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Abstract: Economic model predictive control is a popular method to maximize the efficiency of a
dynamic system. Often, however, uncertainties are present, which can lead to lower performance and
constraint violations. In this paper, an approach is proposed that incorporates the square root Unscented
Kalman filter directly into the optimal control problem to estimate the states and to propagate the mean
and covariance of the states to consider noise from disturbances, parametric uncertainties and state
estimation errors. The covariance is propagated up to a predefined “robust horizon” to limit open-loop
covariances, and chance constraints are introduced to maintain feasibility. Often variables in chemical
engineering are non-negative, which however can be violated by the Unscented Kalman filter leading to
erroneous predictions. This problem is solved by log-transforming these variables to ensure consistency.
The approach was verified and compared to a nominal nonlinear model predictive control algorithm on
a semi-batch reactor case study with an economic objective via Monte Carlo simulations.

Keywords: Robust control, Uncertain dynamic systems, Model-based control, Co-ordinate
transformations, Nonlinear filters

1. INTRODUCTION

Batch reactors are common in the chemical industry due to their
flexibility. The control of batch processes is challenging, since
these are operated at unsteady state and are frequently highly
nonlinear. This motivates the use of nonlinear model predictive
control (NMPC) (Nagy and Braatz, 2003). The objective of the
NMPC is usually to track a set point, but the true objective is to
maximize profit. Therefore, in economic MPC (EMPC) the cost
function is given by the quantity to be maximized (Lucia et al.,
2014), which has attracted significant attention in recent years
(Rawlings and Amrit, 2009). For batch reactors the objective
is usually a property of the final product and hence the control
problem leads to a shrinking horizon implementation.

The performance of the NMPC algorithm depends on the ac-
curacy of the model used. Models of real processes often in-
volve substantial uncertainties, including parametric uncertain-
ties, unaccounted disturbances and state estimation errors. In
particular, economic MPC often drives the system to its con-
straints (Lucia et al., 2014). Most work to consider uncertainties
has been in robust NMPC (RNMPC), which assumes that un-
certainties are deterministic and bounded. Important methods
for RNMPC are min-max NMPC (Chen et al., 1997) and tube-
based NMPC (Mayne et al., 2011). An alternative to RNMPC is
given by stochastic NMPC (SNMPC), which assumes that the
uncertainties are given by known probability distributions. In
SNMPC constraints are probabilistic and given by either chance
or expectation constraints. The regulation of the probability of
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constraint violations allows the adjustment of the conservative-
ness of the solution Mesbah (2016).

In Cannon et al. (2009) a procedure for SNMPC is introduced
based on successive linearization and application of a proba-
bilistic tube method. Bradford and Imsland (2017a) proposed
to use a sampling average approach with variance reduction.
A popular tool in SNMPC is given by the so-called polyno-
mial chaos expansion (PCE), which is an efficient alternative
to Monte Carlo simulations to propagate probabilistic uncer-
tainties. A major disadvantage of this approach is that the
complexity with respect to the number of uncertainty param-
eters scales exponentially (Fagiano and Khammash, 2012). In
Bradford and Imsland (2018) a similar method is proposed
using Gaussian processes instead. This has the advantage that
it also considers the uncertainty of the approximation itself,
but otherwise suffers from the same drawbacks. Maciejowski
et al. (2007) proposed a method based on the Markov chain
Monte Carlo approach, which is generally more efficient than
common Monte Carlo sampling based techniques, but does
not take gradient information into account. Lastly, multi-stage
MPC has been used to solve SNMPC problems for discrete
uncertainties, which however quickly becomes intractable due
to the computational complexity scaling exponentially with the
size of the time horizon, number of uncertainty parameters and
uncertainty levels (Goodwin et al., 2009; Lucia, 2014).

