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Diego A. Muñoz ∗ Wolfgang Marquardt ∗∗
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Abstract: This work contributes to the optimal design of closed-loop nonlinear systems
with input saturation in the presence of unknown uncertainty. Stability conditions based on
contractive constraints were developed for a general class of nonlinear systems under some
Lipschitz assumptions. Closed-loop robust stability and robustly optimal performance can be
guaranteed in the presence of input bounds, if the solution of the design problem, formulated as
a nonlinear semi-infinite program (SIP) with differential equation constraints, can be guaranteed
to be feasible. In this work, the SIP is solved by means of a local reduction approach, which
requires a local representation of the so-called lower level problems associated with the SIP. The
suggested design method is illustrated by means of chemical reactor control problem.
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1. INTRODUCTION

In practice, most control problems are subject to input,
state or output constraints for a variety of reasons. Safe
operation of some technical system, for example, often
requires to confine states or outputs, i.e., temperatures,
pressures, velocities, or voltages within given bounds to
make sure that the system is not suffering form damage.
Furthermore, any physical input to a system including
force, torque, current, mass or energy flow, has a limited
range of operation imposed by the actuator devices. In
some cases, inputs have to be restricted to guarantee
appropriate of operation. As a consequence, controllability
of the system is reduced. This restriction can be partially
overcome, if actuators were over-designed, for example by
choosing a more powerful device, such that input bounds
are never reached during normal operation. However, such
an ad hoc strategy does not guarantee that the inputs may
saturate causing the over-design approach to fail (Bak,
2000).

The design of input-constrained nonlinear control system
has been addressed by various authors. Chen and Chang
(1985) were the first to develop an algorithm for designing
globally stable closed-loop SISO systems with controller
saturation for open-loop stable nonlinear plants. Several
design criteria were established for the elimination of at-
tracting equilibrium points considering P, PI and PID
controllers. This technique is based on the projection of
the open-loop trajectory onto the x1-u plane. An extension
of this approach to MIMO systems seems to be impossible,
however. For input-output linearizing (IOL) SISO systems,

a general result has been proposed by Kapoor and Daou-
tidis (2000) under the assumption that the origin of the
so-called “zero dynamics” is locally exponentially stable.
Based on a linear transformation of variables , Kapoor
and Daoutidis (2000) defined an appropriate region in
the state space, where a control law is locally stabiliz-
ing in the absence of constraints, but has the ability to
guarantee closed-loop stability even when the controller
saturates. Instead of using input-output linearization to
design IOL controllers, a specific plant comprising a chain
of integrators has been exploited to construct a Control
Lyapunov Function (CLF) (Artstein, 1983), which allows
to derive several stabilizing control laws that can handle
input bounds, such as Sontag’s universal formula (Lin and
Sontag, 1991). Inspired by Lin and Sontag (1991), Jankovic
and Kolmanovsky (2000) applied the so-called domination
redesign to guarantee a stronger robustness property when
uncertainties affect directly the inputs, while El-Farra and
Christofides (2003) derived explicit analytical formulas to
consider additive uncertainty.

In contrast to the design methodologies discussed so far,
model-predictive control (MPC) takes a completely differ-
ent approach to address the constraint control problem
(Mayne et al., 2000). Rather than designing a controller
which can properly deal with constraints, a control law
is implicitly defined by an optimization problem. The
capability of MPC comes from model-based prediction of
the system behavior as well as incorporating constraints
on future input, output or state variables which are em-
bedded in a quadratic (QP) or nonlinear program (NLP)
to be solved in real time. MPC is a mature technology
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that has been successfully applied in practice (Piechottka
and Hagenmeyer, 2014), mainly relying on linear models.
However, the computational requirements still represents
a severe limitation of current MPC theory and technology
(Xi et al., 2013).

