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Abstract: Nonlinear Model Predictive Control (NMPC) enables the incorporation of detailed dynamic
process models for nonlinear, multivariable control with constraints. This optimization-based framework
also leads to on-line dynamic optimization with performance-based and so-called economic objectives.
Nevertheless, economic NMPC (eNMPC) still requires careful formulation of the nonlinear program-
ming (NLP) subproblem to guarantee stability. In this study, we derive a novel reduced regularization
approach for eNMPC with stability guarantees. The resulting eNMPC framework is applied to a chal-
lenging nonlinear CO2 capture model, where bubbling fluidized bed models comprise a solid-sorbent
post-combustion carbon capture system. Our results indicate the benefits of this improved eNMPC
approach over tracking to the setpoint, and better stability over eNMPC without regularization.

Keywords: nonlinear model predictive control, economic NMPC, bubbling fluidized bed, CO2 capture,
nonlinear optimization

1. INTRODUCTION

Model Predictive Control (MPC) is widely accepted in the pro-
cess industries as a generic multivariable controller with con-
straint handling. It also extends to Nonlinear Model Predictive
Control (NMPC) in order to realize high-performance control
of highly nonlinear processes. NMPC allows incorporation of
detailed process models (validated by off-line analysis) and
integrates with on-line optimization strategies consistent with
higher-level tasks, including scheduling and planning. NMPC
for tracking and so-called “economic” stage costs, as well as
associated state estimation tasks, have been reviewed, formu-
lated and analyzed in considerable detail (Rawlings and Mayne
(2009); Mayne et al. (2000)). Fundamental stability and robust-
ness properties of NMPC are well-known, and many of the
key issues related to the applicability and relevance of NMPC
are well understood. Moreover, through proper formulations of
the NMPC subproblem, stability and sensitivity properties of
nonlinear programs (NLPs) are realized, leading to nominal
and robust stability of the NMPC controller through input to
state stability (ISS) (see Magni and Scattolini (2007); Yang
et al. (2015)). Moreover, the existence of NLP solutions that
are differentiable with respect to problem data leads to the
development of sensitivity-based NMPC, which greatly reduces
on-line computation and computational delay (Jäschke et al.
(2014); Biegler et al. (2015)).

Setpoint-tracking NMPC can be readily extended to Eco-
nomic NMPC through substitution of tracking stage costs by
performance-based costs. On the other hand, economic stage
costs are generally not K functions (see Definition 1) and
therefore do not satisfy the assumptions needed for a Lyapunov-
based stability analysis. As a result, advanced formulations
of the NLP subproblem are required to realize stability and
robustness properties. These are reviewed below and a novel ex-
tension of this approach is developed in this study and demon-
strated for the dynamic real-time optimization of a CO2 capture
unit consisting of two bubbling fluidized bed (BFB) reactors.

The next section introduces NLP-based strategies for economic
NMPC and provides background properties for the NLP sub-
problem. In particular, we describe the regularization of eco-
nomic stage costs, which lead to nominal and robust (i.e., in-
put to state stable (ISS)) stability. Section 3 develops a novel
regularization scheme that leads to less conservative eNMPC
controllers that still retain stability properties. This new eN-
MPC controller is demonstrated and compared on a challenging
BFB model for carbon capture in Section 4. Finally, Section 5
concludes the paper and outlines directions for future work.

2. ECONOMIC NMPC WITH STAGE COST
REGULARIZATION

We consider the following steady state optimization problem
for economic NMPC with xs and us as optimal steady state
solutions.

min
x,u

ψ
ec(x,u) s.t. x = f (x,u),u ∈ U,x ∈ X. (1)

The dynamic optimization problem for economic NMPC is
defined as follows:

V (x(k)) = min
vl ,zl

N−1

∑
l=0

ψ
ec(zl ,vl) (2)

s.t. zl+1 = f (zl ,vl), l = 0, . . .N−1
z0 = x(k),zN = xs

vl ∈ U,zl ∈ X.
where the stage cost is given by ψec(·, ·) : ℜnx+nu → ℜ and
is assumed to be Lipschitz continuous. For simplicity, we use
an NMPC formulation with terminal equality constraints that
incorporate the steady state optimum (xs,us), instead of the
origin.
Definition 1. (Magni and Scattolini (2007)) A continuous func-
tion α(.): ℜ≥0 7→ ℜ≥0 is a K function if α(0) = 0,α(s) >
0,∀s > 0 and it is strictly increasing.
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Our stability analysis follows the Lyapunov stability framework
where we derive the following inequality with the standard
assumptions for setpoint tracking NMPC:

V (x(k+1))−V (x(k))≤−(ψ(x(k),u(k))−ψ(xs,us)) (3)
For economic NMPC, the economic stage cost ψec(x,u) can
have an arbitrary form that represents the economic information
for process operation. For an arbitrary economic stage cost, (3)
does not apply if ψ is not a K function. Under these conditions,
the value function for economic NMPC cannot be used as a
Lyapunov function for stability of the closed-loop system.

To guarantee stability of economic NMPC, additional proper-
ties are needed. As shown in Angeli et al. (2012), dissipativity
can be used to establish the stability for economic NMPC.
Definition 2. (Angeli et al. (2012)) A control system x+ =
f (x,u) is dissipative with respect to a supply rate s : X×U→R
if there exists a function λ̂ : X → R, such that λ̂ ( f (x,u))−
λ̂ (x)≤ s(x,u) for all feasible control-input pairs. If in addition
ζ : X→R≥0 a positive definite function (ζ (xs) = 0 and ζ (x)>
0 for all x 6= xs) exists such that λ̂ ( f (x,u))− λ̂ (x) ≤ −ζ (x)+
s(x,u) then the system is said to be strictly dissipative.

By choosing the function λ̂ (x) = λ̄ T x for some λ̄ ∈ Rn, the
dissipativity assumption is equivalent to the following:

min
x,u

ψ
ec(x,u)+ λ̄

T (x− f (x,u))≥ ψ
ec(xs,us) (4)

As pointed out in Angeli et al. (2012), this assumption holds
if the economic stage cost and dynamic model form a strongly
dual problem. This also leads to the concept of rotated stage
cost (Diehl et al. (2011); Angeli et al. (2012)) defined as
follows:

φ(x,u) = ψ
ec(x,u)+λ

T (x− f (x,u)) (5)
where λ is the multiplier vector from the equality constraints
in (1). Moreover, if the rotated stage cost φ(x,u) is strongly
convex, then strong duality together with the stability of the
corresponding economic NMPC can be guaranteed (Huang
et al. (2011); Jäschke et al. (2014)). Their results provide
sufficient conditions to establish stability for economic NMPC.

When strong convexity does not hold for ψec(x,u), an easy
remedy is to add quadratic regularization terms to the economic
stage cost. After introducing the regularization terms, the mod-
ified steady state problem and the corresponding regularized
rotated stage cost are defined as follows:

min
x,u

ψ
ec(x,u)+

1
2
‖(x,u)− (xs,us)‖2

Q (6)

s.t. x = f (x,u),u ∈ U,x ∈ X.

with φreg(x,u) = φ(x,u)+
1
2
‖(x,u)− (xs,us)‖2

Q where (xs,us)

are the optimal solutions of (1) and Q is a diagonal regular-
ization weighting matrix. As shown in Jäschke et al. (2014),
stability of the economic NMPC controller can be realized
through the following procedure. First, we consider the rotated
controller with rotated stage cost φ(x,u) as the objective func-
tion. With a sufficiently large regularization matrix Q, the reg-
ularized rotated stage cost φreg(x,u) becomes strongly convex
(Jäschke et al. (2014)) and the local solution of (6) becomes
a global minimum with the regularized rotated stage cost. With
this result, the value function of this rotated controller decreases
monotonically based on inequality (3) and leads to asymptotic
stability. Moreover, since the economic NMPC controller has

the same solution as the rotated controller, stability of regular-
ized economic NMPC follows directly.

