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Abstract: For a large class of real-time optimization (RTO) schemes where online experimental
gradients are evaluated for convergence to the plant optimum, the input signals are sufficiently
excited in the noisy environment. Furthermore, the evaluations are typically persistent even if
convergence is attained, for handling varying operating conditions caused by disturbances. The
unsettled operation around the optimum leads to oscillations and extra economic loss. In this
paper, we propose a strategy that establishes the suspending and activating conditions for RTO
schemes. The conditions are developed based on process monitoring methods, which can in a
passive way detect operating condition changes. Using the conditions, the RTO implementation
is allowed to be suspended upon convergence and further restarted to approach the new optimum
when the operating condition changes. The Williams-Otto reactor is studied to show the
usefulness of the new idea.
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1. INTRODUCTION

Optimization has been long prevalent for operating chem-
ical processes (Edgar et al., 2001). The rigourous process
model is built and then numerically optimized regarding
the economic index. In this case, an accurate mathemat-
ical model matching the real plant is fundamental for
the optimization performance. Unfortunately, plant-model
mismatches widely exist in real applications due to, e.g.
unclear chemical mechanisms and unknown disturbances.
Optimization based on an inaccurate process model leads
to an inferior performance, or worse, infeasibility.

Real-time optimization (RTO) deals with optimization
with uncertainties. In literatures, different RTO approach-
es have been proposed, including the two-step approach
(Chen and Joseph, 1987), modifier adaptation (Marchet-
ti et al., 2009, 2016), necessary conditions of optimality
(NCO) tracking (Srinivasan et al., 2003; Francois et al.,
2005; Srinivasan and Bonvin, 2007), extremum seeking
(Ariyur and Krstic, 2003), self-optimizing control (Sko-
gestad, 2000; Jäschke et al., 2017; Ye et al., 2015), and so
forth. These RTO schemes generally pursue (1) constraints
satisfaction, and (2) convergence to the (neighborhood of)
true optimum. Comparisons among different RTO schemes
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can be found in recent literatures (Chachuat et al., 2009;
Francois et al., 2012).

For a large class of RTO schemes, including the modifier
adaptation and NCO tracking, the plant gradients for vari-
ous quantities need to be evaluated for convergence to the
true optimum. Typically, online experiments are carried
out by perturbing the inputs in certain way and then the
plant response is observed. The input signals should be
sufficiently excited to extract information for calculating
the gradients (Brdys and Tatjewski, 2005; Marchetti et al.,
2010). Intuitively, when the operation converges into the
optimum neighborhood within a tolerable level, the inputs
should however be kept stationary to stay at the optimum.
This is nonetheless opposed to the exciting constraint
imposed on the optimization formulations of RTO. An-
other important fact is that the operating condition may
change unexpectedly (caused by, for example, varying dis-
turbances), hence the gradients need to be evaluated con-
tinuously, such that the new optimum is still approached in
the new operating condition. The oscillations caused by in-
put excitements are unfavored from a control point of view.
Economically, this further leads to the loss of profit. The
mentioned contradiction is similar to the well-known dual
problem for control and identification, where the similarity
has been notified (Marchetti et al., 2010). Solutions have
been proposed on this issue (Brdys and Tatjewski, 2005;
Marchetti et al., 2010), however, the focus is placed on
finding reasonable magnitudes and directions of perturbed
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inputs such that the two sides are consolidated. However,
the contradiction still in essence remains.

Focusing on the mentioned RTO schemes with evaluating
experimental gradients, the perspective in this paper is
to take a more practical way, by means of establishing the
suspending and activating conditions for performing RTO.
In specific, we consider to suspend the RTO when the
operation has converged into the optimum neighborhood,
such that unnecessary oscillations are avoided upon con-
vergence. On the other hand, when the operating condition
changes, the RTO is reactivated to find the new optimum.
While the suspending condition for judging convergence
to optimum can be established along the RTO realiza-
tions, detection of operating condition change to keep
suspending and activate RTO is not straightforward. To
this end, we introduce the process monitoring theory in
this paper, which is traditionally used for fault diagnosis.
Previously, the process monitoring methodology has been
novelly utilized to detect non-optimal status for processes
with parametric uncertainties (Ye et al., 2014b,a). The
advantage is that process monitoring methods run in a
passive way, without the necessity of exciting the process.
Furthermore, the monitoring models can be established
based on the historical process data, which is purely data-
driven. Combing the suspending and activating conditions
into the RTO scheme can, from a decision level, handle the
contradiction mentioned above. To the best knowledge of
authors, such strategy has not been proposed in recent
publications.

