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Abstract: The parametric identification problem for industrial crude distillation unit (CDU) is considered. 
We take the a priori knowledge of the process into account by using a system of constraints for 
parameters of soft sensors models. The identification problem is transformed into a constrained 
optimization problem, which we solved using the active set method. The static and dynamic soft sensors 
are evaluated for industrial CDU located at JSC “Gazprom neftekhim Salavat” refinery. It was found that 
the model performed better when we used the proposed constrained optimization approach for 
identification instead of robust regression methods. 
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1. INTRODUCTION 

In the present, researchers are paying more attention to the 
identification problems of the model parameters of soft 
sensors for CDU (Bolf et al., 2010; Dam and Saraf, 2006; 
Macias-Hernandez et al., 2007; Napoli and Xibilia, 2011). 
The most widespread approach for soft sensor evaluation is 
based on the partial least-squares (PLS) method (Shang et al., 
2015). The integration of the first principles (material and 
energy balances and phase equilibrium) of inferential 
modeling can be found in Chatterjee and Saraf (2003), 
Mahalec and Sanchez (2012), and Fujii and Yamamoto 
(2014). Johansen (1996) considers the more general 
framework of integrating available a priori information into 
the identification problem. 

However, the methods developed from the previous research 
do not completely deal with practical obstacles such as small 
training datasets that cover all operating points, low 
variability ranges for key (informative) input variables, and 
an unknown feed composition (i.e. the feed distillation curves 
as TBP). 

In order to overcome the abovementioned difficulties, 
Torgashov et al. (2016) has proposed the use of the system of 
parametric constraints. The system of parametric constraints 
is derived from the preliminary calibrated first principle 
(rigorous) distillation model (Torgashov and Zmeu, 2015). In 
the current work, we consider the extension of this technique 
in the case of CDU. We introduce and solve the statements of 
identification problems for static (steady-state) and dynamic 
soft sensors using the constraint optimization technique. 

2. INDUSTRIAL CRUDE UNIT DESCRIPTION AND 
PROBLEM FORMULATION 

The crude distillation unit considered in this paper is 
represented by two multicomponent distillation columns: K-1 

and K-2 (Fig. 1). The plant is located at JSC “Gazprom 
neftekhim Salavat” refinery (Salavat, Russia). The feed flow 
(crude) comes from the oil desalting unit and enters under the 
16th tray of K-1. The overhead products of K-1 are gas and 
naphtha. The naphtha is also withdrawn from the top of K-2. 
The bottom products of the 3 strippers of the column K-2 are 
gasoline, kerosene cut (KC) and diesel oil cut (DOC). The 
main product of the column K-2 is desired cut 1 (DC1), 
which is the mixture of kerosene cut (KC) and diesel oil cut 
(DOC). Desired cut 2 (DC2), which is the mixture of naphtha 
and gasoline. The atmospheric residue (AR) is withdrawn 
from the bottom part of column K-2. The main process 
variables of the industrial CDU are shown in Table 1 and 
may be considered informative inputs of the soft sensor 
model. 

 

Fig. 1. The sequence of industrial multicomponent distillation 
columns (CDU). 
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We consider the plant with several measured inputs 
u1,…,ui,,…,uN and one output y(). We use the measured 
process variables (pressure, temperature, and flow) as inputs. 
A priori knowledge of the distillation process allows us to 
select the most informative variables (Table 1) from the 
thermodynamic essence. 

Table 1. Main process variables 

No Notation Process variable, ui 
1 TIС6 Temperature of the flow in the bottom 

stripper of column K-2, °С 
2 PIC2 Top pressure of the column K-2, MPa 
3 FIC13/ 

FIC5 
The ratio of steam to feed flowrate for 
column K-2 

4 TIC3 Top temperature of the column K-2, 
°С 

5 FIC9/ 
FIC5 

The ratio of steam to feed flowrate for 
bottom stripper of column K-2 

6 FIC4/ 
FIC5 

The ratio of bottom pumparound to 
feed flowrate of column K-2 

7 PIC1 Top pressure of column K-1, MPa 
8 TIC2 Feed temperature of column K-2, °С 
9 FIC10/ 

FIC5 
The ratio of the product of the top 
stripper to the feed flowrate of column 
K-2 

