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Abstract: Model-plant mismatch commonly arises from simplifications and assumptions during the 

development of first-principles models. Hence, when employing such models in iterative optimization 

schemes, structural mismatch may lead to inaccurate prediction of the necessary conditions of optimality. 

This results in convergence to a predicted optimum which does not coincide with the actual process 

optimum. The method of simultaneous identification and optimization aims to correct for errors in the 

predicted gradients of the cost and constraints by adapting the model parameters.  In a former 

implementation of this approach, the gradients have been corrected only locally at the current operating 

point. To achieve a better prediction of the cost function over a wider range of input conditions, we propose 

to consider cost measurements from previous batch experiments combined with an optimal experimental 

design of future experiments. Using this approach, it is possible to achieve a better prediction, especially 

around the optimum, and to make the gradient correction step less susceptible to uncertainty in local 

gradient measurements. The improvements are illustrated using a simulated run-to-run optimization study 

of a cell-culture process. 
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1. INTRODUCTION 

Mathematical models play an essential role in the optimal 

design and operation of chemical processes and are typically 

classified as either black-box or first-principles models 

(Bonvin et al., 2016). While first-principles models require 

process knowledge and a rigorous development, they offer the 

benefit of superior extrapolation abilities compared to black-

box models thus offer the potential for process optimization 

(Yip and Marlin, 2004).  

 

However, due to simplifications and assumptions during 

model development, there regularly occurs structural 

mismatch between the model and the process. As a result, the 

model parameters’ values that minimize the errors between 

measured and predicted process outputs (identification) may 

not be equal to the values that result in a correct prediction of 

the gradients of the cost function and constraints 

(optimization). In this case, an optimization method that is 

based on successive identification and optimization steps may 

fail to converge to the process optimum (Srinivasan and 

Bonvin, 2002).  

 

When the main use of the model is optimization, methods such 

as Modifier Adaptation (Marchetti et al., 2009) have been 

proposed to deal with structural mismatch. On the other hand, 

for some cases, a model is sought both for optimization as well 

as for predicting the process behaviour around the optimum. 

For such cases the method for simultaneous identification and 

optimization (Mandur and Budman, 2015) has been proposed 

that aims at finding a set of parameter values which 

simultaneously predicts the model outputs as well as fits the 

gradients of cost-function and constraints as to correctly 

predict the necessary conditions of optimality (NCOs). 

However, up to this point, only the most recent gradient 

measurements have been used for the gradient correction, thus 

not making use of information already acquired through past 

experimental effort. In addition, the choice of the location of 

next gradient measurement, as realized in the Modifier 

Adaptation algorithm (Marchetti et al., 2010; Costello et al., 

2016), has so far not been addressed in the simultaneous 

identification and optimization framework.   

 

The Design of Experiments (DoE) methodology, first derived 

for data-driven models (Box and Draper, 1987), is also an 

established method for reducing parameter uncertainty in the 

estimation of nonlinear mechanistic models (Franceschini and 

Macchietto, 2008). The focus of these methods is the 

minimization of an estimation related criterion associated with 

the parameter covariance matrix, which is typically 

approximated using the inverse of the Fisher Information 

Matrix (FIM). However, as mentioned above, in the presence 

of model-plant mismatch, a precise fitting of model outputs 

does not necessary result in an accurate prediction of cost and 

constraint gradients. This is also relevant if an economic 

design objective is considered when designing experiments for 

model output fitting (Houska et al., 2015). Consequently, the 

goal of the simultaneous identification and optimization 

framework used in this work, is not only to fit model outputs 

to measured ones, but also to match the measured gradients of 

the cost-function and the constraints. To improve the 

prediction of the process cost-function, model parameters’ 
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values can be sought that can reduce the parametric uncertainty 

when fitting the cost function and the constraint gradients. 

Towards that goal, we make use of a covariance matrix derived 

from the parametric sensitivities of the gradients of the cost-

function and constraints in combination with a suitable 

experimental design criterion. The overall objective is to 

determine at each iteration new experiments that provide 

valuable gradient information in addition to the past 

experiments. 