The rest of this paper is organized as follows. In section
2, the methodology of modifier adaptation is briefly re-
viewed, which is used as a particular RTO investigation
throughout this paper. But the proposed strategy can be
readily extended to RTO schemes with performing online
gradient estimations, such as the NCO tracking. The main
idea in this contribution is elaborated in Section 3, then
the implementing logic and established conditions are p-
resented in detail. In Section 4, the Williams-Otto reactor
is investigated, where the merits of the new strategy are
confirmed through simulations. The work is concluded
with discussions in Section 5.

2. THE MODIFIER ADAPTATION

2.1 Method formulation

Consider the following static optimization problem

min
u

φ(u, d) (1)

s.t. y = f(u, d)

G(u, y(u, d)) ≤ 0

where φ is the economic cost to be minimized, u and d
are the manipulated variables and uncertain disturbances,
respectively. y is the measurements and f is the input-
output mapping function, G is the process constraints.
Due to plant-model mismatch, suppose that the actual
optimization problem for the real plant is

min
u

φ(u, yp(u, dp)) (2)

s.t. yp = fp(u, dp)

Gp(u, yp(u, dp)) ≤ 0

where the subscript (·)p denotes the variables/functions
associated with the real plant. Instead of disturbance
estimation and model refinement, modifier adaptation
(MA) solves a modified optimization problem on basis
of the inaccurate process model, by making corrections
of both bias and gradients on the constraints and cost
function. Specifically, at the kth iteration, the following
modified optimization is solved

uk+1 ∈ argmin
u

φm := φ(u, d) + (λJk )Tu (3)

s.t. Gm := G(u, d) + εk + (λGk )T(u− uk) ≤ 0

where the subscript “(·)m” represents for a modified func-
tion, εk and λGk are the constraint-value and constraint-
gradient modifiers, respectively; λJk are the cost-gradient
modifiers. The modifiers denote the differences between
the true and predicted KKT elements at the kth operating
point uk, defined as follows

εk := Gp(uk, yp,k)−G(uk, d) (4)

λGk :=
∂Gp
∂u

(uk)− ∂G

∂u
(uk, d) (5)

λJk :=
∂Jp
∂u

(uk)− ∂J

∂u
(uk, d) (6)

To prevent from excessive corrections, the optimized in-
puts uk+1 is filtered as

u∗k+1 = Kuuk+1 + (I −Ku)uk (7)

where Ku is a diagonal matrix with elements bounded
between 0 and 1, the filtered signals u∗k+1 are implemented
instead as the actual inputs. Notice that, it is also the case
to filter the modifiers such that smaller movements are
implemented (Marchetti et al., 2009).

One of the most advantages of MA is that, upon conver-
gence, the ultimate operation u∞ approaches to the true
plant optimum in the noise-free environment, even there
exist structural plant-model mismatches, as stated in the
following KKT matching theorem (Marchetti et al., 2009).

KKT matching theorem (Marchetti et al., 2009): Assume
that the iterative procedure (3) converges to u∞ with a
nonsingular filter Ku, the KKT of modified optimization
problem matches with the plant at operating point u∞,
which implies that u∞ is an optimum for the real plant.