10 FIC11/ 
FIC5 

The ratio of the product of the middle 
stripper to the feed flowrate of column 
K-2 

11 TI1 Feed temperature of the column K-1, 
°С 

12 FIC12/ 
FIC5 

The ratio of product of bottom stripper 
to feed flowrate of column K-2 

 
We consider the identification problem of the soft sensor (SS) 
evaluation, which is best for predicting the quality of the 
products of crude distillation process. We obtain the model 
for the soft sensor in the form of a linear regression model 
based on the following equation: 

     0 1 1 2 2( ) ... N Ny b b u b u b u       ,                              (1) 

where jb  is the j-th model coefficient, j=0,1,…,N, 0b is the 
constant term, N is the number of input variables,  is the 
irregular time points of output measurement 1,2,3,…,

1 0i i      , 2i  ; 1 0    , 0  is the constant term; and 
 is the random variable restricted in the given range. 

The dynamic SS accounts for the influence the process 
dynamics have on the quality of the products. The predictive 
model is represented as a sum of convolutions of plant inputs 
and a finite impulse response (FIR) hi (discrete analogues of 
the first degree Volterra kernels): 

1 21 1
0 1 1 2 20 0

1

0

( ) ( 1) ( ) ( 1) ( ) ...

... ( 1) ( ),N

n n

k k
n

N Nk

y h h k u k h k u k

h k u k

  



 

 





       

  

 


 (2) 

where 0h is a constant term.  

We use the determination coefficient (a number that indicates 
the proportion of the variance in the dependent variable that 
is predictable from the independent variable)  

2 2 21 ( ) ( )a
i i ii i

R y y y y     ,                                           (3) 

the root mean squared error (RMSE) 

 1/2
2

1
( ) /M

i ii
RMSE y y M


  ,                                               (4) 

the Akaike (1969) Information Criterion: 
      MInMNyyInMAIC

i
m
ii   122 ,         (5) 

the Schwarz Bayesian Criterion: 
        MInMMInNyyInMBSC

i
m
ii   12      (6) 

as identification criteria on a given time interval, where iy  is 
the measured value of the output variable, yi is the value 
obtained based on the SS, ay  is the mean value of the 
measured output variable, and M is the number of output 
measurements. The model is more consistent the closer to 
unity the value of the coefficient of determination R2 is or the 
closer to zero the value of the RMSE is or then less the value 
of the AIC and BSC are. 
The goal of the paper is to develop an approach for soft 
sensor model identification based on the industrial data while 
taking into account parametric constraints. These constraints 
can be derived from the rigorous modeling (Torgashov et al., 
2016). The introduction of the system of constraints also 
allows us to overcome such difficulties as small training 
datasets and laboratory errors. The final boiling point (FBP) 
of DC1 and final boiling point (FBP) of DC2 are considered 
soft sensor outputs. 

3. MAIN RESULTS 

3.1 Steady-state model identification under constraints 

Let 1 2[1, ( ), ( ),..., ( )]T
Nu u u  u  be a combined vector of 

the measured input variables and 0 1[ , ,..., ]T
N= b b bb  be a 

vector of coefficients of the same dimension, the components 
of which reflect the contributions of the corresponding input 
variables. Then the equation (1) takes the following form: 

Ty  u b . 
We form the vector Y of dimension q from the output value y 
dataset as 

1 2( ( ), ( ),..., ( ))T
qy y y  Y  

and the matrix U, containing the measured inputs uj, 
corresponding to output value y from (1): 

1 1 2 1 N 1

1 2 2 2 N 2

1 2

1 ( ) ( ) .... ( )
1 ( ) ( ) .... ( )

1 ( ) ( ) ... ( )q q N q

u u u
u u u

u u u

  
  

  

 
 
 
 
 
 

U
    

 