While adding regularization terms is easy, finding appropriate
regularization weights that guarantee the stability of economic
NMPC is challenging. In Jäschke et al. (2014), a systematic
approach based on Gershgorin’s theorem was proposed to find
regularization weights for Q = diag(q) that lead to strongly
convex rotated stage costs φreg(x,u). These weights satisfy:

qi > ∑
i6= j
|hi, j|−hi,i (7)

where hi, j are the elements of the Hessian matrix of the rotated
stage cost φ(x,u) in (5). Based on this simple criterion, we can
determine the sufficient regularization weights that guarantee
stability of economic NMPC. However, condition (7) must
be checked and satisfied for all u ∈ U,x ∈ X in order to
guarantee that the regularized rotated stage cost is strongly
convex. Biegler et al. (2015) grid the feasible regions for
every variable, including differential states, algebraic variables
and controls, and calculate the Hessian matrix of the rotated
stage cost at each grid point. Though all calculations are done
offline, they can be cumbersome, especially as the required
number of calculations for (7) increases exponentially with
problem size. Moreover, with this approach, regularization may
be required for most system variables (i.e., dynamic states,
algebraic variables and controls), and this could lead to very
conservative economic performance.

To overcome this issue, we propose an economic NMPC formu-
lation with a regularization on a reduced set of variables. The
key idea is that we focus on a subset of states, termed critical
states, and find regularization weights for these critical states
only. Such an approach leads to much easier determination of
regularization weights as well as less conservative performance.

3. ECONOMIC NMPC WITH REGULARIZATION OF
REDUCED STATES

With a slight notational change we restate problem (1) and
denote it as eNMPC-S:

min
x̄,x̂,u

ψ
ec(x,u)

s.t. x̄ = f1(x̄, x̂,u) (eNMPC-S)
x̂ = f2(x̄, x̂,u),(x̄, x̂) ∈ X,u ∈ U.

In problem eNMPC-S, the system states x are divided into
two subsets (x̄, x̂) ∈ X. Here x̄ represents critical states of the
system, which will be regularized to stabilize the economic
NMPC controller, while x̂ represents noncritical system states.
Critical states can be identified through structural analysis of
the original optimization problem given by (1). For example,
the states that are directly involved in the economic stage cost
could be treated as critical states, since they directly affect the
optimal solutions to the economic NMPC controller.

For the NMPC problem, we apply the robust problem formula-
tion in Yang et al. (2015) by relaxing X, written as g(zl) ≤ 0,
with `1 penalty terms. Equivalently, we also define g( j)

+ (zl) =

max(0,g( j)(zl)), ψ(zl ,vl) :=ψ(zl ,vl)+ρ‖g+(zl)‖, which leads
to Lipschitz continuous modified stage costs needed for sta-
bility analysis. In addition,constraint qualifications and second
order conditions (e.g. MFCQ, CRCQ and GSSOSC) are satis-
fied, and with a sufficiently large penalty weight ρ , the optimal
solution of the reformulated problem is the same as the original
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optimization problem and the penalty terms equal zero. Simi-
larly, terminal equality constraints can also be relaxed with `1
penalty terms. For this we choose a penalty parameter ρt which
is large enough so that zN = xs at the optimal solution.

We define the reformulated dynamic optimization problem for
the economic NMPC controller (eNMPC) as follows:

V (x(k)) = min
z̄l ,ẑl ,vl

N1

∑
l=0

ψ
ec(zl ,vl)+ρt ||zN− xs||

s.t. z̄l+1 = f1(z̄l , ẑl ,vl) (eNMPC)
ẑl+1 = f2(z̄l , ẑl ,vl),vl ∈ U, l = 0, . . .N−1.

z̄0 = x̄(k), ẑ0 = x̂(k)
To partition the critical and noncritical system states for analy-
sis, we introduce the following assumption.
Assumption 3. For steady state economic problem eNMPC-S,
x̂ can be uniquely determined by (x̄,u).

Under Assumption 3, x̂ can be uniquely calculated via the
square equation system f2(., .) with fixed values of x̄ and u.
The noncritical states x̂ can be expressed as a function of
critical states x̄ and controls u, which leads to the steady state
optimization problem:

min
x̄,x̂,u

ψ
ec(x,u)

s.t. x̄ = f1(x̄, x̂,u) (eNMPC-SA)
x̂ = η(x̄,u),(x̄, x̂) ∈ X,u ∈ U.

While there may not be an explicit form for function η(·, ·),
the steady state relationship exists based on implicit function
theorem under Assumption 3.