 

In summary, this work presents an approach to address the 

limitations of the previous implemented parameter adaptation 

methodology by incorporating a design of experiments 

approach. As a first step, we use information about costs and 

constraints already gathered from past experiments when 

correcting the predicted gradients. In a second step, future 

optimal experiments, necessary for obtaining better gradient 

estimates, are determined based on a design of experiments 

approach. It is shown that the presented approach leads to the 

following improvements: 

 

i. The effect of gradient uncertainty is significantly 

reduced when cost measurements from previous 

batch runs are also considered. 

ii. The improved parameter precision leads to a better 

prediction of the cost function near the process 

optimum.  

 

For illustration purposes, a run-to-run optimization study is 

performed using a simulated case study of a fed-batch 

penicillin process.  

2. SIMULTANEOUS IDENTIFICATION AND 

OPTIMIZATION METHODOLOGY 

The method for simultaneous identification and optimization 

(Mandur and Budman, 2015) has been recently extended to a 

parameter identification using set-based constraints (Hille and 

Budman, 2017). The main steps are briefly reviewed below. 

2.1 Identification Using Set-Based Bounds 

Suppose we perform several experiments (batch runs) at a 

given operation point 𝒖𝑘 ∈ ℝ𝑛𝑢 . The collection of 

measurements for all sampling times 𝑡𝑖 can then be defined as: 

 𝓨𝑘 = {𝓨𝑘
𝑖 ∈ ℝ𝑛𝑦|𝑖 ∈ {1, … , 𝑛𝑡}} (1) 

where the set-based bounds provide an upper and lower bound 

for the permissible range of model outputs at each sampling 

time such that: 

𝒚𝑖 ≤ 𝒚𝑖 ≤ 𝒚
𝑖
 (2) 

with the model outputs given by 𝒚 ∈ ℝ𝑛𝑦. Set-based bounds 

have been found to be particularly well suited for describing 

experimental data in biological systems (Rumschinski et al., 

2010).  

When estimating model parameters, a typical model fitting 

objective is given by the sum of squared errors (SSE) between 

process outputs and model predictions: 

𝜙𝑆𝑆𝐸(𝜽) = ∑‖𝒚𝑝(𝒖𝑘, 𝑡𝑖) − 𝒚(𝒖𝑘, 𝜽, 𝑡𝑖)‖
2

𝑛𝑡

𝑖=1

 

 

(3) 

where 𝒚𝑝 ∈ ℝ𝑛𝑦 are the plant measurements and 𝜽 ∈ ℝ𝑛𝜃 are 

the set of model parameters. In contrast to a standard 

identification problem where only model fitting is required, the 

goal in simultaneous identification and model-based 

optimization is to find parameter values which yield both good 

model fitting and a correct prediction of the gradients of the 

cost function and constraints. To obtain parameter values from 

the identification step which enhance the performance of the 

subsequent gradient correction step, Hille and Budman (2017) 

proposed the following parametric sensitivity objective: 

𝜙𝑆𝛻(𝜽) = ∑ ∑|𝑠𝑖𝑗
∇𝜙(𝜽)|

𝑛𝜃

𝑗=1

𝑛𝑢

𝑖=1

+ ∑ ∑|𝑠𝑖𝑗
∇𝑔(𝜽)|

𝑛𝜃

𝑗=1

𝑛𝑢×𝑛𝑔

𝑖=1

 

 

(4) 

where 𝑠𝑖𝑗
∇𝜙

 and 𝑠𝑖𝑗
∇𝑔

 are elements of the scaled cost-function and 

constraint gradient sensitivity matrices, i.e. 𝑠𝑖𝑗
∇𝜙

=
𝜕(∇𝜙𝑖)

𝜕𝜃𝑗
|

𝜃𝑗

∇𝜙𝑖
| . 