We consider the multicollinearity case, which occurs when 
there is an almost linear relationship between inputs. In this 
case, the matrix TC U U  is close to singular, so it is the 
smallest eigenvalue min 0  , the condition number is infinitely 
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increased, and it causes the instability of the solution. If
min 0  , then it corresponds to the strict multicollinearity. In 

order to obtain a stable solution, it is necessary to reduce the 
condition number of the matrix C by, for example, adding 
thereto a diagonal matrix kB I  (k> 0). Then we find the 
solution in a class of ridge parameter estimates: 

1( )T Tk  b U U I U Y .                                                         (5) 

The quality, obtained using models (7), depends on the 
number of available output measurements. The length of the 
training sample is often insufficient to obtain reliable results. 
Also, the available data contains significant measurement 
errors in inputs and outputs, which are unmeasured 
influences. Taking into account constraints on the model 
coefficients bj allows us to avoid these problems. When 
taking into account constraints on the model parameters, we 
solve the problem of least squares with simple constraints on 
the variables: 

 2

min max

min

.



 

Y Ub

b b b
                                                                       (6) 

The solution of the problem (8) is obtained by the active set 
numerical method (Gill et al., 1981). The given constraints 
are reduced to the form: 

ˆAb b , 

where 
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b
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Constraint ˆT

i iba b  is active in acceptable point b if ˆT
i iba b , 

and inactive if ˆT
i iba b , 

i

Ta is the i-th row of A. The sufficient 
minimum conditions for simple constraints are as follows: 

1. m in * m ax b b b  min * max
FR FR FR b b b  

2. *( ) 0T
FR  U Y Ub  

3. min *
min ( )T λ U Y Ub  min 0i λ  min1, ,i t                           (9) 

4. max *
max ( )T λ U Y Ub , max 0i λ , max1, ,i t   

5. T
FR FRU U  is the positive definite 

where b* is the minimum point of the solution of problem (8); 
subscript FR indicates that in the vector and matrices, the 
elements and columns with index numbers corresponding to 
the index numbers of b elements that have not met the 
boundary values of (8) are used; the subscript min and max 
indicate that in the matrix, only the columns with index 
numbers corresponding to the index numbers of b elements 
that take the appropriate minimum or maximum boundary 
value are used. tmin and tmax refer to the numbers of active 
upper and lower limits, respectively; min and max are vectors 

of Lagrange multipliers corresponding to the lower and upper 
active constraints. 

Below is the algorithm for searching the minimum point b* 
for each iteration k. 

1. Find the starting point according to (7) in order to initialize 
the method of the active set. 

2. Verify the performance of the stop conditions. (Reaching 
the performance errors of conditions (9), which are 
constraints on the number of iterations). 

3. Select a logic branch. Does it make sense to remove any 
constraint from the list of the set of active constraints? The 
condition of performance 3 in (9) is checked. If the 
condition is not satisfied for some of the vector elements, 
the constraint is excluded from the list of active 
constraints. 

4. Calculate the search direction pk. Equation (5) solves the 
problem  2

min k FR FR Y Ub U p . Calculate the non-zero

 1 kN t  , the dimensional vector FRp , and the direction 
of search  T

k FRFR
p A p , where tk is the number of active 

constraints on k iterations. 
5. Calculate the step length αk. We calculate the diagonal 

matrix Ψ from ˆFR FR
FR

FR FR

   
        

b p
Ψ b

b p
 , ˆ

FRb  consists of 

the elements b̂ , which aren’t active constraints. The 
elements b̂ , which are opposite boundary values in (8) for 
constraints in the active set, are excluded from ˆ

FRb . The 
 mink ii  Ψ  is an available maximum positive step from 

kb  along pk. We remember the index j of minimum 
positive diagonal element Ψ. If 1k  , then 1k  ; 
otherwise, k k  . 

6. Add a constraint to the list of active constraints. If k k  , 
then j constraint ˆ

FRb  becomes active and necessary to add 
to the list. 