In Bradford and Imsland (2017b) the Unscented Kalman filter
(UKF) is used to estimate the state for output feedback model
predictive control and propagate the state estimation error and
additive noise from disturbances forward in time. The predicted
Gaussian distributions of the states were used to impose prob-
abilistic constraints. A similar approach is given in Farrokhsiar
and Najjaran (2012) to propagate state estimation error and
additive noise for the control of nonholonomic mobile robots.
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In addition, Liu et al. (2014) and Völz and Graichen (2016)
show that the unscented transformation (UT) can be used to ef-
ficiently propagate additive disturbance errors. Lastly, in Heine
et al. (2006) the UT is used to propagate parametric uncertain-
ties. A general advantage of the UT is the linear scaling with
respect to the number of uncertain parameters.

In this paper the previous work is unified to take into account
state estimation error from the square root UKF, noise from
additive disturbances and lastly parametric uncertainties. Log-
transformations are used to enforce positiveness of several
variables and the square root UKF is used to guarantee positive
semi-definiteness of the state covariances (Van Der Merwe
and Wan, 2001). The approach was tested on a semi-batch
reactor case study with an economic objective. The robustness
of the approach was verified with 4 uncertain parameters and
compared to a nominal NMPC approach via Monte Carlo
simulations. The paper is divided into the following sections. In
the next Section the general SNMPC problem is formulated. In
the third Section the square root UKF is introduced and utilised
to solve the SNMPC problem. Further, the concepts ”robust
horizon”, log-transformation and linear joint state constraints
are outlined. The case study to test the procedure is formulated
in Section 4. Section 5 gives the results of the Monte Carlo
simulations for the case study. In the last Section conclusions
were drawn from the simulation results.

2. NONLINEAR MODEL PREDICTIVE CONTROL WITH
LINEAR CHANCE CONSTRAINTS

The dynamic system we consider is given by a discrete time
stochastic nonlinear system with parametric uncertainties and
additive noise. The states and the parameters enter the nonlin-
ear equation system in a non-additive fashion, such that it is
practical to write them jointly as xa.

x(k + 1) = f(xa(k), u(k)) + w(k) (1)
y(k) = h(xa(k), u(k)) + ν(k) (2)

where k is the discrete time, xa = [xT , θT ]T ∈ Rnx×nθ=L
denotes the augmented state vector with a joint dimension of L,
x ∈ Rnx are the states, u ∈ Rnu represents the inputs, y ∈ Rny
are the measurements and θ ∈ Rnθ denotes the parametric
uncertainties; the additive disturbance term w lies in Rnx and
the additive measurement noise ν lies in Rny . The equations
f : RL ×Rnu → Rnx and h : RL ×Rnu → Rny represent the
dynamics of the states and the measurements respectively.

The parametric uncertainties are assumed to be Gaussian dis-
tributed with mean vector mθ(k) and covariance matrix Σθ(k)
at stage k. The additive disturbances w(k) and ν(k) are as-
sumed to be zero mean independent normal random variables
with variances Σw(k) and Σν(k) at stage k respectively. The
probability density of the initial state x(0) is assumed to be
normal with mean x̂(0) and covariance Σx(0). Assuming that
we are at stage n, let Yn stand for the measurements collected
thus far. Subsequently, EYn(·) and PYn(·) denote the expec-
tation and probability conditioned on Yn respectively (Yan and
Bitmead, 2005). The goal of the SNMPC algorithm at stage n is
to determine a control sequence over a finite time horizon to ad-
just the probability distributions of the states to optimize an ob-
jective, while adhering to predefined probabilistic constraints,
given imperfect information through Yn. A general SNMPC
problem formulation at stage n can be given as follows, with
deterministic constraints on the inputs and joint, linear chance
constraints on the states:

Finite-horizon SNMPC problem with chance constraints
minimize

uN
EYn (J(N, x(n),uN ))

subject to
x(n+ k + 1) = f(xa(k), u(k)) + w(n+ k)

y(n+ k) = h(xa(k), u(k)) + ν(n+ k)