In this work we aim at the design of a robust controller
with guaranteed closed-loop stability, which does not re-
quire real-time optimization, but which can successfully
deal with unknown uncertainty in the presence of input
constraints. This article is structured as follows. In Section
2, the problem formulation is stated. In Section 3, we
propose a result inspired by stability analysis in MPC to
design constrained control laws which do not require real-
time optimization. Subsequently, in Section 4 the devel-
oped stability conditions are embedded in an optimization-
based design problem where unknown disturbances are
considered. The feasibility of the suggested design method
and the performance of the resulting controller are illus-
trated in Section 5. Conclusions are given finally in Section
6.

2. PROBLEM FORMULATION

We consider a class of nonlinear systems represented by
the state-space description

ẋ(t) = f̃
(

x(t), usat(t)
)

+ g̃
(

x(t), usat(t), d(α, t)
)

,

x(t0) = x0,
(1)

where x(t) ∈ R
nx denotes the vector of state variables with

corresponding initial conditions x0, and

usat(t) =
[

usat1 (t), . . . , usatnu
(t)

]T

is the vector of constrained manipulated inputs defined by

usati (t) =







u+i if ui(t) ≥ u+i
ui(t) if u−i < ui(t) < u+i
u−i if ui(t) ≤ u−i

, i = 1, . . . , nu.

(2)
d(α, t) ∈ R

nd represents unmeasurable disturbances pa-
rameterized by a set of uncertain parameters α ∈ A ⊂ R

nα

and time t ∈ R. Note that the uncertain parameters α are
introduced to represent a family of bounded disturbances
which are interpreted as the most plausible disturbance
scenarios against which robustness is required. The vector
fields f̃(·) and g̃(·) map from some open subsets Ωf ⊂
R

nx × R
nu and Ωg ⊂ R

nx × R
nu × R

nd into R
nx , and

are assumed to be continuous in Ωf , Ωg, respectively.
The following assumption is formulated for the uncertain
parameters α.

Assumption 1. The set of uncertain parameters α is

A = {α ∈ R
nα | 0 ≤ β(α)} , (3)

with differentiable function β(·) mapping from R
nα into

R.

For box-type uncertainty region used in this work, αi ∈
[−∆αi,∆αi], i = 1, . . . , nα, , the smooth approximation

β(α) := nα −

nα
∑

i=1

(

αi

∆αi

)2j

, j ∈ N, (4)

is used which is obviously an instance of the function β(·)
of set (3).

Because g̃(·) strongly affects the stability analysis, it is
important to distinguish between cases where the distur-
bances vanish when t→ ∞ or where they persist ∀t > t0.
Thus, an additional assumption is introduced for the vec-
tor field g̃(·):

Assumption 2. The vector field g̃
(

x(t), usat(t), d(α, t)
)

:
R

nx × R
nu × R

nd → R
nx satisfies the inequality

‖g̃
(

x(t), usat(t), d(α, t)
)

‖ ≤ γ1(‖x(t)‖ + ‖usat(t)‖

+‖d(α, t)‖) ∀t ≥ t0, ∀α ∈ A,

where γ1 is a nonnegative constant. Additionally, the
disturbances d(α, t) satisfy the bounding condition

dk(α, t) : ‖dk(α, t)‖ ≤ γ2 k, for γ2 k ∈ [0,∞),

t ∈ [tk, tk+1], ∀k ∈ Z+,

where dk(α, t) := d(α, t) for [tk, tk+1], ∀k ∈ Z+. Further-
more,

(1) for any ǫ > 0, ∃k̄(ǫ) ∈ Z+ such that γ2 k ≤ ǫ,
∀k ≥ k̄(ǫ), and k̄(ǫ) → ∞ if ǫ→ 0 in case of decaying
disturbances, or

(2) there exists a nonnegative constant γ2 such that
‖d(α, t)‖ ≤ γ2, ∀t > t0, in case of persistent time-
varying disturbances.

The vector field g̃(x(t), usat(t), 0) = 0, for d(α, t) = 0, i. e.,
the nominal system is described by

ẋ∗(t) = f̃
(

x∗(t), usat(t)
)

, x∗(t0) = x∗0. (5)

Without loss of generality, the origin is assumed to be the
desired operating point in case of decaying disturbances.
Note that in case of persisting time-varying disturbances,
the origin may not be an equilibrium point of the per-
turbed system (1).