Equation (4) defines a scalar measure of the parametric cost 

function and constraint sensitivities where large gradient 

sensitivities are desired to obtain parameter values which lead 

to a more accurate matching of the gradients. An objective 

combining the model-fitting goal (3) and the maximization of 

the sensitivity measure in (4) is subsequently defined as: 

𝜽𝑘 = arg min
𝜽

(
𝜙𝑆𝑆𝐸(𝒖𝑘, 𝜽)

𝜙𝑆𝛻(𝒖𝑘, 𝜽)
) 

s. t.         �̇� = 𝒇(𝒙, 𝒖𝑘, 𝜽)

                   𝒚 = 𝒉(𝒙) − 𝒄𝑘−1

 𝜽 ∈ 𝚯0

 𝒚 ∈ 𝓨𝑘

 

 

 

 

 

(5) 

The correction term 𝒄𝑘−1 is defined in the gradient correction 

step described below. According to (5), the goal of the set-

based parameter estimation is to fit the model predictions to 

model outputs while penalizing parameter values which lead 

to a reduction in the gradient sensitivities. Note that since the 

optimization cost was modified from a norm of the prediction 

errors as in (3) to a norm of the errors divided by the sensitivity 

function as in (5), the set-based bounds are necessary to 

enforce that the predicted outputs remain reasonably close to 

the process outputs.  

2.2 Gradient Correction 

As mentioned above, a correct prediction of the process 

optimum requires that the predicted gradients at each iteration 

coincide with that of the process. To satisfy this condition, a 

gradient correction step is performed as follows: 

Δ𝜽𝑘 = arg min
Δ𝜽

(𝒘𝜙
𝑇 |∇𝝓𝑝(𝒖𝑘) − ∇𝝓(𝒖𝑘 , 𝜽𝑘 + Δ𝜽)| 
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                             +𝒘𝑔
𝑇|∇𝒈𝑝(𝒖𝑘) − ∇𝒈(𝒖𝑘, 𝜽𝑘 + Δ𝜽)|) 

 
s. t.         �̇� = 𝒇(𝒙, 𝒖𝑘 , 𝜽𝑘 + Δ𝜽)

 𝒚 = 𝒉(𝒙) − 𝒄𝑘

 ‖𝝐𝑇‖∞ ≤ 𝜖𝑚𝑎𝑥

 

 

 

(6) 

where ∇𝝓 and ∇𝒈 are the cost and constraint gradients. The 

measured gradients are denoted by the subscript 𝑝. The errors 

in gradients are normalized using the respective weights 𝒘𝜙 

and 𝒘𝑔. A correction factor 𝒄𝑘 is introduced into the model 

outputs as to preserve the fitting accuracy that has been 

achieved in the identification step (5). The correction term is 

derived from a first order Taylor expansion:  

𝒄𝑘(𝑡𝑖) = 𝒄𝑘−1(𝑡𝑖) + 𝑫𝑦(𝜽𝑘, 𝑡𝑖)Δ𝜽𝑘 (7) 

where 𝑫𝑦(𝜽𝑘, 𝑡𝑖) ∈ ℝ𝑛𝑦×𝑛𝜃 is the Jacobian of the model at 

sampling time 𝑡𝑖. The upper bound 𝜖𝑚𝑎𝑥 on the relative 

truncation error is a user selected parameter that determines 

the allowable amount of gradient correction. The relative 

truncation error is defined as the error introduced by the linear 

correction term as follows: 

𝝐(𝑡𝑖)
= [𝒚(𝒖𝑘, 𝜽𝑘 + Δ𝜽𝑘 , 𝑡𝑖) − 𝑫𝑦(𝜽𝑘, 𝑡𝑖)Δ𝜽𝑘

− 𝒚(𝒖𝑘, 𝜽𝑘 , 𝑡𝑖)] ∙ [diag(𝒚(𝒖𝑘, 𝜽𝑘, 𝑡𝑖))]
−1

 

 

 

(8) 