PYn(liTk x(n+ k) ≤ gik) ≥ 1− pik
∀(k, i) ∈ {1, . . . , N} × {1, . . . , ng}

u(n+ k) ∈ Uk ∀k ∈ {0, ..., N − 1}

(3)

where the time horizon is given by N , ng is the number of
linear state constraints, lik ∈ Rnx and gik ∈ R define each
linear state constraint, the input constraints are represented by
Uk ⊂ Rnu , uN := {u(n), . . . , u(n + N − 1)} is a collection
of inputs over the finite horizon N from an initial stage n and
J(N, x(n),uN )) is objective function. The chance constraints
are set to be violated by a probability of pik ∈ (0, 1) ⊂ R.

3. INCORPORATION OF THE SQUARE ROOT
UNSCENTED KALMAN FILTER

3.1 Transformation of variables with lower bound

First principle equations for batch processes are commonly
given as continuous differential equations, which can be dis-
cretized using numerical integration techniques to obtain equa-
tions in the form of Eq. (1). In this work orthogonal collocation
was used for numerical integration Chachuat (2007). The log-
transformation is, however, directly applied to the continuous
differential equation system. Many variables in chemical en-
gineering are non-negative due to physical constraints, such
as temperatures, concentrations, volumes, etc.. The methods
available in literature to incorporate state constraints in the UKF
are not suitable for our specific problem, since these are discon-
tinuous (Simon, 2010). Instead, we suggest to log-transform the
variables to ensure a lower bound on the variables. Let x′ be the
variable that cannot be lower than a. Then define x as:

x = log(x′ − a) (4)
If we now work with x in the problem rather than x′, then x′
is guaranteed to remain larger than a, i.e. we have implicitly
introduced the following constraint:

x′ > a (5)
The differential equation of x′ can then be transformed in the
following way to obtain the required differential equation of x:

dx
dt

=
dx′

dt
1

x′ − a
(6)

Lastly, given that we know x is normally distributed with mean
x̂ and covariance Σx, i.e. x ∼ N (x̂,Σx), x′ then follows a
log-normal distribution, with mean and covariance given by
(Halliwell, 2015):

x̂′i = exp

(
x̂i +

Σxi,i
2

)
(7)

Σx′ i,j = exp

(
x̂i + x̂j +

Σxi,i + Σxj,j
2

)
(exp(Σxi,j)− 1)

(8)

where x̂′ and Σx′ are the mean and covariance of x′ respectively

Eq. (7) can be used to obtain the state estimate for the true
variable x′ from x with the corresponding covariance matrix
from Eq. (8).
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3.2 Propagation of state probability distributions using the
square root Unscented Kalman filter

The problem in Eq. (3) is intractable, since it requires the propa-
gation of conditional probability densities of the states through
nonlinear transformations. Instead we use the UT to approx-
imate the mean and covariance of this probability density. In
our case the uncertain input is given by the states and uncertain
parameters. The UT creates a set of sampling points, which
depend on the mean and covariance of the Gaussian distributed
input. The mean and covariance of the UT are accurately esti-
mated up to third order (Simon, 2006), which is an advantage
of the UT over more conventional linearization approaches.

To obtain the state estimate the Kalman filter equations are used
at stage n. For the propagation of the mean and covariance of
the states the UT is repeatedly applied to Eq. (1), assuming at
each stage that the output follows a Gaussian distribution. This
approach is summarised in the Algorithm 1 box and illustrated
in Fig. 1. The equation system is given such that x̂(n|n), the
state estimate, is also calculated given the current measurement
y(n), the previous state estimate x̂(n − 1|n − 1), the previous
state covariance Σx(n−1|n−1) and the previous control input
u(n − 1). Guidelines on how to set the scaling parameters (
ωµi , ω

c
i , λ ) and definitions of qr(·), ·/· and cholupdate(·, ·, ·)

can be found in Van Der Merwe and Wan (2001).