Our aim is to design a constrained state-feedback control
law

usat(t) = k(x(t), p) := [k1(x(t), p), . . . , knu
(x(t), p)]T ,

(6)
with

ki(x(·), p) : R
nx × R

np → [u−i , u
+
i ], i = 1, . . . , nu, (7)

such that, for the perturbed nonlinear system (1), k(x(·), p)
guarantees closed-loop stability even in the presence of
uncertainty according to Eq. (3). Control parameters p
are considered as time-invariant parameters to be tuned.
In order to achieve this aim, an optimization-based design
problem is formulated for which a novel stability condition
must be considered to guarantee closed-loop stability in
the presence of uncertainty.

3. ROBUST STABILITY CONDITION

Before to formulate the optimization-based design prob-
lem, in this section we propose a novel stability result for
the closed-loop system Eqs. (1), (2) which is further speci-
fied by Assumption 2. This result is based on the concept of
contractive constraints, which has been used to guarantee
exponential stability of MPC (de Oliveira Kothare and
Morari, 2000). These constraints require that the states
at the end of the prediction horizon are contracted in
norm compared to the beginning of the horizon. Based
on this idea, we will introduce a stability condition which
guarantees that a neighborhood of the desired operating
point is not left despite unknown disturbances and in the
presence of input saturation.
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In order to illustrate this idea, Figure 1 sketches the
transient response of the perturbed system (solid line)
for two unknown disturbances parameterized by uncertain
parameters, d(α1, t) (left) and d(α2, t) (right). Dashed lines
represent the transient response of the nominal system,
i. e., for d(α, t) = 0, ∀t > t0, taking the states reached by
the perturbed system at tk as initial condition. This sketch
gives rise to the following observation: If the trajectory of
the nominal system, Eq. (5), starting at tk with initial con-
ditions provided by the states of the perturbed system (1)
reached at tk, goes away from the desired operating point,
we cannot expect that the perturbed system approaches the
operating point asymptotically.

||x||

δ t

||x||

δ
ttk

c1 c2

d(  1,t)α  

tk

d(  2,t)α  

Fig. 1. State transients in the interval [tk, tk + δ], δ > 0,
for two unknown disturbances parameterized by un-
certain parameters, d(α1, t) (left) and d(α2, t) (right).
The dashed lines represent the state transient of the
nominal system, Eq. (5), starting at the states reached
by the perturbed system at tk. The solid lines repre-
sent the trajectories of the perturbed system, Eq. (1),
with the same initial conditions.

The rigorous formulation of this idea is presented in the
following theorem.

Theorem 3. Suppose that the nonlinear system admits the
form of Eq. (1). Let the vector field f̃

(

x(·), usat(·)
)

: Rnx ×
R

nu → R
nx and the bounded state feedback control law

usat(t) = k(x(t), p) := [k1(x(t), p), . . . , knu
(x(t), p)]T , (8)

with

ki(x(·), p) : R
nx × R

np → [u−i , u
+
i ], i = 1, . . . , nu,

be Lipschitz continuous in x(·). p is the vector of time-
invariant control parameters. Let the vector field g̃(·)
satisfy Assumption 2, and let δ > 0 be some constant
for which the independent variable t is discretized by
the sequence tk+1 = tk + δ. Let x∗(t) denote the state
transients of the nominal system, Eq. (5), with initial
conditions provided by the perturbed system at time tk,
i. e., x∗(tk) = x(tk). If, for each interval [tk, tk+1], there
exists a contractive constant κ(δ) ∈ [0, 1), such that

‖x∗(tk+1)‖ ≤ κ(δ)‖x(tk)‖, tk+1 = tk + δ,

∀α ∈ A, ∀tk, k ∈ K = {0, 1, 2, . . .},
(9)

then the following statements hold:

(1) For decaying disturbances satisfying the asymptotic
property described in (1) of Assumption 2, the origin
is an asymptotically stable equilibrium point of the
perturbed system (1) with bounded state-feedback
control, Eq. (8).