Next we introduce a modified DAE system, where critical states
x̄ are determined by the original dynamic model, but noncritical
states x̂ are treated as algebraic variables. We assume that this
modified system is an index 1 DAE. By defining extended states
ṽl+1 = vl , we then apply the same robust reformulation and have
the following economic NMPC controller eNMPC-A:

V (x̄(k)) = min
z̄l ,ẑl ,vl

N−1

∑
l=0

ψ
ec(zl ,vl)+ρt ||zN− xs||

s.t. z̄l+1 = f1(z̄l , ẑl ,vl), l = 0, . . .N−1
ẑl = η(z̄l , ṽl), l = 1, . . .N (eNMPC-A)
z̄0 = x̄(k)
ẑ0 = h(x̄(k),u(k−1)),vl , ṽl ∈ U.

To simplify the regularization weight calculation and avoid
over-regularization, we consider only the critical states and
control variables, and add the reduced regularization terms,
1
2‖(z̄l ,vl)− (z̄s,vs)‖2 to the stage costs of the unregularized
controller eNMPC.

For controller eNMPC-A, where all of the noncritical states are
treated as algebraic variables, a much simpler and less conser-
vative reduced regularization can be obtained to guarantee its
stability. Then we analyze the stability of eNMPC after adding
the reduced regularization obtained from eNMPC-A, by con-
sidering the effect of errors introduced by this approximation.
Similar to the previous analysis, we also consider a rotated stage
cost defined by the steady state problem eNMPC-SA as follows:

φ(x,u) = ψ
ec(x,u)+λ

T (x̄− f1(x̄,η(x̄,u),u) (8)
Note that only a subset of model equations are rotated, and
λ are the multipliers for these equality constraints. Using the

rotated stage cost φ(x,u) as the objective has the same solution
as minimizing the original economic stage cost. Moreover,
using the following parametric NLP formulation pNLP(t) with
parameter t, problems eNMPC-A and eNMPC can be linked by
setting t = 0 and t = 1, respectively.

min
z̄l ,ẑl ,vl

N−1

∑
l=0

ψ
ec(zl ,vl)+ρt ||zN− xs|| (pNLP(t))

s.t. z̄l+1 = f1(z̄l , ẑl ,vl), l = 0, ...N−1 (9)
ẑl = η(z̄l , ṽ1)+ t( f2(z̄l−1, ẑl−1,vl−1)−η(z̄l , ṽl)),

vl ,ṽl ∈ U, l = 1, . . .N
z̄0 = x̄(k)
ẑ0 = η(x̄(k),u(k−1))+ t(x̂(k)−η(x̄(k),u(k−1))).

Finally, for the approximation of the noncritical states, we
introduce an approximation error vector w(k) = [w0 . . .wN ]

T

with entries defined as follows:
w0 = x̂(k)−η(x̄(k),u(k−1)) (10)
wl = f2(z̄l−1, ẑl−1,vl−1)−η(z̄l , ṽl) l = 1 . . .N (11)

This error vector w(k) represents the differences in the values
of ẑl given by the dynamic function and algebraic relationship.

The following result shows that when w(k) = 0, the stability
property can be guaranteed for controller eNMPC by adding
regularization terms only for critical states x̄ and u. In this
special case, noncritical states collapse into algebraic variables
and controller eNMPC is equivalent to eNMPC-A.
Theorem 4. (Proof in Yu (2017)) When w(k) = 0 and Assump-
tion 3 holds, controller eNMPC can be made asymptotically
stable by adding a sufficiently large regularization on v and the
states z̄.

Next we consider the stability property for controller eNMPC for
cases where w(k) 6= 0, and the controller eNMPC can be treated
as the controller eNMPC-A corrupted with non-zero w(k). The
process model for controller eNMPC-A is defined as follows:

x̄(k+1) = f1(x̄(k),u(k),η(x̄(k),u(k−1))) (12)
while the true process model is defined as follows:

x̄(k+1) = f1(x̄(k),u(k),η(x̄(k),u(k−1))+w(k,0)) (13)
Here w(k,0) is the first element of the error vector w(k) (10),
which represents the difference in the values of x̂ at initial time
for eNMPC and eNMPC-A.