2.3 Model-based Optimization 

Following the identification (5) and the gradient correction 

steps (6), a model-based optimization is performed by using 

the updated parameter values 𝜽𝑘
′ = 𝜽𝑘 + Δ𝜽𝑘: 

𝒖𝑘+1 = arg min
𝒖

𝜙(𝒖, 𝒚(𝒖, 𝜽𝒌
′ )) 

s. t.   �̇� = 𝒇(𝒙, 𝒖, 𝜽𝑘
′ )

        𝒚 = 𝒉(𝒙) − 𝒄𝑘

                𝒈(𝒚(𝒖, 𝜽𝒌
′ ), 𝒖) ≤ 𝟎

     𝒖𝐿 ≤ 𝒖 ≤ 𝒖𝑈

 

 

 

 

 

 

(9) 

3. EXPERIMENTAL DESIGN METHODOLOGY 

Although the simultaneous identification and optimization 

methodology already provides some robustness to gradient 

uncertainty due to the use of a bound in (6), one drawback is 

that the gradients are only corrected at the current operating 

point. In other words, information from past operating points 

is not taken into consideration when using the most recent 

gradient measurements. However, correcting only at the 

current operating point may lead to more uncertainty in the 

prediction of the next optimal batch run due to overfitting of 

the local noisy gradient measurement. Furthermore, a local 

correction may lead to an adequate local prediction, but does 

not guarantee an accurate prediction of the cost function at 

other operating points around the process optimum. Therefore, 

to introduce additional robustness to uncertainty in gradient 

measurements and to acquire parameter values that lead to a 

more accurate representation of the process cost-function, we 

propose to match the predicted gradients not only locally but 

also consider cost measurements from previous batch runs.  

Moreover, the inputs for the next experimental batch will be 

determined based on an optimal experimental design 

approach. Thus, the goal is an improved prediction capability 

of the model for a wider range of inputs and lower sensitivity 

to uncertainty in local gradient measurements, especially in the 

neighbourhood of the process optimum. 

3.1 Local Gradient Correction 

In the simultaneous identification and optimization approach, 

gradient measurements are required to satisfy the necessary 

conditions of optimality as per the gradient correction step 

described in (6). Regarding the cost function, a gradient can be 

defined as the derivative with respect to the decision variables:  

∇𝑢𝑚
𝜙(𝒖𝑘) =

𝜕𝜙(𝒖𝑘)

𝜕𝑢𝑚

 
(10) 

where 𝑚 ∈ {1, … , 𝑛𝑢} denotes the respective decision 

variable. The gradient at operating point 𝒖𝑘 can be estimated 

by performing a step change Δ𝑢𝑚 in the direction of each 

decision variable. Using finite differences, the derivative can 

be approximated by: 

𝛼𝑘,𝑚(𝒖𝑘) =
𝜙(𝒖𝑘 + Δ𝑢𝑚𝒆𝑚) − 𝜙(𝒖𝑘)

‖Δ𝑢𝑚𝒆𝑚‖
 

 

(11) 

where 𝒆𝑚 is the identity vector in the direction of the 

respective decision variable. Accordingly, the standard 

gradient correction of cost-function gradients from (6) can be 

reformulated as follows: 

Δ𝜽𝑘 = arg min
Δ𝜽

∑ 𝑤𝑚
𝛼 ‖𝛼𝑘,𝑚

𝑝
(𝒖𝑘) − 𝛼𝑘,𝑚(𝒖𝑘, 𝜽𝑘 + Δ𝜽)‖

2

𝑛𝑢

𝑚=1

 

s. t.        �̇� = 𝒇(𝒙, 𝒖𝑘, 𝜽𝑘 + Δ𝜽)

𝒚 = 𝒉(𝒙) − 𝒄𝑘

‖𝝐𝑇‖∞ ≤ 𝜖𝑚𝑎𝑥

  

(12) 

where 𝑤𝑚
𝛼  is a normalizing weight and the superscript 𝑝 

denotes the approximated cost function derivative (11) 

estimated from plant measurements.  