7. Approximate a recalculation. After 1k k k k  b b p  is 
calculated, return to step 2 of the algorithm. 

3.2 Dynamic model identification under constraints 

Let 1 1 1[1, ( ),..., ( 1),..., ( ),..., ( 1)]T
N N Nu u n u u n       u  be the 

combined vector of the measured input variables of dynamic 
SS (DSS) with dimensionality 

1
1 N

kk
q n


  , where nk is a 

number of values of the k-th input variable and 
0 1 1 1( , (1), ..., ( ), ..., (1), ..., ( ))T

N N Nh h h n h h nh  is the vector FIR of the 
same dimension, the components of which reflect the 
contributions of the respective input variables of DSS. Then 
the equation (2) takes the following form: Ty  u h . 
We write the vector Y of dimension q from the output value y 
as 

1 2( ( ), ( ),..., ( ))T
qy y y  Y  

and matrix U, containing the measured inputs uj, 
corresponding to output value y from (2) as 
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. 

We write the matrix equation as Y U h . We introduce the 
error function: 

   E Y Y Y U h , 
where Y is the actual measurement of output, and minimize 
the following objective function: 

2 2( )  Ψ E Y Uh .                                                            (7) 

The constraints on transient response components are written 
as 

min max s s s ,                                                                    (8) 

where  1 1 1(1), ..., ( ), ..., (1), ..., ( ) T
N N Ns s n s s ns , min min min

1 , ...,
T

N   s s s , 
max max max

1 , ...,
T

N   s s s . We obtain the constraint (11) based on 
the value of bj ( 0)j  of the steady-state soft sensor model 

0 1 1( ) ( ) ... ( ) ... ( )j j N Ny b b u b u b u         . That 
model is derived prior based on the steady-state industrial 
data of CDU. We select the parametric constraints for each 
FIR coefficient using the following values of a1, a2 and a3.  

a1 is a fraction of the FIR length jn from which the 

convergence of elements of min
js  and max

js  to min
jb , max

jb  is 
started. 

a2 is a fraction of min 0jb   ( max 0jb  ) from which the smooth 

increasing (or decreasing) of elements of min
js  (or max

js ) 
begins. 

a3 is a fraction of max 0jb   ( min 0jb  ) from which the 

smooth decreasing (or increasing) of elements of min
js  (or 

max
js ) begins. 

For 0jb  , the following equations are valid for constraints 
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For 0jb  : 
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where fl means rounding to the nearest integer number in the 
direction of -∞. 

An example for determining the constraint system in terms of 
min
js  and 

max
js  of js  under 0jb   is shown on the Fig. 2. 

We select the parameters a1=0.5, a2=0.8, and a3=1.2. 

 

Fig. 2. The assignment of constraints for each step response 
function of the dynamic soft sensor model. 
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The coefficients of the finite step response (FSR) js  are 
related to the components of the FIR hj by the relations 

  1
( ),k

j ji
s k h i


  1, 2 , , ,j N   1, , .jk n                         (9) 

 
The constraints (11) can be written as 

ˆAh s ,                                                                                (10) 
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The sufficient minimum conditions are as follows for the 
current optimization problem (parametric identification of the 
dynamic model): 

1. ˆAh s , ˆACT ACTA h s  
2. ** ( ) 0T  TZ U Y Uh                                                      (14) 

3.   1 *( )T T
ACT ACT ACT


 λ A A A U Y Uh , 0i λ , 1, ,i t   

4. T TZ U U Z  is a positive definite, 

where *h is the minimum point of the solution of problem 
(10) with constraints (13); subscript ACT indicates that in the 
vector matrix, we only use the rows with index numbers 
corresponding to the element index numbers of active 
constraint in (13); t is the number of active constraints;  is 
the vector of Lagrange multipliers corresponding to the active 
constraints; Z is the matrix of the columns that are the basis 
of the feasible direction of the search for equality constraints 
(13). The matrix Z is formed by the variable-reduction 
technique (Gill et al., 1981). 

The search algorithm of minimum point *h  for iteration k is 
as follows: 

1. In order to start the method of the active set, it is necessary 
to determine the starting point (using a solution of the 
problem (10) without any constraints, with subsequent 
correction of coefficients hi that do not fall under the 
constraints (13)). 