To analyze the stability properties for these controllers, we
consider the nominal process model (13) and model (12) for
controller eNMPC-A and state the following assumptions.
Assumption 5. (Robust stability assumptions) (A) The error
vector w(k) = [w0 . . .wN ]

T is drawn from a bounded set W
with an upper bound w̄. (B) The optimal solution to problems
eNMPC and eNMPC-A is continuous with respect to x(k) and w.
(C) V (x(k)) is Lipschitz with respect to x(k), with a positive
Lipschitz constant Lv. (D) Model equations f1, f2 and steady
state relationship η are Lipschitz continuous.

In particular, Assumption 5(A) is essential for our stability anal-
ysis, as it assumes bounded deviations of the dynamic noncrit-
ical states x̂ from their algebraic approximations. For example,
this occurs with noncritical states that have fast dynamics.

Along with additional standard assumptions for robust stability,
we establish the ISS property for controller eNMPC-A. More-
over, because eNMPC is linked to eNMPC-A through pNLP(t),
we can derive the stability property for eNMPC by treating this
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controller as eNMPC-A corrupted with non-zero noise terms
w(k). This leads to the following results.
Theorem 6. (Proof in Yu (2017)) Under Assumptions 3 and 5,
controller eNMPC-A, with a sufficiently large regularization on z̄
and v, is ISS when the process model is given by equation (13)
and w(k) 6= 0. Moreover, under the same assumptions controller
eNMPC can be made Input-to-State Practical Stable (ISpS), by
adding a sufficiently large regularization on z̄ and v.

From the above results, we can guarantee ISpS of the economic
NMPC controller by only regularizing critical states x̄, under
the assumption that the deviations in noncritical states x̂ from
their algebraic predictions are bounded. In addition, if the error
vector w(k) is bounded by the distance of x̄ to the optimal steady
state, we can show that asymptotic stability can be established
for eNMPC.
Theorem 7. (Proof in Yu (2017)) Assume for k > K, a finite

number, |w(k)| ≤ δ

Lw
(|x̄(k)− x̄s|), where

δ

Lw
(|x̄(k)− x̄s|) ≤ w̄,

with Lw = 2LV ,δ ∈ [0,1), then controller eNMPC can be made
asymptotically stable, by adding a sufficiently large regulariza-
tion on z̄ and v.

The above properties show that, with a sufficiently large reg-
ularization on a reduced set of system states, stability of con-
troller eNMPC can still be maintained. In this strategy, we use
the process model for controller eNMPC-A to determine the
reduced regularization weight. From this model we derive a
reduced Hessian in the space of critical states. By making the
reduced Hessian positive definite in the reduced space, we can
find sufficient regularization weights for critical states. Then we
add these reduced regularization terms to the objective of the
unregularized controller eNMPC and denote this controller as
eNMPC-rr. Note that we still use the original dynamic model
for control, which gives accurate predictions for x̄ and x̂, but
with a reduced regularization for the stage cost. Additional
details on calculating the reduced regularization weights and
stability analysis are given in Yu (2017).

Selection of critical states has a direct impact on the perfor-
mance of controller eNMPC-rr. Based on the previous stabil-
ity results, we observe that dynamic states that have similar
performance as their algebraic counterparts are candidates for
noncritical states. In particular, for states with very fast time
scales, Assumption 5(A) may be satisfied implicitly and no
regularization is required for these noncritical states.

4. ECONOMIC NMPC OF A SOLID SORBENT-BASED
CO2 CAPTURE SYSTEM

In previous work (Yu and Biegler (2016)), we considered a
setpoint tracking case for a solid sorbent-based CO2 capture
system, where we studied setpoint tracking NMPC to control
the plant and reject process disturbances. In this study we
apply economic NMPC to minimize the operational cost of the
CO2 capture system, and compare the performance of various
economic NMPC strategies and setpoint tracking NMPC.

