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Abstract: Most regression approaches, such as principal component analysis (PCA), are based on an 

assumption that the process data follow a Gaussian distribution. However, the process data usually 

dissatisfy that assumption. Thus, the locally weighted standardization (LWS) method is employed for 

transforming data into an approximate Gaussian distribution. Furthermore, the LWS based subspace PCA 

ensemble modeling method is developed. The subspace PCA can select important variables in each 

subspace for ensemble modeling. As a result, the proposed method gives a weaker assumption constrain 

and a better regression performance. The effectiveness of this approach is testified by two study cases. 
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1 INTRODUCTION 

 

In modern process industries, how to measure and control 

key product variables plays an important role in producing 

high-quality products. To obtain reliable and real-time 

prediction of key quality variables, soft sensors are widely 

adopted. The data-driven regression methods are commonly 

used for soft sensing, which aims to find a functional 

relationship between the input and output variables. The 

category of popular data-driven soft sensors includes: 

principal component analysis (PCA) (Ge 2014), partial least 

square (PLS) (Zhao and Wang et al. 2010), support vector 

machine (SVM) (Xu and Du et al. 2007), and Gaussian 

process regression (GPR) (Xiong and Zhang et al. 2016; 

Ranjan and Huang 2016).  
 

However, most of the conventional soft sensor models have 

a fundamental assumption that the collected data obey a 

Gaussian distribution. If these models are applied to the 

process data directly, the predicted performance of soft 

sensors will be poor, because the distribution of the process 

data may be not necessarily Gaussian. Dealing with 

non-Gaussian data modeling is a common issue in soft 

sensing, and its solution can be categorized into two types: 

the multiple local modeling (Zhao and Zhang et al 2006) and 

the global modeling (Hwang and Han 1999; Lane and 

Martin et al 2001). The methodology of multiple local 

modeling is to partition the whole dataset into several 

counterparts, and each counterpart obeys a single Gaussian 

distribution, such as Gaussian mixture model (Yu 2012). On 

the other hand, constructing a global model is an audacious 

attempt, which alters the data into a Gaussian distribution 

approximately. Generally, the global method transforms the 

non-Gaussian distributional data into a Gaussian distribution 

by data preprocessing approaches. The data preprocessing 

has been applied into process monitoring, since the 

assumption of Gaussian distribution is very common in 

process control (Ma and Hu et al. 2013; Wang and Liu et al. 

2015; Zhao and Song et al. 2016). This paper focuses on the 

study of the non-Gaussian data transformation and the 

K-nearest neighborhood methods is employed to implement 

this transformation. Unlike the traditional Z-Score 

standardization method in which only a global set of mean 

and standard deviation is utilized for each data sample in the 

data set, we aim to standardize each sample through its 

K-nearest neighborhood. Therefore, the mean and standard 

deviation is unique to each data sample, and this method is 

analogous to the locally weighted modeling in just in time 

learning. However, the locally weighted approach is an 

online modeling method, in which the standardization is 

focused on testing data, not suitable for application upon 

non-Gaussian data modeling directly. Thus, in this work, we 

employ the locally weighted to standardize both the training 

and testing data, and call this method locally weighted 

standardization (LWS). Using K-nearest neighborhood for 

standardization is an intuitional practice, because the similar 

samples are doomed to share the same process information. 

Initially this standardization is simply replacing K-nearest 

neighborhood with the whole dataset for calculating mean 

the standard deviation, and this approach is called local 

neighborhood standardization (LNS). The difference 

between LWS and LNS is the usage of weights, by which 

the locally weighted method can be applied to LNS. As 

mentioned, the LNS focused on the common information of 

neighborhood samples, in order to make full use of local 

information the weights is necessary. In LWS, the mean the 

standard deviation is a locally weighted result of the dataset, 

and the more similar sample has a more important effect on 

the result. In that case, the multimodal distribution would be 

eliminated, because the peak value is subtracted by a large 

mean value owing to the smoothness of the data. As a result, 

the data preprocessed by LWS is probable to follow a 

distribution without multimodal feature, which is a good 

approximate form for a single Gaussian distribution.  

 

For the sake of better regression performance, the principal 

component subspace ensemble method (PCSE) is employed. 