(2) For persistent time-varying disturbances ‖d(α, t)‖ ≤
γ2, ∀t > t0, the perturbed system (1) with bounded
state-feedback control, Eq. (8), is bounded around the
origin.

Proof: in (Muñoz, 2015).

The constant δ > 0, required to define the sequence
tk+1 = tk + δ, should be computed such that κ̃ = κ(δ) +
∆1 < 1, where κ(δ) ∈ [0, 1), according to the proof of
Theorem 3 (Muñoz, 2015). To this end, the procedure to
compute δ is summarized in Table 1.

Table 1. Procedure to compute the constant δ
required in Theorem 3.

Compute constants:
γ1, γ2 k satisfying Assumption 2,

Solve κ̃ = κ(δ) + γ1(1 + L1)
e(L+γ1(1+L1))δ

−1
L+γ1(1+L1)

eLδ < 1,

for the chosen contractive constant κ(δ) ∈ [0, 1).

4. OPTIMIZATION-BASED DESIGN OF STABLE
FEEDBACK CONTROLLERS

Let us consider the nonlinear systems described in Eq. (1)
for which Assumption 2 holds. The constrained feedback
control law is given by Eq. (8). In order to design a stable
feedback controller for this input-constrained system in
the presence of unknown disturbances, the closed-loop
trajectories must satisfy the contractive constraints (9)
according to Theorem 3 for each interval [tk, tk+1], k ∈
K = {0, 1, 2, . . .}.

To design controllers that satisfy the conditions stated in
Theorem 3, the following constrained semi-infinite opti-
mization problem (SIP) is formulated:

min
p

J(x∗(τ), p) (10a)

s.t. 0 ≤ ψcc,k

(

x(tk), x
∗(tk+1)

)

:= κ(δ)
∥

∥x(tk)
∥

∥−
∥

∥x∗(tk+1)
∥

∥, (10b)

[tk, tk+1], k ∈ K,

x(tk) = ϕ(tk;x0, t0, p, d(α, ·)), (10c)

x∗(tk+1) = ϕ∗(tk+1;x(tk), tk, p, 0), (10d)

∀α ∈ A = {α ∈ R
nθ | 0 ≤ β(α)} , ∀t > t0, (10e)

Eq. (10a) is the merit function, which is not subject to
uncertainty, and which can be formulated by an objective
function of Mayer-type, i. e.,

J(x∗(τ), p) := φ(x∗(τ), p) =

∫ τ

t0

L(x∗(t), p)dt,

where φ(·) and L(·) are smooth functions mapping from
R

nx×R
np to R. The contractive constraints, Eq. (10b), are

referred to as ψcc,k(·). Eq. (10c) represents the trajectories
of the constrained closed-loop nonlinear system, defined
by Eqs. (1) and (8). Eq. (10d) represents the nominal
system at t = tk+1 with x(tk) as initial conditions. Since
the closed-loop trajectories are not available in an analytic
form but have to be evaluated by numerical integration,
we denote the closed-loop trajectories by the flow

x(t) = ϕ(t;x0, t0, p, d(α, ·)), (11)

for given initial conditions x0 = x(t0) and control param-
eters p.

As a consequence of Theorem 3 and the formulation of
optimization problem (10), the following result can be
stated:

Proposition 4. Suppose that Assumptions 1 and 2 are
satisfied for systems represented by Eq. (1) and con-
strained feedback control law Eq. (8) with given functions
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ki(x(·), p) with controller parameters p. Let p̄ be a robustly
feasible point of SIP (10), i. e.,

p̄ ∈ FCC :=
{

p ∈ R
np | 0 ≤ ψcc,k

(

x(tk), x
∗(tk+1)

)

,

[tk, tk+1], ∀k ∈ K, ∀α ∈ A, ∀t ≥ t0

}

. (12)

Then, closed-loop stability of system Eq. (1) under con-
strained state-feedback Eq. (8) in a neighborhood of the
equilibrium point is guaranteed.