3.2 Consideration of Information from Prior Experiments 

Besides the gradient measurements that can be acquired by 

perturbing the plant at operating point 𝒖𝑘 (11), additional cost 

function measurements are already available from past 

experiments. Let us define a vector whose elements are the 

differences between the measured cost at the current operating 

point  𝒖𝑘 and past ones as follows:  

Δ𝚽𝑘 = [𝜙𝑘 − 𝜙𝑘−1 𝜙𝑘 − 𝜙𝑘−2  … 𝜙𝑘 − 𝜙𝑘−𝑛𝑏−1]
𝑇
 (13) 

where 𝑛𝑏 is the number of past operating points at which 

experiments have been performed. Similarly, we define a 

matrix containing the differences between the current and past 

decision variables as:  
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Δ𝓤𝑘 = [𝒖𝑘 − 𝒖𝑘−1 𝒖𝑘 − 𝒖𝑘−2  … 𝒖𝑘 − 𝒖𝑘−𝑛𝑏−1]
𝑇
 (14) 

Following (11), for any two operating points 𝑘 and 𝑘 − 𝑙 we 

can define the following finite difference: 

𝛽𝑘,𝑙(𝒖𝑘) =
Δ𝚽𝑘𝑙

‖Δ𝓤𝑘𝑙∙
‖

=
𝜙𝑘 − 𝜙𝑘−𝑙

‖𝒖𝑘 − 𝒖𝑘−𝑙‖
 

 

(15) 

with 𝑙 = 1, … , 𝑛𝑏 − 1. Due to the uncertainty in the measured 

cost, we are ultimately interested in past operating points that 

are sufficiently far away so as to reduce the effect of gradient 

uncertainty when considering past cost-function evaluations. 

For that reason, from the differences with respect to previous 

experiments (15), we select only the ones for which the 

increase in predicted cost is beyond the magnitude of the 

measurement noise. Accordingly, we solely consider the 

points belonging to the following set: 

𝓛𝜀 = {𝑙 ∈ {1, … , 𝑛𝛽}|1 −
𝜙(𝒖𝑘)

𝜙(𝒖𝑘−𝑙)
≥ 𝜀𝜙} 

(16) 

where 𝑛𝛽 ≤ 𝑛𝑏 − 1 describes the maximum number of past 

points to be considered and the 𝜀𝜙 bound determines the 

minimum deviation in the inputs from the current operating 

point. This limit can be estimated from cost-function 

measurements as follows:  

𝜀𝜙 =
𝜎𝜙

𝜇𝜙

 
(17) 

3.3 Design of New Experiments 

In addition to using past cost measurements as above, we 

propose to use optimal DoE to acquire future cost information. 

The goal is to identify future operating points for experiments 

that are more informative in terms of cost information instead 

of the fixed perturbations done at current 𝑘 as per (11). As 

before, these experiments are run in addition to the 

experiments conducted at the current optimal input determined 

by the model-based optimization (9). Thus, the goal of the 

proposed experimental design is to replace the fixed 

perturbations in the direction of each decision variable with 

perturbations that are more informative as per an experimental 

design criterion. We first define a parametric sensitivity matrix 

𝑺𝛽 of the coefficients of past experiments, whose elements are 

defined as follows: 

𝑺𝛽 = [
𝜕(𝛽𝑘,𝑙)

𝜕𝜃𝑗

]
∀  𝑙 ∈ 𝓛𝜀

∀  𝑗 ∈ {1, … , 𝑛𝜃}
 

(18) 

Let us define a D-optimal design criterion (Franceschini and 

Macchietto, 2008) which seeks to minimize the following 

measure of the parameter covariance matrix: 