Ensemble learning is to construct several sub-models by 

partitioning the original training dataset into sub datasets and 

combing the corresponding sub-results for the final 

prediction of quality variable, which has been proven to be 
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theoretically and practically effective to improve the 

regression performance compared to the single-model (Ge 

2014; Zhang and Fu et al. 2012; Wang and Liu et al. 2015). 

Subspace ensemble is strategy to partition dataset in the 

dimension of input variables, in which the subspaces is 

consisted of randomly chosen variables. Therefore the 

performance of the ensemble learning based soft sensor may 

be poor, because the two significant issues, namely the 

diversity and accuracy of sub-models cannot be guaranteed. 

Principal component analysis (PCA) is a conventional data 

analysis method, in which the loading vectors denote the 

largest covariance directions, and the loading vectors are 

orthogonal with each other. Owing to the orthogonality of 

PCA, the principal component subspaces spanned by the 

loading vectors are capable to satisfy the diversity 

requirement. Furthermore, the variables in each subspace are 

selected by the importance, which is evaluated by the 

element values of the corresponding loading vector. Since 

we only select the important variables and discard the 

irrelevant ones, the accuracy of the sub-models can be also 

improved. Hence, the principal component subspaces 

ensemble (PCSE) method takes good care of both the 

diversity and accuracy of sub-models. 

 

Motivated by employing ensemble learning method to 

improve the prediction performance of non-Gaussian 

process modeling, this paper proposes a novel soft sensing 

method. In the proposed method, the non-Gaussian data is 

transformed into an approximate Gaussian distribution by 

LWS. Furthermore, a PCSE based Gaussian process 

regression model is developed for more accurate prediction 

of the quality variables. It should be noted that both the PCA 

and GPR model have the assumption that the collected data 

obey a single Gaussian distribution, and the interesting point 

is that the LWS is opportunely to transform the data into a 

single Gaussian distribution. Therefore, the PCA and GPR 

model are fortunate to be satisfied the fundamental Gaussian 

assumption. 

 

The remainder of this paper is organized as follows. In 

section 2, the LWS method is introduced and a numerical 

example is provided. We revisit the GPR model briefly in 

section 3. The detailed information of the PCSE strategy is 

given in section 4, followed two case studies in section 5. 

Finally, we make conclusions in section 6. 

 

2 NON-GAUSSIAN CHARACTERS AND DATA 

STANDARDIZATION STRATEGY 

 

In this section, the locally weighted standardization (LWS) 

strategy is employed to overcome the drawbacks of the 

conventional Z-Score approach in non-Gaussian process. 

Different from the Z-Score approach, the proposed LWS 

strategy standardizes each sample by utilizing the weighted 

mean and standard deviation of its neighborhood interval 

rather than the average statistics of the whole dataset. Due to 

the smoothing effect of the weights, the preprocessed data 

can be altered into an Gaussian distribution approximately.  

 

The detailed steps are given as follows: 

For the given training dataset  N JX , in which the rows 

are samples and the columns are variables. Before we 

introduce the proposed LWS approach, several definitions 

are required to be given: 

(1): The -thj  nearest neighborhood of x i is defined as

 n xj i ,
  

(2): The neighborhood intervals are defined as: 

        1 2I x = x ,n x ,n x ,...,n xk i i i i k i and 1,2,..., 1k N  . 

For a certain sample  x 1,2,...,i i N , the LWS formula is 

given as follow: 
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where  d ,i jx x  is Euclidean the distance between samples

ix and jx .
  

 

Form Eq. (1), it can be found that the commonly used 

Z-Score standardization is a special case of the LWS method. 

Thus, the LWS is a modified and general form of the 

conventional Z-Score strategy. For a good visual 

presentation, a numerical example is represented to show the 

superiority of the LWS to the Z-Score standardization. A 

total of 400 samples are generated by Eq. (3), which 

apparently does not obey a Gaussian distribution.  

 

 

 

#001 200 ~ 8,0.5
: .