The considered OCP in Eq. (3) is open-loop, which does not
account for the NMPC to have reduced covariances through
feedback by the state and bias update. This leads to the pre-
dicted conditional covariances to increase with k and therefore
the OCP becoming increasingly conservative with larger time
horizons. Eventually the OCP becomes infeasible (Yan and Bit-
mead, 2005). The “robust horizon” is utilised as in Bradford and
Imsland (2017b), up to which the covariances are propagated
to address the problem of growing covariances. Hence, for the
square root UKF in the Algorithm 1 box, equations were added,
such that the covariance matrix is constant after a defined “ro-
bust horizon” tR. This is similar to Yan and Bitmead (2005)
who propagates the covariance at the first stage from a Kalman
filter in linear MPC. Farrokhsiar and Najjaran (2012) introduces
“fake measurements”. This is an interesting approach to take
into account information gained to learn parameters, but is
expensive since it requires additional equations.

Fig. 1. Illustration of UKF SNMPC algorithm: Each Sigma
point resembles a different input, which are then prop-
agated through the nonlinear transformation to the next
stage as indicated by the red lines. These are then used
to estimate the mean and covariance of the Gaussian dis-
tribution of the states at the next stage. The probability of
violating the chance constraint shown is given by the area
under the pdf.

Algorithm 1: Square root Unscented Kalman filter with addi-
tive noise and parametric uncertainty
Initialization

Input: x̂(n− 1|s), Σx(n− 1|s),
u(n− 1), y(n), λ, ωµ, ωc, tR, n, N

mθ(n+ k), ∀k ∈ {1, . . . , N},
Σθ(n+ k), ∀k ∈ {1, . . . , N}
Σw(n+ k), Σv(n+ k) ∀k ∈ {1, . . . , N}
f(·), h(·)

For s = n− 1, k = 0 and s = n, k ∈ {1, . . . , N}
Definition of Sigma points

x̂a(n+ k − 1|s) = [x̂(n+ k − 1|s)T mθ(n+ k − 1)T ]T

(9a)

Σ1/2
a (n+ k − 1|s) =

diag(Σ1/2
x (n+ k − 1|s),Σ1/2

θ (n+ k − 1))
(9b)

X (n+ k − 1|s) = [x̂a(n+ k − 1|s)
x̂a(n+ k − 1|s) +

√
L+ λΣ1/2

a (n+ k − 1|s) (9c)

x̂a(n+ k − 1|s)−
√
L+ λΣ1/2

a (n+ k − 1|s)]
Covariance and mean approximation of predictions
Xi(n+ k|s) = f(Xi(n+ k − 1|s), u(n+ k − 1)) (10a)

x̂(n+ k|s) =

2L∑
i=0

ωµi Xi(n+ k|s) (10b)

∀k ≤ tR Σ1/2
x (n+ k|s) = qr([

√
ωc1(X1:2L(n+ k|s)−

x̂(n+ k|s)) Σ1/2
w (n+ k)])

(10c)

∀k ≤ tR Σ1/2
x (n+ k|s) = cholupdate(Σ1/2

x (n+ k|s),
X0(n+ k|s)− x̂(n+ k|s), ωc0)

(10d)

∀k > tR Σ1/2
x (n+ k|n) = Σ1/2

x (n+ k − 1|n) (10e)
Covariance and mean approximation of observations

φi(n|n− 1) = h(Xi(n|n− 1), u(n− 1)) (11a)

ŷ(n|n− 1) =

2L∑
i=0

ωµi φi(n|n− 1) (11b)

Σ1/2
yy (n|n− 1) = qr([

√
ωc1(φ1:2L(n|n− 1)−

ŷ(n|n− 1)) Σ1/2
v ])

(11c)

Σ1/2
yy (n|n− 1) = cholupdate(Σyy(n|n− 1),

φ0(n|n− 1)− ŷ(n|n− 1), ωc0)
(11d)

Σxy(n|n− 1) =

2L∑
i=0

ωci (X (i)(n|n− 1)−

x̂(n|n− 1))(φ(i)(n|n− 1)− ŷ(n|n− 1))T

(11e)

