume of the reactor.
The batch time tf is taken to be 192 h. The measurements
of X, P and S that are used for parameter estimation
are available every 6 h. The initial conditions are given in
Table 2.

5.2 Performance without Iterative Parameter Selection

This section compares three RTO approaches, namely:

(1) Standard MA without parameter adaptation,
(2) MA with EMA,
(3) MA with EMA-PF.

In this section, we do not use the iterative parameter
selection procedure described in Section 4, which will be
investigated later. Here, in MA with EMA and EMA-PF,
the model parameters Kx and KI are adapted after each
batch. The performances of the three RTO approaches are
compared in Figure 1. The following remarks can be made:

(1) Without parameter adaptation, standard MA moves
quickly toward the optimal penicillin concentration
but then starts oscillating since the model used is
inadequate as it does not satisfy the second-order
optimality conditions.

(2) In MA with EMA, although not guaranteed, the
parameter identification step finds parameter values
that make the model adequate after three iterations.
Hence, MA with EMA converges to plant optimality.

(3) MA with EMA-PF also converges to plant optimality.
Although MA with EMA and EMA-PF give similar
final results, MA with EMA-PF (i) finds adequate
model parameters after a single iteration, and (ii) is

Table 1. Parameters of the penicillin production process.

Parameters Description Value

µx Specific growth rate of biomass 0.092
µp Specific rate of penicillin production 0.005
Kx Saturation constant 0.15
Kp Saturation constant 0.0002
KI Substrate inhibition constant 0.1
KH Rate of consumption of penicillin by 0.04

hydrolysis
Yx/s Biomass yield per unit mass of substrate 0.45

Yp/s Penicillin yield per unit mass of substrate 0.9

mx Substrate consumption rate 0.014
needed to maintain the biomass

SF Concentration of substrate in the feed 600
β Evaporative loss during fermentation 0.000 62

Table 2. Initial condition for the states and inputs.

Variable Initial conditions Unit

Biomass concentration (X0) 0.1 g L−1

Penicillin concentration (P0) 0.0 g L−1

Fed-batch culture volume (V0) 100.0 l
Substrate concentration (S0) 6.0 g L−1

Input feed (F ) 0.11 L h−1
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(a)

(b)

Fig. 1. Comparison of iterative batch optimization using
modifier adaptation: standard MA, MA with EMA,
and MA with EMA-PF. (a) Convergence of the plant
cost, and (b) successive operating points in the input
space. The contour lines represent the plant cost. The
shaded region is infeasible due to the volume con-
straint. The black dot represents the plant optimum.

slower as model accuracy is lower since the parameters
are estimated primarily to make the model adequate
rather than accurate.

To demonstrate the benefit of using the penalty function,
we ran the simulation for different values of the initial
inputs. The comparison is shown in Figure 2, where it can
be observed that, in MA with EMA-PF, all trajectories
converge smoothly to the plant optimum, whereas large
oscillations occur in MA with EMA for some of the initial
inputs. Clearly, MA with EMA is not always capable of
reaching model adequacy, whereas MA with EMA-PF does
a good job for all tested initial operating conditions.

5.3 Performance with Iterative Parameter Selection

The performance of MA with EMA-PF can still be
improved by carefully selecting the model parameters that
are adapted, for example by using the scheme proposed in
Section 4. Here, we consider Kx, KI and µx as potentially
adjustable parameters. Since there are only two Hessian

eigenvalues to be adjusted, we select two parameters from
the set of three at each iteration.

Figure 3a presents a comparison between a fixed choice
of the model parameters Kx and KI and the selection
resulting from the scheme proposed in Section 4. The
ranking of parameters at each iteration is shown in
Figure 3b, the most influential parameter being ranked 1. At
each iteration, the two best-ranked parameters are selected
for parameter estimation. As seen in Figure 3a, a significant
improvement in performance is observed. Initially, the
parameters µx and Kx are selected for adaptation. As
a result, not only is the updated model adequate, but also
the optimum can be reached faster. The proposed real-time
optimization scheme completes 90% of the improvement in
three iterations, whereas the adaptation of a fixed set of
parameters reduces this value to 58%.

6. CONCLUSIONS

This contribution proposes to add a penalty term to the
objective of the parameter estimation problem so as to
increase the reliability of MA with EMA. This penalty
term guarantees meeting the model-adequacy condition,
provided that such parameter values exist. Furthermore,
we have proposed a parameter selection procedure based
on a local sensitivity analysis. The method selects the most
influential parameters from a given set in order to improve
the MA performance.

It is interesting to note that the goal of parameter
estimation is not better model prediction, but rather
model adequacy. Furthermore, MA with EMA attempts to
improve the performance of real-time optimization in two
distinct ways:

(1) by meeting the first-order KKT conditions via the
bias and gradient modifiers, and

(2) by meeting the second-order optimality conditions by
an adapted parameter estimation by EMA.

The effect of the measurement noise on the identification
of an adequate model will be studied in future work.
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