#201 400 ~ 15,0.6

N
x
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              (3) 

 

These samples standardized by the two different strategies 

are plotted in Fig. 1. For more intuitional comprehension, 

the kernel density estimation method is employed, and the 

estimated results are shown in Fig. 2. From Fig. 1, we can 

see that the data processed by Z-Score and LWS are 

obviously different, therefore their probability density 

estimations are simultaneously different. As shown in Fig. 2, 

the Z-Score treated data cannot be depicted by a single 

Gaussian distribution, but they can be depicted by two 

Gaussian distributions perfectly. In addition, a single 

Gaussian distribution can fit the data processed by the LWS 

method approximately. Now, we can conclude that the 

Z-Score method cannot eliminate the non-Gaussian 

characteristic of the original data; meanwhile the LWS 

method alters the data into an approximate Gaussian 

distribution. 
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Fig. 1 Plot of the standardized data samples 

 

 
Fig. 2 kernel density estimation of the standardized data 

 

3. GAUSSIAN PROCESS REGRESSION  
 

Suppose the training data can be represented as  N JX

and  1N y , where N  is the number of observations; 

J is the number of the input variables. The Gaussian 

process regression is assumed as the regression function 

with zero-mean Gaussian prior distribution: 

 

   1 2( ), ( ),..., ( ) ~ GP , ,ny f f f x x x 0 K       (4) 

 

where  1,2,...,i i Nx is the -thi observation; K  is the 

covariance matrix with its -thij element

T
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. In which 1ij   only 

when i j , otherwise, 0ij  ; l is length-scale, 2
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2

n are signal and noise variance respectively. The 

hyper-parameters 2 2[ , , ]n f l    can be optimized by 

maximizing the following likelihood estimation:  
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When a quarry sample 
newx  comes, the posterior 

distribution of the output  new new| , , ~ N( , )y y  X x
 
can 

be determined, and take the expectation   as the prediction 

newŷ
 

of the GPR model, which can be calculated as follows: 

 
2 1

new( , )[K( , ) I] .n y   K x X X X
       

（6） 

 

 

4 PRINCIPAL COMPONENT SUBSPACE ENSEMBLE 

STRATEGY FOR SOFT SENSING 

 

In this section, the principal component subspace ensemble 

(PCSE) learning approach is employed for a more accurate 

predicted result. It should be noted that the more diverse and 

more accurate sub-models are, the more reliable predicted 

result will be obtained. In order to improve the diversity of 

the sub-models, PCA is used to partition the original dataset 

into several sub datasets whose corresponding sub-space are 

orthogonal with each other. Furthermore, for accuracy 

enhancement the important variables are selected for 

modeling, while the unrelated variables are discarded . 

Therefore, the PCSE is a well-designed method which 

satisfies the diversity and accuracy requirement of the 

ensemble learning. The specific procedures of the PCSE are 

provided as follows: 

 

Denote the input variables as  N JX , where N  is the 

number of data samples, J  is the number of variables. The 

corresponding quality variable is given as  1N y . The 

conventional form of PCA can be expressed as follows: 
 

T , X TP E                  (7) 

,T XP                     (8) 
 

where  J AP  is the loading matrix,  N AT is the 

principal component score matrix, and A  is the selected 

number of latent variables.  

 

Based on the A  orthogonal principal component directions, 

the corresponding subspace models can be determined. 

However, important variables need to be selected carefully 

for each subspace model, otherwise all the sub-spaces are 

homogeneous. The important variables should be selected, 

while the useless variables will be discarded. To evaluate the 

importance of each input variable in a certain subspace, a 

variable contribution index (VCI) is defined as:  
 

 
1
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... ...
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Where 1,2,...,i J , , ijp
 

is the -thi  element in the -thj  

loading vector. Thus, in a certain sub-space, the importance 

of each variable can be determined, furthermore input 

variables can be selected regularly. Then, the dataset is 

divided into A  sub-datasets, according the sub regression 

models is built: 
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where ( 1,2,..., )i i AX  is i -th subspace developed 

through the corresponding principal component direction, 

and the variables are selected based on the VCI. Finally, the 
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The steps of the LWS based PCSE soft senor modeling is 

summarized as follows: 

(1) Collect the training data X and y ,
 

(2) For each training sample x i
, standardize it by LWS, 

(3) Employ PCSE to the standardized dataset and construct 

sub- models, 

(4) When quarry sample
newx comes, using LWS to 

standardize it, and predict the corresponding quality variable 

by each sub-model, 

(5) Finally fuse the predictions to obtain the final prediction.
 

 

5 CASE STUDIES  

 

In this part, two case studies on sulfur recover unit and a 

blast furnace ironmaking process will be carried out to 

verify the validity and effectiveness of LWS-PCSE method. 