Note that p̄ is not necessarily a (globally) optimal solution
of SIP (10), but rather just a feasible point. Closed-loop
performance, however, is improved the closer the feasible
point p̄ is to the globally optimal solution p∗. The proof
of Proposition 4 is obviously trivial. The remaining non-
trivial problem is rather finding an algorithm, which is
constructive and provides such a feasible solution. We
want to point out that the solution algorithm applied to
problem (10) has to provide a feasible but not a globally
optimal solution. The determination of the solution of the
robust feasibility problem (12), however, also requires the
application of global optimization techniques. In order to
solve problem (10), finitely many degrees of freedom p are
optimized on a feasible set described by infinitely many
constraints (10b)-(10e).

The fundamental idea to solve numerically such SIP (Het-
tich and Kortanek, 1993; Stein, 2012) is to reduce the
infinitely-constrained to a finitely-constrained problem,
such that standard nonlinear programming can be ap-
plied. Solution strategies include discretization and local
reduction approaches (Reemtsen and Görner, 1998). For
the first category, a finite approximation of the original
infinite problem is available when the uncertain set is
replaced by its discretization or by a sequence of succes-
sively refined grids (Reemtsen and Görner, 1998), while
for local reduction methods the infinitely many constraints
are reduced considering a local description for the feasible
set (12) (Hettich and Kortanek, 1993). In the sequel, we
pragmatically focus our attention on the local reduction
approach (Stein, 2012), which only provides a locally
optimal and feasible solution. This choice of algorithm
is justified, because there are no mature algorithms for
nonlinear SIP, where solutions come with the guarantees
requested in Proposition 4.

Using the mathematical developments introduced by
Muñoz and Marquardt (2013), SIP (10) is locally equiva-
lent to the reduced problem

min
p

J(x∗(τ), p)

s.t.

0 ≤ ψcc

(

x(i,k)(p), x∗(i,k)(p)
)

,

x(i,k)(p) = ϕ
(

tk;x0, t0, p, d
(

πα (i,k)(p), ·
)

)

,

x∗(i,k)(p) = ϕ∗(πt (i,k)(p);x(i,k)(p), tk, p, 0),

k ∈ K0, i ∈ Ik,

(13)

where the locally defined C1-functions

Π(i,k)(p) : ΩΠ ⊂ R
np → R

nα+1

p 7→

[

πα (i,k)(p)

πt (i,k)(p)

]

,

Λ(i,k)(p) : ΩΠ ⊂ R
np → R

(14)

with πα (i,k)(p̄) = ᾱ(i,k), πt (i,k)(p̄) = t̄(i,k), Λ(i,k)(p̄) =
λ̄(i,k), and ΩΠ a neighborhood of p̄, such that Π(i,k)(p̄) =
[

ᾱ(i,k), t̄(i,k)
]T

is the locally unique minimizer, with mul-

tipliers Λ(i,k)(p̄) = λ̄(i,k).

The remaining problem is providing suitable functions
Π(i,k)(·) and sets K0, Ik to formulate the reduced problem
(13). To this end, we derive this information using the
concept of manifolds of critical points (Mönnigmann and
Marquardt, 2002; Gerhard, 2010; Muñoz et al., 2012).
The solution strategy described by Muñoz and Marquardt
(2013) does not have to be modified. Since the numerical
integration can only be carried out for a finite span of
time, the detection is limited to a finite time horizon,
which must be chosen to establish a compromise between
computational cost and the risk of missing a constraint
violations.