Update of states from available measurements

K(n) = (Σxy(n|n− 1)/Σ1/2T
yy (n|n− 1))/Σ1/2

yy (n|n− 1)

(12a)
x̂(n|n) = x̂(n|n− 1) +K(n)(y(n)− ŷ(n|n− 1)) (12b)

U = K(n)Σ1/2
yy (n|n− 1) (12c)

Σx(n|n) = cholupdate(Σx(n− 1|n− 1), U,−1) (12d)
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3.3 Probability constraints

The probability constraints on the states of interest are in the
form of linear constraints as defined in Eq. (3):

P(lTx ≤ g) ≥ 1− ε (13)
Using Chebychev’s inequality the probability constraints in
(13) can be robustly transformed to the following equation (Liu
et al., 2014):

lT x̂+
√
βlTΣxl ≤ g (14)

where x̂ and Σx are the mean and covariance of x respectively
and β = 1−ε

ε

For the untransformed variables Eq. (13) can be directly used
with the mean and covariance predicted by the square root UKF.
For the transformed variables we instead use the mean and
covariance given by Eq. (7) and Eq. (8) respectively. This is
also done so that we can define the robust horizon.

∀k > tR Σx′(n+ k|n) = Σx′(n+ k − 1|n) (15)

3.4 Square root UKF SNMPC formulation

Given linear chance constraints of the form in Eq. (13), a sim-
plified SNMPC formulation can be stated as follows:

Finite horizon SNMPC problem with incorporated square
root UKF and chance constraints
minimize

uN
EYn(J(N, x(n),uN ))

subject to

PYn(liTk x(n+ k) ≤ gik) ≥ 1− pik
∀(k, i) ∈ {1, . . . , N} × {1, . . . , ng}

u(n+ k) ∈ Uk ∀k ∈ {0, ..., N − 1}
(9)− (12) square root UKF based on transformed variable x
(7), (8), (15) Variance and mean of untransformed variable x′

(16)
where the probability constraints can be reformulated as shown
in Section 3.3. The open-loop problem can then be used in
a receding horizon fashion to obtain a SNMPC algorithm as
shown in the box for Algorithm 2.

Algorithm 2: Square root UKF SNMPC with receding hori-
zon
Initialize: Supply x̂(0|0), Σx(0|0), u(0) and define (16)
At each sampling time n = 1, 2, 3, . . .
• Take measurements y(n)
• Solve (16) with x̂(n − 1|n − 1), Σx(n − 1|n − 1),
u(n− 1), y(n) and obtain u(n), x̂(n|n), Σx(n|n)

• Apply u(n) to the real system

4. SEMI-BATCH REACTOR CASE STUDY

4.1 Semi-batch reactor model

To test the procedure the same case study as in Bradford and
Imsland (2017b) based on a DAE system in Fogler (1999) is
used, however parametric uncertainties were added and all the
states were log-transformed. The following series reaction takes
place in the reactor with H2SO4 as catalyst:

2A
k1A−−→
(1)

B
k2B−−→
(2)

3C

The reactions are first order. The first reaction step is exother-
mic, while the second reaction step is endothermic. A heat
exchanger is utilised to control the temperature. The following
DAE system describes the dynamic behaviour of the semi-batch
reactor:

ĊA = (−k1AC ′A + (θ1 − C ′A)
F

V ′
)/C ′A, (17a)

ĊB = (0.5k1AC
′
A − k2BC ′B − C ′B

F

V ′
)/C ′B , (17b)

ĊC = (3k2BC
′
B − C ′C

F

V ′
)/C ′C , (17c)

Ṫ =

(
(θ2(Ta − T ′)− Fθ1CPA(T ′ − T0)

(C ′ACPA + C ′BCPB + C ′CCPC )V ′ + θ4CPH2SO4

+

(−∆HRx1Ak1AC
′
A −∆HRx2Bk2BC

′
B)V ′

(C ′ACPA + C ′BCPB + C ′CCPC )V ′ + θ4CPH2SO4

)
/T ′,

(17d)