 

5.1 Application to the sulfur recover unit 

 

The SRU process aims to recycle the sulfur and remove the 

pollution that cause harm to the environment and human 

health (Fortuna and Graziani et al 2007). The SRU plant 

mainly deals with two types of acidic gases: one is 

monoethanolamine (MEA) which is abundant with H2S; the 

other is sour water stripper (SWS) which is abundant with 

H2S and NH3. The main combustion chamber is used for 

treating MEA gas and can be fully combusted when 

sufficient air (AIR-MEA) is used; another combustion 

chamber is used for treating SWS gas, and the air flow 

entering it can be written as AIR-SWS. The detailed 

description of the SRU can be found in (Fortuna and 

Graziani et al 2007). During the SRU process, the H2S is 

transformed into product sulfur with the SO2 generated. The 

concentration of H2S and SO2 should be monitored, since 

they are harmful to the environment and human body. In this 

case, we develop 5 soft sensors to estimate the concentration 

of SO2, where the 5 input variables are: MAE gas flow, first 

air flow, second air flow, gas flow in SWS zone, air flow in 

SWS zone. A total of 1500 samples collected form the SRU 

dataset are divided into two parts: the training dataset 

consisting of 1000 data samples, and the testing dataset 

which contains the remaining 500 data samples. 

 

First, let us test the effectiveness of the LWS method for 

altering data into a Gaussian distribution. Normal probability 

plot is employed to implement that test, in this plot if the 

blue is more close to the red line indicates that the 

probability density of the variable is closer to the normal 

distribution. Fig. 3 is the testing result of the No. 4 variable. 

It can be seen in Fig. 3 the Z-Score treated data has a strong 

non-Gaussian characteristic since the blue line is not close to 

the red line. Meanwhile, the blue line in Fig. 3 (b) clusters 

much closer to the red line compared to Fig. 3 (a). Therefore, 

the LWS method is able to reduce the non-Gaussian 

characteristic from the original data. Although the data 

treated by LWS method do not obey a Gaussian distribution 

strictly, the Gaussian distribution is well approximate form 

for the real data probability density. Furthermore, the LWS 

treated data is more suitable for the PCA and GPR method 

than the conventional Z-Score method, due to the Gaussian 

assumption of the two methods.  
 

  

           (a) Z-Score           (b) LWS 

Fig. 3. Normal probability plot of the No.4 variable treated 

by Z-Score and LWS respectively  

 

Then the processed data are used for soft sensor construction 

with the basic GPR model, and the two methods are called 

ZSS-GPR and LWS-GPR, respectively. In addition another 

approach that can deal with the non-Gaussian characteristic, 

namely, Gaussian mixture model (GMM) is used for 

comparison. Then, the PCSE strategy is applied to the 

modeling, and 3 principal components are selected. Hence, a 

total of 3 subspace models are built up through the chosen 

principal component directions, and the variables in each 

subspace is selected by the VCI. 

 

The predicted results using different methods are 

summarized in Table 1. We can find that LWS based method 

has a better performance than the Z-Score based method, 

because the prediction index of the former is superior to that 

of the latter. Also, it can be found from Table 1 that RMSE 

of the GMM-GPR model is smaller than the ZSS-GPR 

model, while it is bigger than the LWS-GPR model. 

Therefore, compared with the GMM method, LWS is a 

better method in addressing the data Non-Gaussian 

characters in this case. Although, the GMM method and the 

LWS method are both proposed to solve the data 

Non-Gaussian problem, the mechanisms of them are quite 

different. The GMM is a cluster algorithm, and each 

component of the GMM is assumed to obey a Gaussian 

distribution. The main drawback of the GMM method is that 

the number of the data in each Gaussian cluster is much 

smaller than the original dataset, especially when the 

number of the training samples are relatively small. The 

LWS is a data pretreatment method, this approach can 

transform non-Gaussian data into an approximately 

Gaussian distribution, thus the number of available data 

keeps the same. As shown in Table 1, the prediction 

performance obtains a further promotion with the PCSE 

method. Because it is difficult for a single model to capture 

the whole data features precisely. While the PCSE, as an 

ensemble learning method, can divide the whole data into 

several subspaces. In that case a single model is able to get a 

good regression performance. There are two points to 

explain the superiority of the prosed method.: first, the PCA 

is based on the assumption that the process data follows a 

Gaussian distribution; second, the accuracy of the subspace 

models based on the LWS method are higher than the 

models based on the Z-Score method. 
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Table 1. Predictive results of SRU 