2.2 Gradient evaluation

A key element is the gradient evaluation. At all iteration

points in MA, the gradients
∂φp

∂u (uk) and
∂Gp

∂u (uk) needs to
be evaluated. The simplest method for this purpose is the
forward finite difference (FFD) method, which perturbs
all inputs in turn along independent input directions and
then evaluate the output differences. For example, the
gradient of measurements with regarding to the jth input

uj ,
∂yp
∂uj

(uk) is calculated as

∂yp
∂uj

(uk) =
yp(uk + hej)− yp(uk)

h
(8)

where h is a small positive step size and ej is the jth
unit vector. The cost gradient is calculated similarly by
replacing yp with φp in above equation. However, the
shortcoming of FFD is that the speed of gradient eval-
uation is slow, particularly for multi-input systems. This
is because for a complete evaluation of the full gradients,
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the FFD method requires nu+1 operating points to collect
sufficient information.

To speed up the evaluations, gradient estimation on basis
of past operating points have been proposed in litera-
tures. In the dual ISOPE algorithm (Brdys and Tatjewski,
2005), for instance, let the inputs and outputs for the
past nu operating points denoted as {uk, . . . , uk−nu+1}
and {ypk , . . . , ypk−nu+1

}, respectively. Suppose that curren-
t inputs and outputs are u and yp, two difference matrices
are then defined as

U (u) := [u− uk · · · u− uk−nu+1] (9)

Y (u) :=
[
yp − ypk · · · yp − ypk−nu+1

]
(10)

By linearization around the current point, it can be de-

rived that a first order estimate of gradients is
∂yp
∂u (u) =

Y (u)U −1(u), then both the iterative modified optimiza-
tion and gradient estimation can be performed at succes-
sive operating points.

However, it was recognized that online gradient estimation
is a dual problem. Basically, the differences of u in matrix
U should be small enough to guarantee the accuracy of
first order gradient approximation and on the other hand,
big enough to ensure a significant signal-to-noise ratio
and well conditioned U (u). To deal with this issue, the
dual ISOPE algorithm introduces a lower bound for the
condition number of the inverse of U (u). Equivalently, the
condition number of U (u) should be lower than an upper
bound κmax as follows

κ(u) :=
σmax(U (u))

σmin(U (u))
≤ κmax (11)

where σmax and σmin stand for the largest and smallest
singular values of a matrix, respectively. The condition
number constraint is added into the optimization problem
(3). However, it was pointed out that the condition number
constraint in the dual ISOPE algorithm does not convey
information for the gradient error (Marchetti et al., 2010),
κmax is often set in a heuristic way.

Recently, an improved gradient evaluation method, termed
as the dual MA, is proposed (Marchetti et al., 2010).
Instead of using the condition number bound, the up-
per bounds of norm of gradient errors caused by finite-
difference approximation and measurement noise were de-
rived. Simulations show that the optimizing speed of MA is
accelerated and further leads to enhanced economic perfor-
mance. Due to the space limitation, the dual MA algorithm
is not further presented, and the condition number bound
is used in this paper.

3. SUSPENDING AND ACTIVATING CONDITIONS

Logically, the RTO implementation should terminate once
the convergence is attained, such that unnecessary input
perturbations are avoided. However, without persistent
gradient evaluations, the operation loses optimality in case
of operating condition change. Therefore, a key point lies
in how to know the change of operating condition.

3.1 Detection of operating condition changes

We propose to detect the change of operating condition
based on the process monitoring theory. Previously, we

have used a similar strategy to judge the optimality
status of chemical processes influenced by parametric
uncertainties(Ye et al., 2014b,a). Among numerous process
monitoring methods for chemical plants (Ge, 2017; Zhu
et al., 2017; Ge et al., 2017), we introduce the classic
linear PCA, which is the simplest one but sufficient to
demonstrate our purpose.

Denote the data samples for PCA modelling in a matrix
form Y ∈ RM×ny , where M is the number of samples. The
row vector (yi)

T in Y denotes a group of measurements. Y
is firstly scaled to have zero mean values and unit variance
for each variable. The PCA form is represented as

Y = TPT + E = TPT + T̃ P̃T (12)

where T ∈ RM×k and P ∈ Rny×k is the score and
loading matrix of principal components, respectively. E ∈
RM×ny is the residual matrix, T̃ ∈ RM×(ny−k) and P̃ ∈
Rny×(ny−k) is the score and loading matrix of residual
components, respectively. k is the number of principal
components, whose value can be determined from cross
validation or cumulative percent variance (CPV).