V̇ = F/V ′, (17e)

k1A = θ3 exp

(
−E1A

(
1

420
− 1

T ′

))
, (17f)

k2B = A2 exp

(
−E2B

(
1

400
− 1

T ′

))
, (17g)

C ′A = exp(CA), C ′B = exp(CB), C ′C = exp(CC) (17h)
T ′ = exp(T ), V ′ = exp(V ) (17i)

where C ′A, C ′B , C ′C are the concentrations in moldm−3 of
species A, B and C respectively, T ′ is the temperature in K
of the reactor and V ′ is the liquid volume in dm3. CA, CB ,
CC , T and V are the log-transformed states of C ′A, C ′B , C ′C ,
T ′ and V ′ respectively. The deterministic parameters were kept
at their nominal values, which can be found in Fogler (1999).
The uncertain parameters are jointly given by the vector θ,
which are assumed to be normally distributed, with constant
mean mθ = [4, 45000, 0.08, 100]T and constant covariance
Σθ = diag([0.1, 2e7, 1.6e−4, 5]). The inputs of the problem
are given by the flow rate of pure A entering the reactor F in
dm3h−1 and the temperature of the heat exchanger Ta in K.

In compact form we can write x′ = [C ′A, C
′
B , C

′
C , T

′, V ′]T ,
x = [CA, CB , CC , T, V ]T and u = [F, Ta]T . Using orthogonal
collocation the continuous time equations can be given as a
discrete time equation system in the form:

x(k + 1) = f(x(k), u(k)) + w(k) (18)
where f(x(k), u(k)) describes the DAE system in Eq. (17)
and w(k) is additive Gaussian noise with a constant covariance
matrix Σw = diag([1e−3, 1e−3, 1e−3, 1e−6, 1e−6]).

Lastly, the measurement dynamics need to be defined, which
are given by the following equation:

y(k) =

[
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

]
x′(k) + ν(k) (19)

where ν(k) is additive Gaussian noise with a constant covari-
ance matrix Σν = diag([1e−3, 1e−3, 1e−3]).

4.2 SNMPC problem

The OCP to be solved is formulated below. The economic
objective is to maximize the amount of C at a fixed final batch
time with a penalty for excessive control actions. The feed
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rate can be varied between 0dm3h−1 and 250dm3h−1 and the
heat exchanger temperature can be adjusted between 270K
and 500K. The liquid volume inside the semi-batch reactor
is constrained to lie below 800dm3, while the temperature is
constrained to lie below 440K. The OCP problem is given by:

minimize
uN

− (x̂2(n+N |n) + x̂4(n+N |n)) + ∆UTS∆U

subject to

x̂′3(n+ k|n) +
√
βΣx′3,3(n+ k|n) ≤ 440 ∀k ∈ {1, ..., N}

x̂′4(n+ k|n) +
√
βΣx′4,4(n+ k|n) ≤ 800 ∀k ∈ {1, ..., N}

u(n+ k) ∈ [0, 250]× [270, 500] ∀k ∈ {0, ..., N − 1}
(9)− (12) square root UKF based on transformed variable x
(7)− (8), (15) variance and mean of true variable x′

(20)
where β = ε

1−ε , ∆U = [u(n+k)−u(n+k−1)]k∈{1,...,N−1}
and S = diag([8e−6, 2e−6]). For Eqs. (9) − (12), (15) the
robust horizon tR was set to 2, the required scaling parameters
can be determined from Van Der Merwe and Wan (2001) with
α = 0.9, β = 2 and κ = 1, f(·) is defined in Eq. (17) and Eq.
(18) and h(·) in Eq. (19).

The problem objective is given at a fixed final time, such that a
shrinking horizon implementation was used.