The solid sorbent-based post-combustion CO2 capture system
studied in the case study is illustrated in Figure 1. In the Bub-
bling Fluidized Bed (BFB) adsorber, CO2 is adsorbed via gas-
solid reactions and the clean gas exists at the top. Cooling
water is used to remove the reaction heat and enhance the
adsorption of CO2. The loaded solid sorbent is fed into the BFB

Figure 1. Schematic of the integrated carbon capture system

regenerator, which operates at higher temperature to release the
CO2 captured in the solid sorbent. In the regenerator, steam and
purge gas are used to maintain high temperature, which favors
the desorption process. Then fresh solid sorbent is cooled by
the heat exchanger and recycled back to the adsorber. Simi-
larly, pre-heating is also provided to loaded sorbent before it
is transported into the regenerator. To model the BFB reactor, a
one-dimensional, three-region, pressure driven dynamic model
has been developed. Mass and heat balance equations have
been written for all components in the three regions, includ-
ing bubble, emulsion and cloud-wake region, which consider
the effect of axial material flow and transfer terms between
different regions and phases. The BFB model is open-loop
stable and includes detailed transport property equations. The
equation-based model and its reduction for the rigorous BFB
adsorber are described in Yu et al. (2015). Here, orthogonal
collocation on finite elements was applied to discretize the
partial differential equations in space. Moreover, a quasi-steady
state approximation replaces some of the differential states with
algebraic states and a null space projection method eliminates
reversible reactions for CO2 adsorption and leads to a simplified
kinetic model.

The economic NMPC problem for the integrated carbon capture
system is written as problem (eNMPC). For NMPC terminal
condition we use a quadratic penalty with large weights. The
sampling time is 50 seconds and the prediction horizon is 1500
seconds, which is long enough to satisfy the terminal constraint
implicitly. The resulting dynamic optimization problem is dis-
cretized in time using a 3-point Radau collocation on finite
elements. To reduce the NLP size, we apply the input and
state blocking strategy in Yu and Biegler (2016), using 5 finite
elements with lengths [50 50 200 600 600]. The dis-
cretized model is implemented in AMPL (Fourer et al. (2002))
and the NMPC problem is solved using IPOPT (Wächter and
Biegler (2006)). The simulations are conducted on an Intel i7-
3770 3.40 GHz PC.

For economic NMPC problem, we minimize the operational
cost of the integrated carbon capture system while satisfying
the environmental constraint on the CO2 removal fraction. The
economic stage cost ψec(x,u) = p1u1 + p2u2, where u1 and u2
are the manipulated variables, cooling water flowrate used to
cool the fresh solid sorbent and purge gas flowrate fed into
the regenerator, respectively. The corresponding unit prices are
p1 = 10 and p2 = 50. To satisfy the environmental requirement
on CO2 capture, we add a lower bound for CO2 removal
fraction. In addition, we incorporate bounds on regenerator
temperature and pressure are considered for safety reasons, and
also add control input bounds and limits on maximum moves.
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The steady state problem for eNMPC has over 1000 differential
variables and over 7000 algebraic variables. We first determine
sufficient regularization weights for all the variables using
based on (7) with the strategy outlined in (Jäschke et al., 2014).
However, this full regularization approach requires very large
weights (up to 1010) and therefore provides no performance
improvement over NMPC tracking to the steady state optimum.

Next, we apply the proposed strategy to find sufficient regular-
ization for a subset of system states. By studying the steady
state optimization problem, we find that only CO2 removal
fraction is active at its lower bound for the optimal solution.
Since the removal fraction is directly determined by the gas
concentrations at the top of the BFB adsorber, we choose the
concentrations of three gas species as critical states. In addition,
we also choose a temperature state since it involves safety con-
straints. Besides that, we include the two manipulated variables,
as they are directly involved in the economic stage cost. In
the following case study, only these 6 variables make up the
regularization term.

To determine sufficient regularization weights for the critical
states, we calculate the reduced Hessian of the Lagrange func-
tion of (1) using numerical perturbations. The reduced Hessian
is calculated at different sampling points within the feasible
regions of 6 variables, and we determine the minimum regular-
ization weights that make the reduced Hessian positive definite
at all sampling points. Compared with full regularization, the
calculation process is greatly simplified, since we only sample
in the space of 6 variables rather than for 8000. Instead of us-
ing Gershgorin’s theorem, we find the minimum regularization
weight Q̄ = qI from an eigenvalue decomposition of the re-
duced Hessian. For this problem the reduced Hessian matrix has
small negative eigenvalues; thus we can obtain much smaller
regularization weights than by using (7). From these results, we
find that q = 60 provides a regularized reduced Hessian matrix
that is positive definite at all sample points of the 6 variables.