The various matrices in (12) can be obtained through
the symmetric eigenvalue decomposition for the covariance
matrix of Y , Σ = Y TY/(M − 1)

Σ =
[
P P̃

]
Λ
[
P P̃

]T
(13)

T = Y P

T̃ = Y P̃

where Λ is a diagonal matrix consists of all eigenvalues of
Σ, i.e.

Λ = diag{λ1, λ2, ..., λny
} (14)

Through above steps, each row vector (yi)
T in Y can be

projected onto the principal and residual spaces

ŷi = PPTyi (15)

ỹi = (I − PPT)yi
where ŷi and ỹi is the projected vector onto the principal
and residual spaces, respectively, while satisfying

(ŷi)
Tỹi = 0 (16)

yi = ŷi + ỹi

Using the PCA, the original data can be described in the
reduced k dimensional uncorrected principal directions,
with most of the information retained. For PCA, the T 2

and SPE statistics can be constructed in the principal and
residual spaces, respectively. The T 2 statistic indicates the
variation extent of data in principal space, which is defined
as

T 2 = xTPΛ−1PTx (17)

Assuming the process data is Gaussian distributed, the T 2

statistic is demonstrated to obey an F distribution with k
and N −k as the degrees of freedom in normal conditions.
Given a significance level α, the control limit of T 2 statistic
can be calculated and the process is monitored as

T 2 ≤ T 2
α =

k(N − 1)

N − k
Fk,N−k;α (18)

Meanwhile, the SPE statistic indicates the distribution of
data in the residual spaces, which is defined as the norm
of projected residual vector
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SPE = ‖x̃‖2 = ‖(I − PPT)x‖2 (19)

Similarly, the corresponding SPE control limit δ2α can also
be computed as (Jackson and Mudholkar, 1979)

SPE ≤ δ2α = θ1

(
1 +

cα
√

2θ2h20
θ1

+
θ2h0(h0 − 1)

θ21

)1/h0

(20)

where

θi =

ny∑
j=k+1

λij , i = 1, 2, 3 (21)

h0 = 1− 2θ1θ3
3θ22

(22)

and cα is the normal deviate corresponding to the upper
1− α percentile.

3.2 Implementation logic

The flowchart of the implementation logic is showed in
Figure 1. In general, we proceed with the common RTO
schemes, but add the following logics:

(1) Judge whether the plant has converged to the neigh-
borhood of optimum. If so, (i) determine a steady
operation and then suspend the RTO; (ii) collect the
associated measurements for PCA modelling. Other-
wise, continue performing RTO;

(2) When the plant is operated with the RTO suspended,
monitoring the operating condition with the built
PCA model. When either T 2 or SPE limit is violated,
which indicate an operating condition change, acti-
vate the RTO scheme so as to find the new optimum.

Initialization

RTO

Convergence to 

near optimum?

PCA modelling

Operating 

condition changes?

Operating at the 

optimum

No

Yes

RTO activating
Yes

No

RTO suspending

Fig. 1. Implementation logic

Confirmation of convergence to near optimum. Several
criterions can be used to verify the convergence. For
example, (1) the increments of inputs between successive
iterations; (2) the plant gradients during the iterations. In
this paper, the gradients of plant objective function are
used for this purpose. Besides of the convergence, the cost
gradients additionally reflect the plant optimality. The
following condition is used

‖ξ‖ = ‖∂φp/∂u‖ ≤ ξtol (23)

where ξtol is a defined tolerance for the norm of derivatives.
Hence, when the plant enters and remains within the
region where (23) is satisfied, the dual algorithm for
gradient evaluation stops and the whole RTO scheme is
suspended. During the iterations, all associated quantities

satisfying (23) (including uk, yk and
∂φp

∂u ), are collected.