5. SIMULATION STUDIES

The final batch time was set to 4h with the total number
of sampling points set to Nt = 20. The OCP in Eq. (20)
was solved repeatedly using Casadi (Andersson, 2013) by
employing direct collocation in Python. The degree of the
polynomials was set to 4. The nonlinear programming prob-
lem was solved utilising Ipopt (Wächter and Biegler, 2006).
IDAS (Hindmarsh et al., 2005) simulated the ”real” plant.
At time n = 1, Algorithm 3 needs to be initialized by
with the ”previous” covariance matrix, mean and control ac-
tion. These were set to x̂(0|0) = [log(1e−3), log(1e−3)
, log(1e−3), log(290), log(100)]T , Σx(0|0) = diag([1e−3,
1e−3, 1e−3, 1e−3, 1e−3]) and u(0) = [0, 290]T respectively.

To test the robustness of the method 200 Monte Carlo simula-
tions were performed, i.e. by sampling different realizations of
parameters, additive disturbances and initial conditions for the
real system, again with ε = 0.05. The various trajectories can
be seen in Fig. 4. For comparison purposes a nominal NMPC
was run on 200 Monte Carlo simulations, for which the results
are shown in Fig. 3. The UKF SNMPC overall performs well
and leads to a relatively small number of constraint violations,
while the nominal NMPC can be seen to violate both constraints
substantially.

Lastly, the method was run for 3 different values of ε and for
the nominal NMPC algorithm, with 100 Monte Carlo samples.
The obtained objective values are illustrated in Fig. 2 as a box
plot to highlight the trade-off between conservativeness and
performance. The red line in the box plot indicates the median
of the objective values, while the blue lines represent the upper
and lower quartiles. The black lines give the smallest and largest
value attained from the simulations, excluding outliers, shown
as red crosses. We can clearly see that the median amount
of C at the final batch time consistently increases with ε as
expected, since an increase in ε leads to less conservativeness.

The nominal NMPC algorithm leads to the largest amount of C
on average.

6. CONCLUSION

Overall a new algorithm is proposed for SNMPC with effi-
cient formulation of the probability constraints, which has been
shown to be an efficient means to account for uncertainties from
state estimates, disturbances and parameters for an economic
model predictive control problem of a semi-batch reactor. The
algorithm was able to keep nearly all 200 Monte Carlo simula-
tions within the constraints, while it was shown that a nominal
NMPC algorithm leads to significant constraint violations. In
addition, important issues such as the prevention of negative
concentrations were addressed by log-transformations.
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Fig. 2. Box plot of 100 Monte Carlo simulations for different
values of ε for the UKF SNMPC algorithm based on the
OCP in Eq. (20) and for the nominal NMPC algorithm

Fig. 3. 200 Monte Carlo trajectories of the ”real” system from
a nominal NMPC algorithm
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Fig. 4. 200 Monte Carlo trajectories of the ”real” system from
the SNMPC algorithm based on the OCP in Eq. (20) with
ε = 0.05

REFERENCES

Andersson, J. (2013). A general-purpose software framework
for dynamic optimization. Arenberg Doctoral School, KU
Leuven, Department of Electrical Engineering (ESAT/SCD)
and Optimization in Engineering Center, Kasteelpark Aren-
berg 10.

Bradford, E. and Imsland, L. (2017a). Expectation constrained
stochastic nonlinear model predictive control of a batch
bioreactor. In 27 European Symposium on Computer Aided
Process Engineering, volume 40, 1621–1626. Elsevier.

Bradford, E. and Imsland, L. (2017b). Stochastic Nonlinear
Model Predictive Control with State Estimation by Incor-
poration of the Unscented Kalman Filter. arXiv preprint
arXiv:1709.01201.

Bradford, E. and Imsland, L. (2018). Stochastic Nonlinear
Model Predictive Control Using Gaussian Processes. In 2018
European Control Conference (ECC).

Cannon, M., Ng, D., and Kouvaritakis, B. (2009). Succes-
sive linearization NMPC for a class of stochastic nonlinear
systems. In Nonlinear Model Predictive Control, 249–262.
Springer.