5. ILLUSTRATIVE CASE STUDY

Let us consider a CSTR where two exothermic consecutive
reactions A → B and B → C take place, with B
being the desired product. The CSTR model consists of
nonlinear state equations which represent the material
balances of species A and B and the energy balances for the
reactor and cooling jacket assuming perfect level control
(Panjapornpon et al., 2006). The model equations are

ċA(t) =
q(t)

V

(

cAq − cA(t)
)

− r1(t),

ċB(t) = −
q(t)

V
cB(t) + r1(t)− r2(t),

Ṫ (t) =
q(t)

V

(

Tq − T (t)
)

−
∆H1

ρCp

r1(t)−
∆H2

ρCp

r2(t)

+
UA

V ρCp

(

Tj(t)− T (t)
)

,

Ṫj(t) =
qj(t)

Vj

(

Tqj − Tj(t)
)

−
UA

VjρjCpj

(

Tj(t)− T (t)
)

,

(15)

with reaction rates r1(t) and r2(t) defined by

r1(t) = k10 exp

(

−
E1

RT (t)

)

(cA(t))
2,

r2(t) = k20 exp

(

−
E2

RT (t)

)

cB(t).

cA(·)
[

mol
l

]

and cB(·)
[

mol
l

]

denote the concentrations of
reactant A and product B, T (·) [K] and Tj(·) [K] the
temperatures in the reactor and the cooling jacket, re-
spectively. q(·)

[

l
h

]

and qj(·)
[

l
h

]

are the feed rates of
the reactant and coolant, respectively. All the parameter
values of the model are taken from Panjapornpon et al.
(2006).

The feed concentration cAq and feed temperature Tq are
realized by decaying disturbances modeled by

Tq(t) =

{

T (0)
q , t ≤ t0,

T (0)
q + dTqe

−βt sin(ωTq
(t− t0)), t > t0,

(16a)

cAq(t) =

{

c
(0)
Aq, t ≤ t0,

c
(0)
Aq + dcAqe

−βt sin(ωcAq(t− t0)), t > t0.
,

(16b)
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Fig. 2. Transient behavior of the CSTR model, Eqs. (15),
in the presence of vanishing disturbances defined by
Eqs. (16) but with dTq = 10.85 h. (a) Closed-loop
trajectories for deviations of the states cA(·), cB(·),
T (·) and Tj(·) from the desired unstable set-point. (b)
Norm of the nominal system evolution (dashed) with
initial conditions provided by the perturbed system at
tk represented by (◦). Norm of the perturbed system
evolution (solid). (c) Input trajectories for the feed
rate q(·) of reactant A (solid) and of the coolant rate
qj(·) (dashed).

with, β = 1.0, ωTq
= 9.58 rad

h , ωcAq
= 3.8. A bounded

multi-variable PI controller is considered with input
bounds 80 ≤ q(t) ≤ 120, 58 ≤ qj(t) ≤ 100.Here, the vector
p ∈ R

10 corresponds to the control parameters. Using the
desired steady state, a change of variables is applied to
transfer the operating point to the origin.

This example was introduced by Gerhard (2010) to show
how input saturation can be avoided by a suitable con-
troller design. Before applying our methodology, we il-
lustrate the closed-loop behavior with control parameters
taken from Gerhard (2010). Figure 2 shows the effect
of a small change in dTq from 10.8K to 10.85K. The
closed-loop system is unstable (Figure 2(a)). As expected,
the nominal system, with initial conditions reached by
the perturbed system at some tk, violates the contractive
constraint, Eq. (9), at tk = 0.6 h, cf. Figure 2(b). Hence,
we cannot expect that the perturbed system converges
asymptotically to the desired set-point, since the nominal
system diverges from the operating point. Figure 2(c)
shows the inputs which saturate at their lower bounds
at some point in time, making it impossible to drive the
system to the set-point.

This example vividly demonstrates that input saturation
is vital for closed-loop stability. In general, it is not
sufficient to assure stability of the constrained system
just by guaranteeing stability neglecting possible input
saturation. In order to properly solve this problem, we
apply the methodology presented in this work, which relies
on the formulation and the solution of the constrained SIP
(10).