Locating the true optimum. The convergence is only into
the neighborhood around the true optimum, owing to the
dual algorithm. Here, we seek a final settlement for the true
optimum as much as possible. A locally linear relationship

between u and
∂φp

∂u is assumed

∂φp
∂u

= Au+ b (24)

where the coefficient matrix A and bias vector b can be es-
timated via least-square regression. To achieve optimality,

setting
∂φp

∂u = 0 leads to

uset = −A−1b (25)

which is implemented as the settled operation during the
suspense of RTO. Note that, since only a linear model for
∂φp

∂u is assumed, it is desired that the collected data are in
a small neighborhood around the optimum point. Hence,
it is proposed to use data satisfying (23) for regression,
which improves the model accuracy and then the quality
of uset.

Detection of operating condition change. The output
measurements collected around the optimum are used
to construct the PCA model for the detection purpose.
Then, the RTO scheme will be activated if either T 2

or SPE indices exceed their control limits, thus the new
plant optimum can be approached for the new operating
condition. Otherwise, the operation keeps stationary and
no RTO needs to be implemented.

4. CASE STUDY: THE WILLIAMS-OTTO REACTOR

4.1 Process descriptions

The Williams-Otto reactor is considered (Williams and
Otto, 1960; Roberts, 1979), which has been frequently
used for the RTO study. The reactor consists the following
reactions

A+B
k1−→ C, k1 = 1.660× 106e−6666.4/(TR+273.15) (26)

C +B
k2−→ P + E, k2 = 7.212× 108e−8333.3/(TR+273.15)

(27)

C + P
k3−→ G, k3 = 2.675× 1012e−11111/(TR+273.15) (28)

where A and B are reactants, P and E are the desired
products, C is an intermediate product and G is the
undesired by product. The mass feedrates of A and B
are FA and FB , respectively. FA keeps at a constant of
1.8275 kg/s. TR is the maintained reactor temperature.
The reactor mass holdup is 2105 kg and the outlet flow is
F = FA + FB to maintain the holdup balance.

The operational objective is to maximize the following
profit

φ = 1143.38XPF + 25.92XEF − 76.23FA − 114.34FB
(29)
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where XX stands for the concentration of material X.
The manipulated variable vector for optimization is u =
[FB TR]T . However, due to insufficient process knowledge,
the plant is understood as

A+ 2B
k∗1−→ P + E, k∗1 = 2.189× 108e−8077.6/(TR+273.15)

(30)

A+B + P
k∗2−→ G, k∗2 = 4.310× 1013e−12438/(TR+273.15)

(31)

which is the model known by the designer. The optimum
for the inaccurate model is uoptmodel = [4.77 78.2]T , which is

distant from the true plant optimum, uoptplant = [4.79 89.7]T .

4.2 RTO with suspending condition

The modifier adaptation is implemented as the RTO
realization. The convergence criterion for gradient norm
is chosen as ξtol = 60, which is selected on basis of the
data information of converged operating points.

The RTO realizations are shown in Figure, with the
evolvements of inputs, gradient norms and profit φ. It can
be seen that MA is effective, where the inputs are soon
adjusted toward the optimum (red “o” in subfigure (a)).
Within 10 iterations, convergence is nearly attained and
the inputs are bounded around the optimum afterwards.
However, the operation is unsettled due to the condition
number constraint.

4 4.5 5
FB(kg=s)

76

78

80

82

84

86
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90
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94
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R
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C
)
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RTO iteration
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k@
?
=
@
u
k

(b)

10 20 30 40 50
RTO iteration

140

160
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?

(c)

40 45 50
190

190.5

191

Fig. 2. Implementation of MA with suspending condition:
(a) input evolvements (red “o”: true optimum, green
“+”: settled operation); (b) norm of gradients; (c)
profit (blue solid line: profit evolvements; red solid
line: optimal profit; green dashed line: profit associat-
ed with the settled operation)

Using the proposed strategy, we obtain a local model of the
gradient (24) using the least-square regression based on the
data samples satisfying ‖ξ‖ ≤ ξtol. The location of settled
operation is uset = [4.90 90.19]T (green “+” in subfigure
(a)), calculated using (25). The settlement is very close

to the true optimum, uoptplant. With this final settlement,
the profit loss is 0.17. On the other hand, when the MA
continues in the conventional way, the plant suffers from
oscillation and the average loss is about 0.7, which is larger
than the new method.