𝜓 = det(𝑽𝜃) = det ([𝑺𝛽
𝑇𝚺𝛽

−1𝑺𝛽]
−1

) (19) 

where the measurement error matrix 𝚺𝛽 of the gradient 

measurements can be obtained from the cost function 

measurement noise, i.e. 𝜎𝛽
2 =

2𝜎𝜙
2

‖𝒖𝑘−𝒖𝑘−𝑙‖2. Where the 

measurement noise in the cost, necessary for the gradient 

estimation, remains unchanged and is uncorrelated. Therefore, 

the aim of the experimental design is primarily to find the plant 

perturbation vectors which provide information as to 

complement the information already gained from past 

experiments. To this end, we note that the gradient estimator 

in (11) can also be formulated for directions other than the 

directions associated with the individual decision variables as 

follows: 

𝛾
𝑘,𝑞

(𝒖𝑘, 𝒗𝑞) =
𝜙(𝒖𝑘 + 𝒗𝑞) − 𝜙(𝒖𝑘)

‖𝒗𝑞‖
 

 

(20) 

where 𝑞 ∈ {1, … , 𝑛𝐷𝑜𝐸} presents the number of plant 

perturbations at each operating point implemented to acquire 

the gradient information. The vector 𝒖𝑘 + 𝒗𝑞 presents a 

perturbation of the plant in the neighbourhood of 𝒖𝑘. The 

experimental design goal is to select the appropriate 

perturbation vectors 𝒗𝑞 so as to increase parameter precision 

when performing the fitting of measured gradients. 

 

The procedure for designing new experiments can be 

summarized as follows: 

 

1. Initialize by setting 𝑞 = 0, 𝑺𝜙
𝑞

= 𝑺𝛽 and 𝚺𝜙
𝑞

= 𝚺𝛽. 

2. Based on the considered prior experiments, find the 

perturbation which provides the most additional 

information as per the D-optimality criterion:  

𝒗𝑞 = arg min
𝒗

   det([𝑺𝑇𝚺−1𝑺]−1)

         s. t.    𝑺 = [
𝑺𝜙

𝑞

 𝒔𝛾
] , 𝚺 = [

𝚺𝜙
𝑞

𝟎

𝟎 𝜎𝛾
2

]   

            

             𝒔𝛾 = [
𝜕𝛾

𝜕𝜃1

⋯
𝜕𝛾

𝜕𝜃𝑛𝜃

]

                              𝛾(𝒖𝑘, 𝒗) =
𝜙(𝒖𝑘 + 𝒗) − 𝜙(𝒖𝑘)

‖𝒗‖

          1 −
𝜙(𝒖𝑘)

𝜙(𝒖𝑘 + 𝒗)
= 𝜀𝜙

 

 

 

 

 

 

 

 

 

(21) 

3. Update the sensitivity matrix 𝑺𝜙
𝑞+1

= 𝑺, 𝚺𝜙
𝑞+1

= 𝚺 

and set 𝑞 = 𝑞 + 1. 

4. Go back to step 2 until the number of gradient 

measurements 𝑛𝐷𝑂𝐸 is reached. 

Notice that we incorporated an equality constraint in (21), as it 

is desired to introduce a minimum distance when designing 

new experiments to reduce the estimated variance of the 

gradient measurement. At the same time, there is often a cost 

associated with performing new experiments. In other words, 

experiments for gradient information should not be performed 

too far away from the optimum as it could result in a significant 

deterioration (increase) in cost. 

3.4 Extended Gradient Correction 
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After carrying out the set of cost function measurements from 

the optimal plant perturbations provided by the procedure in 

(21), the standard gradient correction method from (12) can be 

extended to consider the normalized differences to cost 

function measurements of past operating points as well as 

gradient measurements resulting from the experimental design 

as follows: 

Δ𝜽𝑘 = arg min
Δ𝜽

∑ 𝑤𝑞
𝛾

‖𝛾𝑘,𝑞
𝑝

(𝒖𝑘) − 𝛾𝑘,𝑞(𝒖𝑘 , 𝜽𝑘 + Δ𝜽)‖
2

𝑛𝐷𝑂𝐸

𝑞=1

 