Chachuat, B. (2007). Nonlinear and dynamic optimization:
From theory to practice. Technical report.

Chen, H., Scherer, C.W., and Allgower, F. (1997). A game the-
oretic approach to nonlinear robust receding horizon control
of constrained systems. In American Control Conference,
1997. Proceedings of the 1997, volume 5, 3073–3077. IEEE.

Fagiano, L. and Khammash, M. (2012). Nonlinear stochastic
model predictive control via regularized polynomial chaos
expansions. In 2012 IEEE 51st IEEE Conference on Deci-
sion and Control (CDC), 142–147. IEEE.

Farrokhsiar, M. and Najjaran, H. (2012). An unscented model
predictive control approach to the formation control of non-
holonomic mobile robots. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, 1576–
1582. IEEE.

Fogler, H.S. (1999). Elements of chemical reaction engineer-
ing.

Goodwin, G.C., Østergaard, J., Quevedo, D.E., and Feuer, A.
(2009). A vector quantization approach to scenario gener-

ation for stochastic NMPC. In Nonlinear Model Predictive
Control, 235–248. Springer.

Halliwell, L.J. (2015). The Lognormal Random Multivariate.
In Casualty Actuarial Society E-Forum, Spring 2015.

Heine, T., Kawohl, M., and King, R. (2006). Robust model
predictive control using the unscented transformation. In
Computer Aided Control System Design, 2006 IEEE Inter-
national Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, 2006 IEEE,
224–230. IEEE.

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban,
R., Shumaker, D.E., and Woodward, C.S. (2005). SUN-
DIALS: Suite of nonlinear and differential/algebraic equa-
tion solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3), 363–396.

Liu, C., Gray, A., Lee, C., Hedrick, J.K., and Pan, J. (2014).
Nonlinear stochastic predictive control with unscented trans-
formation for semi-autonomous vehicles. In American Con-
trol Conference (ACC), 2014, 5574–5579. IEEE.

Lucia, S. (2014). Robust Multi-stage Nonlinear Model Predic-
tive Control. Citeseer.

Lucia, S., Andersson, J.A.E., Brandt, H., Diehl, M., and Engell,
S. (2014). Handling uncertainty in economic nonlinear
model predictive control: A comparative case study. Journal
of Process Control, 24(8), 1247–1259.

Maciejowski, J.M., Visintini, A.L., and Lygeros, J. (2007).
NMPC for complex stochastic systems using a Markov chain
Monte Carlo approach. In Assessment and Future Directions
of Nonlinear Model Predictive Control, 269–281. Springer.

Mayne, D.Q., Kerrigan, E.C., Van Wyk, E.J., and Falugi, P.
(2011). Tubebased robust nonlinear model predictive con-
trol. International Journal of Robust and Nonlinear Control,
21(11), 1341–1353.

Mesbah, A. (2016). Stochastic model predictive control: An
overview and perspectives for future research.

Nagy, Z.K. and Braatz, R.D. (2003). Robust nonlinear model
predictive control of batch processes. AIChE Journal, 49(7),
1776–1786.

Rawlings, J.B. and Amrit, R. (2009). Optimizing process
economic performance using model predictive control. In
Nonlinear model predictive control, 119–138. Springer.

Simon, D. (2006). Optimal state estimation: Kalman, H infinity,
and nonlinear approaches. John Wiley & Sons.

Simon, D. (2010). Kalman filtering with state constraints:
a survey of linear and nonlinear algorithms. IET Control
Theory & Applications, 4(8), 1303–1318.

Van Der Merwe, R. and Wan, E.A. (2001). The square-root
unscented Kalman filter for state and parameter-estimation.
In Acoustics, Speech, and Signal Processing, 2001. Proceed-
ings.(ICASSP’01). 2001 IEEE International Conference on,
volume 6, 3461–3464. IEEE.

Völz, A. and Graichen, K. (2016). Gradientenbasierte
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