4.3 RTO with activating conditions

The measurements at operating points satisfying ‖ξ‖ ≤
ξtol are collected to build the PCA model. The measure-
ments are assumed to be concentrations of all materials,
which are corrupted by Gaussian noises with zero mean
and 1% standard deviation. The number of principal com-
ponent is chosen as 4, which explains more than 98%
variance in the data set. The confident level is set as 0.98.
The T 2 and SPE control limits are then calculated as 17.7
and 0.39, respectively.
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RTO iteration

20
40
60
80

100
120
140

T
2
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RTO iteration
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0.4

S
P
E

(c)

Fig. 3. Implementation of MA with activating condition:
(a) input evolvements (red “o”: new optimum, green
“�”: new settled operation); (b) monitoring with T 2

statistic; (c) monitoring with SPE statistic

The afore investigated scenario is continued by implement-
ing the settled operation, uset = [4.90 90.19]T , meanwhile,
the process is monitored by the obtained PCA model. To
further simulate a new scenario, the reaction coefficient k3
is introduced with a +20% step change after 10 iterations.
As shown in Figure 3 (b) and (c), in the first 10 iterations,
both the T 2 and SPE statistics stay within normal bounds,
then the MA is kept suspended. However, from iteration
11, the changed operating condition is successfully detect-
ed by the T 2 statistic, while the SPE limit is not violated
in this case. The alarm triggers the activating condition so
that MA starts to work again, the inputs are then adjusted
toward the new optimum, uoptplant,new = [4.55 86.3]T , as

shown in Figure 3 (a). Note that, once a change of oper-
ating condition has been detected, the monitoring model
can be discarded, and a new one waits to be built for
the new operating condition, upon convergence around the
optimum. Furthermore, the settlement can be found in the
same way as done before to locate the optimum. In this
case, we obtain uset,new = [4.545 86.6]T (green “�” in
Figure 3 (a)), which is again very close to the optimum.

The profit curves with 10 random realizations are shown
in Figure 4. Additionally, we compare the the curves
implementing the normal MA. In general, both of the
two method can effectively approach to the new optimum,
besides, the following facts are observed: (1) In the first
10 iterations, the normal MA oscillates while the new
method is steady. This has been previously confirmed
in Figure 2 (c) where the profit is reasonably improved
in the new method. (2) Between iterations 11-16, the
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Fig. 4. Profit curves of the new method and normal MA

normal MA experiences more severe fluctuations than the
new method. This is because the dual algorithm used
in the normal MA uses past working points to calculate
the gradients, which should be in the same operating
condition. Since at iteration 11 the operating condition
changes, the discrepancy leads to very wrongly calculated
gradients. However, in the new method the MA is initiated
with the FFD upon detection of a new operating condition,
hence no such problem exists. (3) After iteration 17
both the two methods attain convergence, where their
performances are similar. Notice that, it is not shown in
the figure how the new settlement uset,new is implemented,
which can further enhance the economic performance.

5. CONCLUSIONS

In this paper, we discussed a practical aspect of imple-
menting RTO schemes. Both the suspending and activat-
ing conditions are established to enhance RTO schemes.
Unnecessary oscillations around the plant optimum are
avoided, whilst the capacity of finding the new optimum
is still preserved when the operating condition changes.
Furthermore, the local model of cost gradients around
the optimum is proposed through regression, which can
efficiently locate the true optimum. The final settled oper-
ation improves the operational economy. For the activating
condition, the process monitoring theory was employed to
detect the change of operating condition, which runs in a
passive way without perturbing the process. The applica-
tion to the Williams-Otto reactor was successful, various
advantages of the proposed method were confirmed.
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