We compare the performance of the following controllers
in the case study: setpoint-tracking NMPC (NMPC-t), eco-
nomic NMPC without regularization (eNMPC-nr) and eco-
nomic NMPC with reduced regularization (eNMPC-rr). For the
tracking case, the stage cost is given by quadratic tracking
terms 1

2 (‖x−xs‖2
Qx

+‖u−us‖2
Qu
). The weighting matrix Qx for

scaled states is an identity matrix while Qu is a diagonal matrix
with diagonal elements p1 and p2. For eNMPC-nr, only the
economic stage cost p1u1 + p2u2 is used as objective; while for
eNMPC-rr, a reduced regularization term 1

2‖(x̄,u)− (x̄s,us)‖2
Q̄

with Q̄ = 60I is added to the economic objective.

We first consider the noise-free case. Three selected state pro-
files and controller profiles are shown in Figure 2 and 3a. x1
- x3 represent the concentrations of CO2, H2O and N2 at the
top of BFB adsorber. From these figures we can see that all
three controllers converge to the optimal steady state, including
unregularized economic NMPC (eNMPC-nr), for which there is
no stability guarantee. Here, eNMPC-nr penalizes the usage of
u1 and u2 in the initial stages because the economic stage cost
is directly minimized. On the other hand, this controller leads
to more oscillatory control profiles than with tracking. Also,
eNMPC-rr has a similar trend as eNMPC-nr, but it has smoother
control profiles due to the added regularization terms.

We also compare economic performance of these controllers
through the accumulated economic stage costs ∑

K
k=0 ψec(x(k),u(k))

Figure 2. Comparison of selected BFB state profiles for the
noise-free case
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Figure 3. Comparison of BFB control profiles
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(a) Noise-free case
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(b) Robust case

during the transient process. Since the control moves become
nearly steady after 20 NMPC cycles, we choose K = 20 and de-
termine the cost of tracking NMPC (eNMPC-t) to be 4152321.
Here eNMPC-nr achieves a 3.2% reduction in the accumulated
economic stage compared to NMPC-t, and eNMPC-rr has a
2.6% improvement over NMPC-t, with performance sacrificed
slightly due to the regularization terms.

We also consider the performance of the three controllers with
additive measurement noises. In the case study, we add the
noises with standard deviations of 1% of optimal steady state
values. From Figure 3b, eNMPC-nr has the most oscillatory
control profiles, especially for the purge gas fed into the re-
generator. By adding the regularization terms, regularized eco-
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nomic NMPC (eNMPC-rr) has less oscillatory control profiles
and is also different from NMPC-t, since regularization for only
6 variables is added. From Figure 4, we can see that eNMPC-nr
leads to the most oscillatory state profiles as well. By adding
regularization terms in eNMPC-rr, we observe that state profiles
are less oscillatory and closer to optimal steady state.

As for economic performance in the noisy case, the accu-
mulated economic stage cost ∑

20
k=0 ψec(x(k),u(k)) for tracking

NMPC (NMPC-t) is 4180054, and we observe a 3.9% improve-
ment in economic performance with eNMPC-nr and a 3.1%
improvement with eNMPC-rr over NMPC-t. Additional infor-
mation on the performance of these controllers can be found in
Yu (2017)

Figure 4. Comparison of BFB state profiles in the robust case
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5. CONCLUSIONS

In this paper, we study the economic NMPC for a challenging
CO2 capture system. In general, regularization terms are needed
to guarantee the stability of economic NMPC. Here we propose
an economic NMPC formulation with reduced sets for regular-
ization. Compared with full regularization, the reduced regular-
ization strategy is much simpler to implement and leads to less
conservative economic performance. To simplify the analysis,
we show that algebraic variables can be removed without affect-
ing the stability results. By applying a reduced regularization
with critical states, the economic NMPC has the ISpS prop-
erty, with the assumption of bounded deviations of unregulated
states from their algebraic predictions. With stronger assump-
tions, asymptotic stability can also be achieved. The proposed
strategy has been applied to an integrated CO2 capture system,
where we demonstrate that reduced regularization has desirable
stability properties, while improving economic performance

over setpoint tracking. In addition, determination of sufficient
regularization weights for stable eNMPC is greatly simplified,
especially for large-scale DAE systems.
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