Table 2. Parameters and constants.

parameter value parameter value

γ1 2.06 γ2 k|k=1 0.035
L1 0.015 L 0.01
∆1 0.370 ∆2 0.015
κ̃ 0.99 δ 0.15

0 1 2 3 4 5
−0.01

0

0.01

t [h]

x
3
, 
x

4

(b)

x
3

x
4

0 1 2 3 4 5
−0.2

0

0.2

t [h]

x
1
, 
x

2

(a)

x
1

x
2

Fig. 3. Time evolution of states x(·) at the critical point
summarized in Table 3.

Table 3. Solution of the control design problem
(10) for the CSTR, Eqs. (15).

p value unit p value unit

α
(1,4)
1 0.12 mol

l
α
(1,4)
2 10.8 K

K11 −315.10 m6

kmol h
K12 −90.25 m6

kmol h

K13 −18.33 m3

Kh
K14 −8.81 m3

Kh

K21 −112.98 m6

kmol h
K22 −57.01 m6

kmol h

K23 −9.59 m3

Kh
K24 −4.19 m3

Kh

KI12 20.93 m6

kmol h2 KI23 −1.13 m3

Kh2

Using the procedure described in Table 1, γ1 and γ2 k are
estimated and summarized in Table 2. The decaying dis-
turbances and the perturbed term g̃(·) satisfy Assumption
2. Hence, the stability condition (9) can be formulated.

The goal here is to find control parameters p for which the
cost function

J(x∗(τ), p) =

∫ τ

0

(x∗2(t))
2dt (17)

is minimized and, at the same time, the stability condition
(9) is satisfied, in the presence of uncertainties. At the op-
timal solution, there is one active normal vector constraint
corresponding to the critical manifold of contractive con-
straints for k = 4, i. e., for the interval [t4, t5] = [0.6, 0.75],
I4 = {1}. Figures 3 and 4 show the time response of the
states x(·) and the bounded manipulated variables usat(·),
respectively, corresponding to the nearest critical point
summarized in Table 3. Both manipulated variables rest
at bounds for some short period of time without affect-
ing closed-loop stability. The values of the parameters p
and the uncertain parameters α at the optimal point are
summarized in Table 3.

6. CONCLUSIONS

The results presented in this work contributes to the
synthesis of closed-loop nonlinear systems with optimal
performance guaranteeing closed-loop robust stability in
the presence of input bounds and unknown (parameter-
ized) disturbances. However, we want to point out that
Assumption 2 formulated for system (1), (8) could be
difficult to satisfy, especially because there is not yet a
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Fig. 4. Time evolution of the bounded multi-variable PI
controller with parameters p summarized in Table
3. Both manipulated variables saturate for a period
of time without affecting the closed-loop stability.
Dotted lines correspond to the scaled upper and lower
bounds for manipulated variables usat(·).

systematic procedure to compute the Lipschitz constants.
The control design problem results in a SIP, which is
reformulated using the local reduction framework (Muñoz
and Marquardt, 2013). In theory, the suggested design
methodology guarantees robust stability and robust opti-
mal performance for the system class considered. In prac-
tice, however, the SIP problem proposed for robust control
system design is difficult to solve to global optimality due
to its non-convexity and semi-infinite nature. The current
implementation of our algorithm cannot guarantee that all
global minimizers can be detected and that the solution of
the SIP (10) computed by the suggested local reduction
approach is always robustly feasible. Therefore, a different
and more advanced solution strategy has to be devel-
oped which allows to fully leverage the potential of the
novel design method. The development of fully satisfactory
methods presents an enormous challenge due to the nature
of the problem and requested guarantee of a robustly
feasible, but not necessarily globally optimal solutions of
SIP with embedded nonlinear differential equations and
inequality constraints. Appropriate solution methods are
not yet available. Significant progress has been made on
both, bi-level methods for SIP (e.g. Stein (2012)) as well
as optimal control methods (Esposito and Floudas (2000);
Singer and Barton (2006)) solved to global optimality. The
development of globally optimal solution methods for SIP
with embedded differential equations is still in its infancy.
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