Model RMSE COR MAE 

ZSS-GPR 0.0337 0.7977 0.2462 

GMM-GPR 0.0321 0.8175 0.2722 

LWS-GPR 0.0303 0.8396 0.1479 

ZSS-PCSE-GPR 0.0323 0.8150 0.2304 

LWS-PCSE-GPR 0.0299 0.8472 0.1606 

 

For clear comparison, the 251th-400th prediction results of 

the ZSS-GPR and the proposed LWS-PCSE-GPR method is 

shown in Fig. 4, while their predicted errors are shown in 

Fig. 5. From Fig. 4, we can see that the LWS-PCSE-GPR 

given red plots track more tightly with the black real 

samples, than the ZSS-GPR given blue plots. 

Correspondingly, the predicted errors of the 

LWS-PCSE-GPR are smaller than that of the ZSS-GPR as 

well. The comparison results show the effectiveness of the 

proposed methods. 

 

 

Fig. 5. Prediction plots of SRU 
 

 

Fig. 6 Absolute value of prediction errors for SRU 

 

5.2 Application to ironmaking process 

 

In this subsection, the proposed LWS-PCSE strategy is also 

tested on a blast furnace ironmaking process. Due to the 

harsh environment in the blast furnace, it is difficult to 

measure the concentration of silicon directly (Zeng and Liu 

et al. 2008). Therefore, constructing a soft sensor to make a 

prediction is an efficient approach. In this paper, seven 

easy-to-measure variables are selected as: coal injection, air 

flow, air permeability, feed speed, differential pressure, and 

Oxygen enrichment. A total of 1000 samples are collected, 

whose change trend is plotted in Fig. 7.  

 
Fig. 7 Change trend plots of the ironmaking process 

 

  
   (a) Z-Score           (b) LWS 

Fig. 8. Normal probability plot of the No. 6 variable treated 

by Z-Score and LWS respectively  
 

Table 2. Prediction results of ironmaking  

Model RMSE COR  MAE 

ZSS-GPR 0.1395 0.4453 0.3132 

GMM-GPR 0.1379 0.4742 0.3478 

LWS-GPR 0.1318 0.4692 0.3671 

ZSS-PCSE-GPR 0.1330 0.4596 0.3388 

LWS-PCSE-GPR 0.1262 0.4789 0.3745 
 

These data are divided into two counterparts: the training 

dataset consisting of 700 data samples, and the testing 

dataset with the remaining 300 data samples. Again, the 

normality test is employed for comparison with the Z-Score 

and LWS method. The normality test results of the No. 6 

input variable are shown in Fig. 8. It is obvious that the data 

treated by LWS method is closer to the normal distribution 

than the data treated by Z-Score method. The results 

illustrate the non-Gaussian characteristics of the process data 

is reduced by LWS. Then 5 soft models are then built up for 

quality prediction. Here, the number of the subspaces is set 

to be 6. The prediction results are listed in Table 2. For 

visual comparison, the first 50 real and predicted samples of 

ZSS-GPR and the proposed LWS-PCSE-GPR are plotted in 

Fig. 9 and their errors are provided in Fig. 10. It can be seen 

that LWS is superior to Z-Score, because the RMSE values 

of former is smaller than that of the latter. From Fig. 9 and 

10 we can see that the LWS-PCSE-GPR performs better 

than the ZSS-GPR, the red curve tracks the real black curve 

better than the blue curve. In addition, the absolute value of 

the predicted error of the proposed method is smaller than 

the conventional ZSS-GPR method in general. 
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Fig.9 Prediction scatters of ironmaking 

 

Fig. 10 Absolute value of prediction errors for ironmaking 

 

6 CONCLUSIONS 
 

In the present paper, a novel LWS approach is proposed to 

deal with the non-Gaussian problem through transforming 

the non-Gaussian data into an approximately Gaussian 

distribution. Furthermore, to improve the multivariate 

calibration performance, a PCSE strategy is developed. This 

method solves the problem of the inability of most soft 

sensor modeling methods to get satisfactory calibration 

performance when they are directly applied in non-Gaussian 

industrial processes. Finally, compared with the 

conventional soft sensor models, the LWS-PCSE method 

offers some kind of advantages and innovations.  
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