2. Verify the performance of the stop conditions (reaching 
the performance errors of conditions (14) and constraints 
on the number of iterations). 

3. Select a logic branch. Does it make sense to remove any 
constraint from the set of active constraints list? The 
condition of performance of a condition 3 in (14) is 
checked. If the condition is not satisfied for some of the 
vector elements, constraint is excluded from the list of 
active constraints, and it is necessary to recalculate Zk. 

4. Calculate the search direction pk. Use an equation like (5) 
to solve the problem  2

min k k Z Y Uh UZ p . Calculate the 

non-zero  1
1 N

k kk
n t


   dimensional vector pZ and the 

direction of search k k Zp Z p , where tk is the number of 
active constraints on the k iteration. 

5. Calculate the step length k . From   ˆk A h Ψp s  , the 

diagonal matrix Ψ is calculated. The calculated 
 mink ii  Ψ  is a minimum non-negative available step 

from hk along pk, where i is the index number of the 
element, which is not an active constraint in (13) or an 
element of opposite boundary values (11) for constraints in 
the active set. Also, kp consists of elements of pk without 
the first element. We memorize the index j of the 
minimum positive diagonal element of Ψii. If 1k  , then 

1k  ; otherwise, k k  . 
6. Add the constraint to the list of active constraints. If 

k k  , then j constraint ˆFRs  becomes active and Zk is 
recalculated. 

7. Calculate the 1k k k k  h h p  and return to step 2. 

4. INDUSTRIAL CASE STUDY 

The CDU (Fig.1) is considered a case study for evaluating 
static (steady-state) and dynamic soft sensors based on the 
proposed identification algorithm under parametric 
constraints. The final boiling point temperature of the DC1 
when we obtained a model on the training sample is 
considered. The number of output observations in the training 
sample is 70. The length of the test dataset is equal to 30 
observations. Fig. 3 and Table 2 show the results of the 
performance of the static models on the test sample.  

Table 2. Results of the performance of the static models 
(test dataset) 

 R2 RMSE AIC BSC 
Without use 
constraints 0,64 4,47 232,7 255,4 

With use constraints 0,84 2,99 175,5 198,2 

 
Fig. 3. Comparative study of static soft sensor model’s 
performance. 
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The improvement of the prediction quality by the criterion 
RMSE of the identified static model obtained with the 
constraints on the parameters of SS is 100(4,47 – 2,99) / 
4,47  33% compared to the case without constraints. In 
order to investigate the influence of constraints on the 
performance of the dynamic soft sensor model we obtained, 
we compared solutions of the optimization problem (10) 
without constraints and optimization problem (10) with 
constraints (13). We use the same values of the ridge 
coefficients. Fig. 4 and Table 3 show the results of the 
performance of the dynamic models on the test sample for the 
final boiling point temperature of DC2 when a model is 
obtained based on the training sample. The number of 
measurements in the training sample is 280. The size of the 
test dataset is 120 for the case with the dynamic model of the 
soft sensor. 

Table 3. Results of the performance of the dynamic 
models (test dataset) 

 R2 RMSE AIC BSC 
Without use 
constraints 0,40 3,79 6418,4 6482 

With use 
constraints 0,74 2,52 4453,2 4516,8 

The improvement of the prediction quality by the criterion 
RMSE of the dynamic model obtained using the constraints 
on the parameters of SS is 100(3,79 – 2,52)/ 3,79   33,5 % 
compared to the identification without constraints. 

Fig. 4. Comparative study of dynamic soft sensors. 
 

6. CONCLUSIONS 

The introduction of a system of constraints into the 
identification algorithm improves the quality of derived 
models, especially on the test dataset. The reason is related to 
the integration of available a priori knowledge via the 
constraint identification problem statement and solution.The 
use of the active set method, taking into account constraints 
on the model coefficients, can improve the quality of the 
evaluated SS models, in particular in the case of small 
training datasets containing lab errors. The test of the 
proposed approach to solving the problem of obtaining a soft 
sensor model for industrial crude oil distillation unit showed 

that the reduction of the root mean square error on the test 
sample can be more than 33%. 
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