                     + ∑ 𝑤𝑙
𝛽

‖𝛽𝑘,𝑙
𝑝

(𝒖𝑘) − 𝛽𝑘,𝑙(𝒖𝑘, 𝜽𝑘 + Δ𝜽)‖
2

𝑙 𝜖 𝓛𝜀

  

s. t.        �̇� = 𝒇(𝒙, 𝒖𝑘, 𝜽𝑘 + Δ𝜽)

 𝒚 = 𝒉(𝒙) − 𝒄𝑘

 ‖𝝐𝑇‖∞ ≤ 𝜖𝑚𝑎𝑥

       

 
 

(22) 

5. RESULTS AND DISCUSSION 

5.1 Penicillin Process Case Study 

The case study under investigation is of a fed-batch penicillin 

process. The following set of equations define the process 

simulator (Birol et al., 2002): 

𝑑𝑋

𝑑𝑡
= (

𝜇𝑋𝑆𝑋

𝐾𝑋𝑋 + 𝑆
) −

𝑋

𝑉

𝑑𝑉

𝑑𝑡
 

 

(23) 

𝑑𝑃

𝑑𝑡
= (

𝜇𝑃𝑆𝑋

𝐾𝑃 + 𝑆 +
𝑆2

𝐾𝐼

) − 𝐾𝐻𝑃 −
𝑃

𝑉

𝑑𝑉

𝑑𝑡
 

 

 

(24) 

𝑑𝑆

𝑑𝑡
= −

1

𝑌𝑋/𝑆

(
𝜇𝑋𝑆𝑋

𝐾𝑋𝑋 + 𝑆
) −

1

𝑌𝑃/𝑆

(
𝜇𝑃𝑆𝑋

𝐾𝑃 + 𝑆 +
𝑆2

𝐾𝐼

) 

 

            −𝑚𝑋𝑋 +
𝐹𝑠𝑓

𝑉
−

𝑆

𝑉

𝑑𝑉

𝑑𝑡
 

 

(25) 
𝑑𝑉

𝑑𝑡
= 𝐹 − 6.226 ∙ 10−4𝑉 

 

(26) 

where 𝑋, 𝑃 and 𝑆 describe the respective concentrations of 

biomass, penicillin and substrate. The volume in the reactor is 

given by 𝑉. The simulator (23) – (26) is used to produce in 

silico experimental data for model fitting and gradient 

correction. For that purpose, 10 % measurement noise as well 

as stochastic disturbances in initial biomass and substrate 

concentrations are realized.  

Based on the in silico measurements, a model is calibrated and 

utilized for the purpose of run-to-run optimization. Model-

plant mismatch is intentionally introduced by assuming a lack 

of knowledge about part of the process under study. We 

propose to ignore the hydrolysis term in the penicillin 

equation. Therefore, the model used in the optimization 

scheme is defined by (23), (25), (26) and:   

𝑑𝑃

𝑑𝑡
= (

𝜇𝑋𝑆𝑋

𝐾𝑃 + 𝑆 +
𝑆2

𝐾𝐼

) −
𝑃

𝑉

𝑑𝑉

𝑑𝑡
 

 

(27) 

The goal of this run-to-run study is the maximization of 

penicillin at the end of the batch time 𝑡𝑓, which is assumed to 

be fixed. The available decision variables are the initial 

substrate concentration 𝑆0 and constant feed rate 𝐹.  

Accordingly, we can formulate the objective as follows: 

min
𝑆0,𝐹

  −𝑃(𝒙, 𝜽, 𝑆0, 𝐹, 𝑡𝑓) 

 𝑠. 𝑡.      (23)   and  (25) − (27)

              𝑉(𝒙, 𝜽, 𝑆0, 𝐹, 𝑡𝑓) ≤ 𝑉𝑚𝑎𝑥
  

 

(28) 

where a constraint on the volume of the reactor is given by 

𝑉𝑚𝑎𝑥 = 120𝐿. The initial values used for the first operating 

point are given in table 1, where 𝑆0 and 𝐹 are determined by 

the model-based optimization.  

Biomass conc. (𝑋0) 0.1 (g/L) 

Substrate conc. (𝑆0) 0.1 (g/L) 

Product conc. (𝑃0) 0 (g/L) 

Initial culture volume (𝑉0) 100 (L) 

Input Feed (𝐹)  0.04 (L/h) 

Table 1: Initial operating conditions for the simulator 

The initial values of the model parameters are given in table 2. 

From these eight available model parameters, only a subset is 

selected for performing the model update (fitting of predicted 

outputs to measurements) and gradient correction (fitting 

predicted gradients to measured ones) to avoid overfitting and 

sensitivity to parameter correlation.  The optimal choice of a 

suitable subset of parameters for updating has been addressed 

in Hille et al. (2017). Accordingly, the parameters 𝜇𝑋, 𝜇𝑃 and 

𝑚𝑋 are used for model update and gradient correction.  

𝝁𝑿 𝑲𝑿 𝝁𝑷 𝑲𝑷 𝑲𝑰 𝒀𝑿/𝑺 𝒀𝑷/𝑺 𝒎𝑿 

0.092 0.37 0.008 0.0002 0.1 0.45 0.9 0.014 

Table 2: Initial parameter values  

For the standard gradient correction, the gradients of the cost 

function are estimated by perturbing the plant in the directions 

of each of the decision variables as shown in (11). In this case, 

a fixed step size of Δ𝑆0 = 2 g/L and Δ𝐹 = 0.5 L/h is used for 

the initial substrate concentration and the constant flow rate 

respectively. Note that, as the optimal fixed flowrate of 𝐹∗ =
0.17 L/h is obtained within one iteration (due to the 

constraint), we used the proposed approach for the improving 

the predictions capabilities in terms of the initial substrate 

concentration. Accordingly, in this case, the optimal step size 

(or plant perturbation) Δ𝑆0 was determined based on the 

available past experimental data and DoE methodology (21). 

5.2 Results 

To compare the performance of the proposed approach, we 

conducted 10 run-to-run simulations for the following two 

cases: I - only the local gradient is used for correction. II- 

extended gradient correction is used involving past and current 

gradients using DoE. The upper bound on the relative 

truncation error in (22) was selected to be 𝜖𝑚𝑎𝑥 = 0.03 while 

the maximum number of considered past experiments in (16) 

is 𝑛𝛽 = 20. 
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Figure 1: Performance comparison when using information 

from prior experiments and experimental design. 

The run-to-run optimization results are shown in figure 1, 

where the left-hand graph shows the comparison in terms of 

the manipulated variable 𝑆0. The proposed approach shows a 

speed-up in convergence to the process optimum, which leads 

to a ca. 28% improvement in the IAE. Since by considering 

cost information of previous experiments, it is possible to 

reduce the effect uncertainty in the local gradient 

measurement. Furthermore, the proposed approach leads to a 

61% reduction in the variability in the predicted optimal input, 

leading to higher average yield as shown on the right graph in 

figure 1. This is especially evident around the optimum 

(“plateau”), as shown in Figure 2, where the use of already 

available past cost function measurements and DoE results in 

a decrease in the SSE of the cost-function fitting around the 

optimum of more than 90% when compared to the cost 

predicted without past gradients and DoE.  

  
Figure 2: Example of the predicted cost-functions for 𝑺𝟎 in 

the neighbourhood of the process optimum.  

CONCLUSIONS 

An experimental design methodology was presented, where 

the goal is to achieve a better prediction of the cost-function 

around the optimum. Based on available cost information from 

previous experiments, a DoE is implemented to determine the 

next optimal experiments. Subsequently, an extended gradient 

correction is implemented to estimate parameter values that 

lead to a more accurate representation of the process cost-

function compared to a correction that only uses local gradient 

measurements. The proposed approach shows promising 

results and could also be useful for the optimization of 

continuous processes.  
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